1932

Abstract

Seed dispersal is key to the persistence and spread of plant populations. Because the majority of plant species rely on animals to disperse their seeds, global change drivers that directly affect animals can cause cascading impacts on plant communities. In this review, we synthesize studies assessing how disperser loss alters plant populations, community patterns, multitrophic interactions, and ecosystem functioning. We argue that the magnitude of risk to plants from disperser loss is shaped by the combination of a plant species’ inherent dependence on seed dispersal and the severity of the hazards faced by their dispersers. Because the factors determining a plant species’ risk of decline due to disperser loss can be related to traits of the plants and dispersers, our framework enables a trait-based understanding of change in plant community composition and ecosystem functioning. We discuss how interactions among plants, among dispersers, and across other trophic levels also mediate plant community responses, and we identify areas for future research to understand and mitigate the consequences of disperser loss on plants globally.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-012221-111742
2021-11-03
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/52/1/annurev-ecolsys-012221-111742.html?itemId=/content/journals/10.1146/annurev-ecolsys-012221-111742&mimeType=html&fmt=ahah

Literature Cited

  1. Albert A, Auffret AG, Cosyns E, Cousins SAO, D'hondt B et al. 2015. Seed dispersal by ungulates as an ecological filter: a trait-based meta-analysis. Oikos 124:91109–20
    [Google Scholar]
  2. Andermann T, Faurby S, Turvey ST, Antonelli A, Silvestro D 2020. The past and future human impact on mammalian diversity. Sci. Adv. 6:36eabb2313
    [Google Scholar]
  3. Anderson SH, Ladley JJ, Robertson AW, Kelly D. 2021. Effects of changes in bird community composition and species abundance on plant reproduction, through pollination and seed dispersal. Ibis 163:3875–89
    [Google Scholar]
  4. Anjos DV, Leal LC, Jordano P, Del-Claro K. 2020. Ants as diaspore removers of non-myrmecochorous plants: a meta-analysis. Oikos 129:6775–86
    [Google Scholar]
  5. Aslan C, Beckman NG, Rogers HS, Bronstein J, Zurell D et al. 2019. Employing plant functional groups to advance seed dispersal ecology and conservation. AoB PLANTS 11:2plz006
    [Google Scholar]
  6. Aslan CE, Zavaleta ES, Tershy B, Croll D 2013. Mutualism disruption threatens global plant biodiversity: a systematic review. PLOS ONE 8:6e66993
    [Google Scholar]
  7. Atwood TB, Valentine SA, Hammill E, McCauley DJ, Madin EMP et al. 2020. Herbivores at the highest risk of extinction among mammals, birds, and reptiles. Sci. Adv. 6:32eabb8458
    [Google Scholar]
  8. Bagchi R, Swamy V, Farfan J-PL, Terborgh J, Vela CIA et al. 2018. Defaunation increases the spatial clustering of lowland Western Amazonian tree communities. J. Ecol. 106:41470–82
    [Google Scholar]
  9. Barfod AS, Hagen M, Borchsenius F 2011. Twenty-five years of progress in understanding pollination mechanisms in palms (Arecaceae). Ann. Bot. 108:81503–16
    [Google Scholar]
  10. Beaune D, Fruth B, Bollache L, Hohmann G, Bretagnolle F. 2013. Doom of the elephant-dependent trees in a Congo tropical forest. For. Ecol. Manag. 295:109–17
    [Google Scholar]
  11. Beckman NG, Rogers HS. 2013. Consequences of seed dispersal for plant recruitment in tropical forests: interactions within the seedscape. Biotropica 45:6666–81
    [Google Scholar]
  12. Bello C, Galetti M, Pizo MA, Magnago LFS, Rocha MF et al. 2015. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1:11e1501105
    [Google Scholar]
  13. Bennett JM, Steets JA, Burns JH, Burkle LA, Vamosi JC et al. 2020. Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nat. Commun. 11:3999
    [Google Scholar]
  14. Berti E, Svenning J-C 2020. Megafauna extinctions have reduced biotic connectivity worldwide. Glob. Ecol. Biogeogr. 29:122131–42
    [Google Scholar]
  15. Blanco G, Tella JL, Díaz-Luque JA, Hiraldo F. 2019. Multiple external seed dispersers challenge the megafaunal syndrome anachronism and the surrogate ecological function of livestock. Front. Ecol. Evol. 7:328
    [Google Scholar]
  16. Boch S, Berlinger M, Prati D, Fischer M 2016. Is fern endozoochory widespread among fern-eating herbivores?. Plant Ecol 217:113–20
    [Google Scholar]
  17. Bond WJ, Midgley JJ. 2001. Ecology of sprouting in woody plants: the persistence niche. Trends Ecol. Evol. 16:145–51
    [Google Scholar]
  18. Brauman KA, Garibaldi LA, Polasky S, Aumeeruddy-Thomas Y, Brancalion PHS et al. 2020. Global trends in nature's contributions to people. PNAS 117:5132799–805
    [Google Scholar]
  19. Brodie JF. 2017. Evolutionary cascades induced by large frugivores. PNAS 114:4511998–12002
    [Google Scholar]
  20. Brodie JF, Redford KH, Doak DF 2018. Ecological function analysis: incorporating species roles into conservation. Trends Ecol. Evol. 33:11840–50
    [Google Scholar]
  21. Calviño-Cancela M, Escudero M, Rodriguez-Perez J, Cano E, Vargas P et al. 2012. The role of seed dispersal, pollination and historical effects on genetic patterns of an insular plant that has lost its only seed disperser. J. Biogeogr. 39:111996–2006
    [Google Scholar]
  22. Campos-Arceiz A, Traeholt C, Jaffar R, Santamaria L, Corlett RT. 2012. Asian tapirs are no elephants when it comes to seed dispersal. Biotropica 44:2220–27
    [Google Scholar]
  23. Carvalho CS, Lucas MS, Côrtes MC 2020. Rescuing intraspecific variation in human-impacted environments. J. Appl. Ecol. 58:350–59
    [Google Scholar]
  24. Caughlin TT, Ferguson JM, Lichstein JW, Zuidema PA, Bunyavejchewin S, Levey DJ 2015. Loss of animal seed dispersal increases extinction risk in a tropical tree species due to pervasive negative density dependence across life stages. Proc. R. Soc. B 282: 1798.20142095
    [Google Scholar]
  25. Chanthorn W, Hartig F, Brockelman WY, Srisang W, Nathalang A, Santon J 2019. Defaunation of large-bodied frugivores reduces carbon storage in a tropical forest of Southeast Asia. Sci. Rep. 9:10015
    [Google Scholar]
  26. Chapman H, Cordeiro NJ, Dutton P, Wenny D, Kitamura S et al. 2016. Seed-dispersal ecology of tropical montane forests. J. Trop. Ecol. 32:5437–54
    [Google Scholar]
  27. Chen SC, Cornwell WK, Zhang HX, Moles AT 2016. Plants show more flesh in the tropics: variation in fruit type along latitudinal and climatic gradients. Ecography 40:531–38
    [Google Scholar]
  28. Chmielewski MW, Eppley SM. 2019. Forest passerines as a novel dispersal vector of viable bryophyte propagules. Proc. R. Soc. B 286: 1897.20182253
    [Google Scholar]
  29. Choat JH, Clements KD. 1998. Vertebrate herbivores in marine and terrestrial environments: a nutritional ecology perspective. Annu. Rev. Ecol. Syst. 29:375–403
    [Google Scholar]
  30. Chomicki G, Kiers ET, Renner SS. 2020. The evolution of mutualistic dependence. Annu. Rev. Ecol. Evol. Syst. 51:409–32
    [Google Scholar]
  31. Cochrane EP. 2003. The need to be eaten: Balanites wilsoniana with and without elephant seed-dispersal. J. Trop. Ecol. 19:5579–89
    [Google Scholar]
  32. Collevatti RG, Lima JS, Ballesteros-Mejia L. 2019. Megafauna seed dispersal in the Neotropics: A meta-analysis shows no genetic signal of loss of long-distance seed dispersal. Front. Genet. 10:788
    [Google Scholar]
  33. Comita LS, Queenborough SA, Murphy SJ, Eck JL, Xu K et al. 2014. Testing predictions of the Janzen–Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J. Ecol. 102:4845–56
    [Google Scholar]
  34. Cook JM, Rasplus J-Y. 2003. Mutualists with attitude: coevolving fig wasps and figs. Trends Ecol. Evol. 18:5241–48
    [Google Scholar]
  35. Cordeiro NJ, Howe HF. 2003. Forest fragmentation severs mutualism between seed dispersers and an endemic African tree. PNAS 100:2414052–56
    [Google Scholar]
  36. Corlett RT, Westcott DA. 2013. Will plant movements keep up with climate change?. Trends Ecol. Evol. 28:8482–88
    [Google Scholar]
  37. Correa SB, Costa-Pereira R, Fleming T, Goulding M, Anderson JT 2015. Neotropical fish–fruit interactions: eco-evolutionary dynamics and conservation. Biol. Rev. 90:41263–78
    [Google Scholar]
  38. Correia M, Heleno R, da Silva LP, Costa JM, Rodríguez-Echeverría S 2019a. First evidence for the joint dispersal of mycorrhizal fungi and plant diaspores by birds. New Phytol 222:21054–60
    [Google Scholar]
  39. Correia M, Rodríguez-Echeverría S, Timóteo S, Freitas H, Heleno R. 2019b. Integrating plant species contribution to mycorrhizal and seed dispersal mutualistic networks. Biol. Lett. 15:520180770
    [Google Scholar]
  40. Crawley MJ. 1989. The relative importance of vertebrate and invertebrate herbivores in plant population dynamics. . In Insect-Plant Interactions EA Bernays 45–71 Boca Raton, FL: CRC
    [Google Scholar]
  41. Davidson AD, Hamilton MJ, Boyer AG, Brown JH, Ceballos G. 2009. Multiple ecological pathways to extinction in mammals. PNAS 106:2610702–5
    [Google Scholar]
  42. de Freitas Chagas G, Salk CF, Vidal EJ, de Souza SEXF, Brancalion PHS. 2020. Exploiting fruits of a threatened palm to trigger restoration of Brazil's Atlantic Forest. Restor. Ecol. 29:1e13294
    [Google Scholar]
  43. de Paula Mateus D, Groeneveld J, Fischer R, Taubert F, Martins VF, Huth A. 2018. Defaunation impacts on seed survival and its effect on the biomass of future tropical forests. Oikos 127:101526–38
    [Google Scholar]
  44. Dirzo R, Mendoza E, Ortíz P. 2007. Size-related differential seed predation in a heavily defaunated Neotropical rain forest. Biotropica 39:3355–62
    [Google Scholar]
  45. Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B 2014. Defaunation in the Anthropocene. Science 345:6195401–6
    [Google Scholar]
  46. Donatti CI, Guimarães PR, Galetti M, Pizo MA, Marquitti F, Dirzo R 2011. Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecol. Lett. 14:8773–81
    [Google Scholar]
  47. Donoso I, García D, Martínez D, Tylianakis JM, Stouffer DB. 2017a. Complementary effects of species abundances and ecological neighborhood on the occurrence of fruit-frugivore interactions. Front. Ecol. Evol. 5:133
    [Google Scholar]
  48. Donoso I, Schleuning M, García D, Fründ J 2017b. Defaunation effects on plant recruitment depend on size matching and size trade-offs in seed-dispersal networks. Proc. R. Soc. B 284: 1855.20162664
    [Google Scholar]
  49. Donoso I, Sorensen MC, Blendinger PG, Kissling WD, Neuschulz EL et al. 2020. Downsizing of animal communities triggers stronger functional than structural decay in seed-dispersal networks. Nat. Commun. 11:1582
    [Google Scholar]
  50. Doughty CE, Wolf A, Morueta-Holme N, Jørgensen PM, Sandel B et al. 2016. Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests. Ecography 39:2194–203
    [Google Scholar]
  51. Dunne JA, Williams RJ, Martinez ND 2002. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 5:4558–67
    [Google Scholar]
  52. Egerer MH, Fricke EC, Rogers HS 2018. Seed dispersal as an ecosystem service: Frugivore loss leads to decline of a socially valued plant, Capsicum frutescens. Ecol. Appl. 28:3655–67
    [Google Scholar]
  53. Eriksson O. 1992. Evolution of seed dispersal and recruitment in clonal plants. Oikos 63:3439–48
    [Google Scholar]
  54. Falcón W, Hansen DM. 2018. Island rewilding with giant tortoises in an era of climate change. Philos. Trans. R. Soc. B 373: 1761.20170442
    [Google Scholar]
  55. Farwig N, Berens DG. 2012. Imagine a world without seed dispersers: a review of threats, consequences and future directions. Basic Appl. Ecol. 13:109–15
    [Google Scholar]
  56. Feer F, Boissier O. 2015. Variations in dung beetle assemblages across a gradient of hunting in a tropical forest. Ecol. Indic. 57:164–70
    [Google Scholar]
  57. Fleming TH, Kress WJ. 2011. A brief history of fruits and frugivores. Acta Oecol. 37:6521–30
    [Google Scholar]
  58. Forister ML, Novotny V, Panorska AK, Baje L, Basset Y et al. 2015. The global distribution of diet breadth in insect herbivores. PNAS 112:2442–47
    [Google Scholar]
  59. Fricke EC, Bender J, Rehm EM, Rogers HS. 2019. Functional outcomes of mutualistic network interactions: a community-scale study of frugivore gut passage on germination. J. Ecol. 107:2757–67
    [Google Scholar]
  60. Fricke EC, Simon MJ, Reagan KM, Levey DJ, Riffell JA et al. 2013. When condition trumps location: Seed consumption by fruit-eating birds removes pathogens and predator attractants. Ecol. Lett. 16:81031–36
    [Google Scholar]
  61. Fricke EC, Svenning J-C. 2020. Accelerating homogenization of the global plant–frugivore meta-network. Nature 585:782374–78
    [Google Scholar]
  62. Fricke EC, Tewksbury JJ, Rogers HS. 2017a. Defaunation leads to interaction deficits, not interaction compensation, in an island seed dispersal network. Glob. Change Biol. 335:1e190–200
    [Google Scholar]
  63. Fricke EC, Tewksbury JJ, Wandrag EM, Rogers HS. 2017b. Mutualistic strategies minimize coextinction in plant–disperser networks. Proc. R. Soc. B 284: 1854.20162302
    [Google Scholar]
  64. Fuster F, Kaiser-Bunbury C, Olesen JM, Traveset A. 2019. Global patterns of the double mutualism phenomenon. Ecography 42:4826–35
    [Google Scholar]
  65. Galetti M, Guevara R, Côrtes MC, Fadini R, Von Matter S et al. 2013. Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:61361086–90
    [Google Scholar]
  66. Galetti M, Moleón M, Jordano P, Pires MM, Guimarães PR et al. 2018. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. 93:2845–62
    [Google Scholar]
  67. Garcia D, Donoso I, Pérez JR 2018. Frugivore biodiversity and complementarity in interaction networks enhance landscape-scale seed dispersal function. Funct. Ecol. 32:122742–52
    [Google Scholar]
  68. Gardner CJ, Bicknell JE, Baldwin-Cantello W, Struebig MJ, Davies ZG. 2019. Quantifying the impacts of defaunation on natural forest regeneration in a global meta-analysis. Nat. Commun. 10:4590
    [Google Scholar]
  69. Gaston KJ, Cox DTC, Canavelli SB, García D, Hughes B et al. 2018. Population abundance and ecosystem service provision: the case of birds. BioScience 68:4264–72
    [Google Scholar]
  70. Gawel AM, Rogers HS, Miller RH, Kerr AM. 2018. Contrasting ecological roles of non-native ungulates in a novel ecosystem. R. Soc. Open Sci. 5:4170151
    [Google Scholar]
  71. Gehring CA, Wolf JE, Theimer TC. 2002. Terrestrial vertebrates promote arbuscular mycorrhizal fungal diversity and inoculum potential in a rain forest soil. Ecol. Lett. 5:4540–48
    [Google Scholar]
  72. Genes L, Fernandez FAS, Vaz-de-Mello FZ, da Rosa P, Fernandez E, Pires AS 2019. Effects of howler monkey reintroduction on ecological interactions and processes. Conserv. Biol. 33:188–98
    [Google Scholar]
  73. Givnish TJ. 1980. Ecological constraints on the evolution of breeding systems in seed plants: dioecy and dispersal in gymnosperms. Evolution 34:5959–72
    [Google Scholar]
  74. Givnish TJ, Kriebel R, Zaborsky JG, Rose JP, Spalink D et al. 2020. Adaptive associations among life history, reproductive traits, environment, and origin in the Wisconsin angiosperm flora. Am. J. Bot. 107:121677–92
    [Google Scholar]
  75. Gómez JM, Schupp EW, Jordano P. 2018. Synzoochory: the ecological and evolutionary relevance of a dual interaction. Biol. Rev. 94:874–902
    [Google Scholar]
  76. González-Varo JP, Rumeu JB, Albrecht J, Arroyo JM, Bueno RS et al. 2021. Limited potential for bird migration to disperse plantsto cooler latitudes. Nature 595:75–79
    [Google Scholar]
  77. Goolsby EW, Bruggeman J, Ané C. 2017. PhyloPars: fast multivariate phylogenetic comparative methods for missing data and within-species variation. Methods Ecol. Evol. 8:122–27
    [Google Scholar]
  78. Green A, Brochet A, Kleyheeg E, Soons M 2016. Dispersal of plants by waterbirds. Why Birds Matter: Avian Ecological Function and Ecosystem Services ÇH Şekercioǧlu, DG Wenny, CJ Whelan 147–95 Chicago: Univ. Chicago Press
    [Google Scholar]
  79. Guimarães PR, Galetti M, Jordano P. 2008. Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLOS ONE 3:3e1745
    [Google Scholar]
  80. Hansen DM. 2010. On the use of taxon substitutes in rewilding projects on islands. Isl. Evol. 19:111–46
    [Google Scholar]
  81. Hawes JE, Vieira ICG, Magnago LFS, Berenguer E, Ferreira J et al. 2020. A large-scale assessment of plant dispersal mode and seed traits across human-modified Amazonian forests. J. Ecol. 108:41373–85
    [Google Scholar]
  82. Hervías-Parejo S, Tur C, Heleno R, Nogales M, Timóteo S, Traveset A 2020. Species functional traits and abundance as drivers of multiplex ecological networks: first empirical quantification of inter-layer edge weights. Proc. R. Soc. B 287: 1939.20202127
    [Google Scholar]
  83. Hewitt N. 1998. Seed size and shade-tolerance: a comparative analysis of North American temperate trees. Oecologia 114:3432–40
    [Google Scholar]
  84. HilleRisLambers J, Ettinger AK, Ford KR, Haak DC, Horwith M et al. 2013. Accidental experiments: ecological and evolutionary insights and opportunities derived from global change. Oikos 122:121649–61
    [Google Scholar]
  85. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P et al. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75:13–35
    [Google Scholar]
  86. Howe HF, Miriti MN. 2004. When seed dispersal matters. BioScience 54:7651–60
    [Google Scholar]
  87. Howe HF, Smallwood J. 1982. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13:201–28
    [Google Scholar]
  88. Huntley B, Webb T III 1989. Migration: species’ response to climatic variations caused by changes in the Earth's orbit. J. Biogeogr. 16:15–19
    [Google Scholar]
  89. Hutchinson MC, Mora BB, Pilosof S, Barner AK, Kéfi S et al. 2019. Seeing the forest for the trees: putting multilayer networks to work for community ecology. Funct. Ecol. 33:2206–17
    [Google Scholar]
  90. Janzen DH. 1984. Dispersal of small seeds by big herbivores: Foliage is the fruit. Am. Nat. 123:3338–53
    [Google Scholar]
  91. Janzen DH, Martin PS. 1982. Neotropical anachronisms: the fruits the gomphotheres ate. Science 215:19–27
    [Google Scholar]
  92. Jordano P 2013. Fruits and frugivory. Seeds: The Ecology of Regeneration in Plant Communities R Gallagher 18–61 Wallingford, UK: CABI, 3rd ed..
    [Google Scholar]
  93. Kaiser-Bunbury CN, Traveset A, Hansen DM 2010. Conservation and restoration of plant–animal mutualisms on oceanic islands. Perspect. Plant Ecol. Evol. Syst. 12:2131–43
    [Google Scholar]
  94. Kattge J, Bönisch G, Díaz S, Lavorel S, Prentice IC et al. 2020. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26:1119–88
    [Google Scholar]
  95. Kneitel JM, Chase JM. 2004. Trade-offs in community ecology: linking spatial scales and species coexistence. Ecol. Lett. 7:169–80
    [Google Scholar]
  96. Kurten EL. 2013. Cascading effects of contemporaneous defaunation on tropical forest communities. Biol. Conserv. 163:22–32
    [Google Scholar]
  97. Kurten EL, Wright SJ, Carson WP 2015. Hunting alters seedling functional trait composition in a Neotropical forest. Ecology 96:71923–32
    [Google Scholar]
  98. Lebrija-Trejos E, Reich PB, Hernandez A, Wright SJ. 2016. Species with greater seed mass are more tolerant of conspecific neighbours: a key driver of early survival and future abundances in a tropical forest. Ecol. Lett. 19:1071–80
    [Google Scholar]
  99. Levin SA, Muller-Landau HC, Nathan R, Chave J 2003. The ecology and evolution of seed dispersal: a theoretical perspective. Annu. Rev. Ecol. Evol. Syst. 34:575–604
    [Google Scholar]
  100. Levine JM, Murrell DJ. 2003. The community-level consequences of seed dispersal patterns. Annu. Rev. Ecol. Evol. Syst. 34:549–74
    [Google Scholar]
  101. Lorts CM, Briggeman T, Sang T. 2008. Evolution of fruit types and seed dispersal: a phylogenetic and ecological snapshot. J. Syst. Evol. 46:3396–404
    [Google Scholar]
  102. MacDonald SE, Ward MP, Sperry JH. 2019. Manipulating social information to promote frugivory by birds on a Hawaiian island. Ecol. Appl. 29:7e01963
    [Google Scholar]
  103. Maitner BS, Boyle B, Casler N, Condit R, Donoghue J et al. 2018. The bien r package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9:2373–79
    [Google Scholar]
  104. Malhi Y, Doughty CE, Galetti M, Smith FA, Svenning J-C, Terborgh JW. 2016. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. PNAS 113:4838–46
    [Google Scholar]
  105. Markl JS, Schleuning M, Forget P-M, Jordano P, Lambert JE et al. 2012. Meta-analysis of the effects of human disturbance on seed dispersal by animals. Conserv. Biol. 26:61072–81
    [Google Scholar]
  106. McConkey KR, Brockelman WY. 2011. Nonredundancy in the dispersal network of a generalist tropical forest tree. Ecology 92:71492–502
    [Google Scholar]
  107. McConkey KR, Prasad S, Corlett RT, Campos-Arceiz A, Brodie JF et al. 2012. Seed dispersal in changing landscapes. Biol. Conserv. 146:11–13
    [Google Scholar]
  108. Mello MA, Rodrigues FA, Costa LD, Kissling WD, Şekercioğlu ÇH et al. 2015. Keystone species in seed dispersal networks are mainly determined by dietary specialization. Oikos 124:81031–39
    [Google Scholar]
  109. Memmott J, Waser NM, Price MV. 2004. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B 271: 1557.2605–11
    [Google Scholar]
  110. Mokany K, Prasad S, Westcott DA 2014. Loss of frugivore seed dispersal services under climate change. Nat. Commun. 5:3971
    [Google Scholar]
  111. Moles AT, Westoby M. 2006. Seed size and plant strategy across the whole life cycle. Oikos 113:191–105
    [Google Scholar]
  112. Muller-Landau HC. 2010. The tolerance-fecundity trade-off and the maintenance of diversity in seed size. PNAS 107:94242–47
    [Google Scholar]
  113. Muñoz G, Trøjelsgaard K, Kissling WD 2019. A synthesis of animal-mediated seed dispersal of palms reveals distinct biogeographical differences in species interactions. J. Biogeogr. 46:2466–84
    [Google Scholar]
  114. Oksanen L, Olofsson J. 2018. Vertebrate herbivory and its ecosystem consequences. eLS https://doi.org/10.1002/9780470015902.a0003283.pub2
    [Crossref] [Google Scholar]
  115. Olsson O, Nuñez-Iturri G, Smith HG, Ottosson U, Effiom EO. 2019. Competition, seed dispersal and hunting: What drives germination and seedling survival in an Afrotropical forest?. AoB PLANTS 11:plz018
    [Google Scholar]
  116. Osuri AM, Mendiratta U, Naniwadekar R, Varma V, Naeem S. 2020. Hunting and forest modification have distinct defaunation impacts on tropical mammals and birds. Front. For. Glob. Change 2:87
    [Google Scholar]
  117. Osuri AM, Ratnam J, Varma V, Alvarez-Loayza P, Hurtado Astaiza J et al. 2016. Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nat. Commun. 7:11351
    [Google Scholar]
  118. Pedrosa F, Bercê W, Levi T, Pires M, Galetti M 2019. Seed dispersal effectiveness by a large-bodied invasive species in defaunated landscapes. Biotropica 51:6862–73
    [Google Scholar]
  119. Peguero G, Muller-Landau HC, Jansen PA, Wright SJ 2017. Cascading effects of defaunation on the coexistence of two specialized insect seed predators. J. Anim. Ecol. 86:1136–46
    [Google Scholar]
  120. Peres CA, Emilio T, Schietti J, Desmoulière SJM, Levi T. 2016. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. PNAS 113:4892–97
    [Google Scholar]
  121. Pérez-Méndez N, Jordano P, García C, Valido A. 2016. The signatures of Anthropocene defaunation: cascading effects of the seed dispersal collapse. Sci. Rep. 6:24820
    [Google Scholar]
  122. Pérez-Méndez N, Jordano P, Valido A 2017. Persisting in defaunated landscapes: reduced plant population connectivity after seed dispersal collapse. J. Ecol. 106:936–47
    [Google Scholar]
  123. Pérez-Méndez N, Rodríguez A, Nogales M 2018. Intra-specific downsizing of frugivores affects seed germination of fleshy-fruited plant species. Acta Oecol 86:38–41
    [Google Scholar]
  124. Pires MM. 2017. Rewilding ecological communities and rewiring ecological networks. Perspect. Ecol. Conserv. 15:4257–65
    [Google Scholar]
  125. Poisot T, Stouffer DB, Gravel D. 2015. Beyond species: why ecological interaction networks vary through space and time. Oikos 124:3243–51
    [Google Scholar]
  126. Razafindratsima OH, Gentles A, Drager AP, Razafimahaimodison J-CA, Ralazampirenena CJ, Dunham AE. 2018. Consequences of lemur loss for above-ground carbon stocks in a Malagasy rainforest. Int. J. Primatol. 39:3415–26
    [Google Scholar]
  127. Reiss J, Bridle JR, Montoya JM, Woodward G. 2009. Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol. Evol. 24:9505–14
    [Google Scholar]
  128. Rey PJ, Cancio I, Manzaneda AJ, González-Robles A, Valera F et al. 2018. Regeneration of a keystone semiarid shrub over its range in Spain: Habitat degradation overrides the positive effects of plant–animal mutualisms. Plant Biol 20:61083–92
    [Google Scholar]
  129. Ripple WJ, Abernethy K, Betts MG, Chapron G, Dirzo Ret al 2016. Bushmeat hunting and extinction risk to the world's mammals. R. Soc. Open Sci 3:10160498
    [Google Scholar]
  130. Ripple WJ, Newsome TM, Wolf C, Dirzo R, Everatt KT et al. 2015. Collapse of the world's largest herbivores. Sci. Adv. 1:4e1400103
    [Google Scholar]
  131. Ripple WJ, Wolf C, Newsome TM, Hoffmann M, Wirsing AJ, McCauley DJ. 2017. Extinction risk is most acute for the world's largest and smallest vertebrates. PNAS 114:4010678–83
    [Google Scholar]
  132. Robinson GR, Handel SN. 2010. Forest restoration on a closed landfill: rapid addition of new species by bird dispersal. Conserv. Biol. 7:2271–78
    [Google Scholar]
  133. Rogers HS, Buhle ER, HilleRisLambers J, Fricke EC, Miller RH, Tewksbury JJ. 2017. Effects of an invasive predator cascade to plants via mutualism disruption. Nat. Commun. 8:14557
    [Google Scholar]
  134. Rosenberg KV, Dokter AM, Blancher PJ, Sauer JR, Smith AC et al. 2019. Decline of the North American avifauna. Science 366:6461120–24
    [Google Scholar]
  135. Rumeu B, Devoto M, Traveset A, Olesen JM, Vargas P et al. 2017. Predicting the consequences of disperser extinction: Richness matters the most when abundance is low. Funct. Ecol. 31:101910–20
    [Google Scholar]
  136. Savidge JA. 1987. Extinction of an island forest avifauna by an introduced snake. Ecology 68:3660–68
    [Google Scholar]
  137. Schlawin JR, Zahawi RA. 2008. ‘Nucleating’ succession in recovering neotropical wet forests: the legacy of remnant trees. J. Veg. Sci. 19:4485–92
    [Google Scholar]
  138. Schleuning M, Fründ J, García D 2015. Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant–animal interactions. Ecography 38:4380–92
    [Google Scholar]
  139. Schleuning M, Neuschulz EL, Albrecht J, Bender IMA, Bowler DE et al. 2020. Trait-based assessments of climate-change impacts on interacting species. Trends Ecol. Evol. 35:4319–28
    [Google Scholar]
  140. Seddon PJ, Griffiths CJ, Soorae PS, Armstrong DP. 2014. Reversing defaunation: restoring species in a changing world. Science 345:6195406–12
    [Google Scholar]
  141. Shmida A, Ellner S. 1984. Coexistence of plant species with similar niches. Vegetatio 58:129–55
    [Google Scholar]
  142. Silva WR, Zaniratto CP, Ferreira JOV, Rigacci EDB, Oliveira JF et al. 2020. Inducing seed dispersal by generalist frugivores: a new technique to overcome dispersal limitation in restoration. J. Appl. Ecol. 57:122340–48
    [Google Scholar]
  143. Sinnott-Armstrong MA, Downie AE, Federman S, Valido A, Jordano P, Donoghue MJ 2018. Global geographic patterns in the colours and sizes of animal-dispersed fruits. Glob. Ecol. Biogeogr. 27:111339–51
    [Google Scholar]
  144. Sobral-Souza T, Lautenschlager L, Morcatty TQ, Bello C, Hansen D, Galetti M. 2017. Rewilding defaunated Atlantic Forests with tortoises to restore lost seed dispersal functions. Perspect. Ecol. Conserv. 15:4300–7
    [Google Scholar]
  145. Stephens RB, Rowe RJ. 2020. The underappreciated role of rodent generalists in fungal spore dispersal networks. Ecology 101:4e02972
    [Google Scholar]
  146. Stevenson PR, Aldana AM. 2008. Potential effects of ateline extinction and forest fragmentation on plant diversity and composition in the western Orinoco Basin, Colombia. Int. J. Primatol. 29:2365–77
    [Google Scholar]
  147. Suding KN, Lavorel S, Chapin FS, Cornelissen JHC, Díaz S et al. 2008. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol. 14:51125–40
    [Google Scholar]
  148. Svenning J-C, Normand S, Skov F 2008. Postglacial dispersal limitation of widespread forest plant species in nemoral Europe. Ecography 31:3316–26
    [Google Scholar]
  149. Tabarelli M, Peres CA. 2002. Abiotic and vertebrate seed dispersal in the Brazilian Atlantic forest: implications for forest regeneration. Biol. Conserv. 106:2165–76
    [Google Scholar]
  150. Thierry H, Rogers H. 2020. Where to rewild? A conceptual framework to spatially optimize ecological function. Proc. R. Soc. B 287: 1922.20193017
    [Google Scholar]
  151. Tiffney BH, Mazer SJ. 1995. Angiosperm growth habit, dispersal and diversification reconsidered. Evol. Ecol. 9:193–117
    [Google Scholar]
  152. Tilman D. 1994. Competition and biodiversity in spatially structured habitats. Ecology 75:12–16
    [Google Scholar]
  153. Traveset A, González-Varo JP, Valido A. 2012. Long-term demographic consequences of a seed dispersal disruption. Proc. R. Soc. B 279: 1741.3298–303
    [Google Scholar]
  154. Traveset A, Tur C, Eguíluz VM. 2017. Plant survival and keystone pollinator species in stochastic coextinction models: role of intrinsic dependence on animal-pollination. Sci. Rep. 7:16915
    [Google Scholar]
  155. Traveset A, Verdú M 2002. A meta-analysis of the effect of gut treatment on seed germination. Seed Dispersal and Frugivory: Ecology, Evolution, and Conservation DJ Levey, WR Silva, M Galetti 339–50 Wallingford, UK: CABI
    [Google Scholar]
  156. Tylianakis JM, Morris RJ. 2017. Ecological networks across environmental gradients. Annu. Rev. Ecol. Evol. Syst. 48:25–48
    [Google Scholar]
  157. Valiente-Banuet A, Aizen MA, Alcántara JM, Arroyo J, Cocucci A et al. 2015. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29:3299–307
    [Google Scholar]
  158. Valiente-Banuet A, Verdú M. 2013. Plant facilitation and phylogenetics. Annu. Rev. Ecol. Evol. Syst. 44:347–66
    [Google Scholar]
  159. Van der Putten WH, Vet LEM, Harvey JA, Wäckers FL. 2001. Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol. Evol. 16:10547–54
    [Google Scholar]
  160. Vander Wall SB, Barga SC, Seaman AE 2017. The geographic distribution of seed-dispersal mutualisms in North America. Evol. Ecol. 31:5725–40
    [Google Scholar]
  161. Venable DL, Brown JS. 1988. The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. Am. Nat. 131:3360–84
    [Google Scholar]
  162. Vieira MC, Almeida-Neto M. 2015. A simple stochastic model for complex coextinctions in mutualistic networks: Robustness decreases with connectance. Ecol. Lett. 18:2144–52
    [Google Scholar]
  163. Villar N, Paz C, Zipparro V, Nazareth S, Bulascoschi L et al. 2020. Frugivory underpins the nitrogen cycle. Funct. Ecol. 35:357–68
    [Google Scholar]
  164. Wandrag EM, Dunham AE, Duncan RP, Rogers HS 2017. Seed dispersal increases local species richness and reduces spatial turnover of tropical tree seedlings. PNAS 114:4010689–94
    [Google Scholar]
  165. Wenny DG. 2001. Advantages of seed dispersal: a re-evaluation of directed dispersal. Evol. Ecol. Res. 3:151–74
    [Google Scholar]
  166. Wiles GJ, Bart J, Beck RE Jr., Aguon CF. 2003. Impacts of the brown tree snake: patterns of decline and species persistence in Guam's avifauna. Conserv. Biol. 17:51350–60
    [Google Scholar]
  167. Willson MF, Rice BL, Westoby M 1990. Seed dispersal spectra: a comparison of temperate plant communities. J. Veg. Sci. 1:4547–62
    [Google Scholar]
  168. Winfree R 2020. How does biodiversity relate to ecosystem functioning in natural ecosystems?. Unsolved Problems in Ecology A Dobson, RD Holt, D Tilman 338–54 Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  169. Wotton DM, Kelly D. 2011. Frugivore loss limits recruitment of large-seeded trees. Proc. R. Soc. B 278: 1723.3345–54
    [Google Scholar]
  170. Wright SJ, Duber HC. 2001. Poachers and forest fragmentation alter seed dispersal, seed survival, and seedling recruitment in the palm Attalea butyraceae, with implications for tropical tree diversity. Biotropica 33:4583–95
    [Google Scholar]
  171. Young HS, McCauley DJ, Galetti M, Dirzo R. 2016. Patterns, causes, and consequences of Anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47:333–58
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-012221-111742
Loading
/content/journals/10.1146/annurev-ecolsys-012221-111742
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error