1932

Abstract

The hypothesis that evolved behaviors play a determining role in facilitating and impeding the evolution of other traits has been discussed for more than 100 years with little consensus beyond an agreement that the ideas are theoretically plausible in accord with the Modern Synthesis. Many recent reviews of the genomic, epigenetic, and developmental mechanisms underpinning major behavioral transitions show how facultative expression of novel behaviors can lead to the evolution of obligate behaviors and structures that enhance behavioral function. Phylogenetic and genomic studies indicate that behavioral traits are generally evolutionarily more labile than other traits and that they help shape selective environments on the latter traits. Adaptive decision-making to encounter resources and avoid stress sources requires specific sensory inputs, which behaviorally shape selective environments by determining those features of the external world that are biologically relevant. These recent findings support the hypothesis of a dual role for behavior in evolution and are consistent with current evolutionary theory.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-012921-052523
2021-11-03
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/52/1/annurev-ecolsys-012921-052523.html?itemId=/content/journals/10.1146/annurev-ecolsys-012921-052523&mimeType=html&fmt=ahah

Literature Cited

  1. Aberhan M, Nürnberg S, Kiessling W 2012. Vision and the diversification of Phanerozoic marine invertebrates. Paleobiology 38:2187–204
    [Google Scholar]
  2. Alaux C, Sinha S, Hasadsri L, Hunt GJ, Guzmán-Novoa E et al. 2009. Honey bee aggression supports a link between gene regulation and behavioral evolution. PNAS 106:3615400–5
    [Google Scholar]
  3. Ancel LW. 1999. A quantitative model of the Simpson-Baldwin effect. J. Theor. Biol. 196:197–209
    [Google Scholar]
  4. Anderson SR, Wiens JJ 2017. Out of the dark: 350 million years of conservatism and evolution in diel activity patterns in vertebrates. Evolution 71:1944–59
    [Google Scholar]
  5. Bailey NW, Orleach LM, Moore AJ. 2018. Indirect genetic effects in behavioral ecology: Does behavior play a special role in evolution?. Behav. Ecol. 29:1–11
    [Google Scholar]
  6. Baird E, Kreiss E, Wcislo W, Warrant E, Dacke M 2011. Nocturnal insects use vision for flight control. Biol. Lett. 7:499–501
    [Google Scholar]
  7. Bates M. 1960. The Forest and the Sea New York: Random House
  8. Bell AM, Hankison SJ, Laskowski KL. 2009. The repeatability of behaviour: a meta-analysis. Anim. Behav. 77:4771–83
    [Google Scholar]
  9. Benson-Amram S, Dantzer B, Stricker G, Swanson EM, Holekamp KE. 2016. Brain size predicts problem-solving ability in mammalian carnivores. PNAS 113:2532–37
    [Google Scholar]
  10. Berdal MA, Dochtermann NA. 2019. Adaptive alignment of plasticity with genetic variation and selection. J. Heredity 2019:514–22
    [Google Scholar]
  11. Bernays EA, Wcislo WT. 1994. Sensory capabilities, information processing, and resource specialization. Q. Rev. Biol. 69:187–204
    [Google Scholar]
  12. Blackiston DJ, Silva Casey E, Weiss MR. 2008. Retention of memory through metamorphosis: Can a moth remember what it learned as a caterpillar?. PLOS ONE 3:3e1736
    [Google Scholar]
  13. Blomberg SP, Garland T Jr., Ives AR. 2003. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57:4717–45
    [Google Scholar]
  14. Borges RM, Somanathan H, Kelber A. 2016. Patterns and processes in nocturnal and crepuscular pollination services. Q. Rev. Biol. 91:389–418
    [Google Scholar]
  15. Boxshall G. 2004. The evolution of arthropod limbs. Biol. Rev. 79:2253–300
    [Google Scholar]
  16. Britton SE, Badyaev AV 2020. Adaptation and adaptability in the house finch (Haemorhous mexicanus) biology. Invasive Birds: Global Trends and Impacts CT Downs, LA Hart 149–54 Wallingford, UK: CABI Publ.
    [Google Scholar]
  17. Brodie ED III 2005. Caution: niche construction ahead. Evolution 59:249–51
    [Google Scholar]
  18. Chittka L, Thomson JD, Waser NM. 1999. Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86:361–77
    [Google Scholar]
  19. Corl A, Bi K, Luke C, Challa AS, Stern AJ et al. 2018. The genetic basis of adaptation following plastic changes in coloration in a novel environment. Curr. Biol. 28:2970–77
    [Google Scholar]
  20. Cotto O, Sandell L, Chevin LM, Ronce O. 2019. Maladaptive shifts in life history in a changing environment. Am. Nat. 194:4558–73
    [Google Scholar]
  21. Crispo E. 2007. The Baldwin effect and genetic assimilation: revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity. Evolution 61:2469–79
    [Google Scholar]
  22. Danforth BN, Cardinal S, Praz C, Almeida EAB, Michez D. 2013. The impact of molecular data on our understanding of bee phylogeny and evolution. Annu. Rev. Entomol. 58:57–78
    [Google Scholar]
  23. Darwin C 1871. The Descent of Man, and Selection in Relation to Sex London: John Murray
  24. Derryberry EP, Phillips JN, Derryberry GE, Blum MJ, Luther D. 2020. Singing in a silent spring: Birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science 370:575–79
    [Google Scholar]
  25. Dochtermann NA. 2011. Testing Cheverud's conjecture for behavioral correlations and behavioral syndromes. Evolution 65:61814–20
    [Google Scholar]
  26. Dochtermann NA, Schwab T, Berdal MA, Dalos J, Royauté R 2019. The heritability of behavior: a meta-analysis. J. Heredity 110:403–10
    [Google Scholar]
  27. Ducatez S, Sol D, Sayol F, Lefebvre L 2020. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 4:788–93
    [Google Scholar]
  28. Duckworth RA. 2009. The role of behavior in evolution: a search for mechanism. Evol. Ecol. 23:513–31
    [Google Scholar]
  29. Duckworth RA, Potticary AL, Badyaev AV 2018. On the origins of adaptative behavioral complexity developmental channeling of structural trade-offs. Adv. Study Behav. 50:1–36
    [Google Scholar]
  30. Eberhard WG, Wcislo WT 2011. Grade changes in brain-body allometry: morphological and behavioral correlates of brain size in miniature spiders, insects and other invertebrates. Adv. Insect Physiol. 40:155–213
    [Google Scholar]
  31. Edgell TC, Lynch BR, Trussell GC, Palmer AR. 2009. Experimental evidence for the rapid evolution of behavioral canalization in natural populations. Am. Nat. 174:3434–40
    [Google Scholar]
  32. Emlen DJ, Nijhout HF. 2000. The development and evolution of exaggerated morphologies in insects. Annu. Rev. Entomol. 45:661–708
    [Google Scholar]
  33. Ewer RF. 1960. Natural selection and neoteny. Acta Biotheor 13:161–84
    [Google Scholar]
  34. Foster SA. 2013. Evolution of behavioural phenotypes: influences of ancestry and expression. Anim. Behav. 85:1061–75
    [Google Scholar]
  35. Freeman BJ, Tobias JA, Schluter D. 2019. Behavior influences range limits and patterns of coexistence across an elevational gradient in tropical bird diversity. Ecography 42:1832–40
    [Google Scholar]
  36. Futuyma DJ. 2017. Evolutionary biology today and the call for an extended synthesis. Interface Focus 7:20160145
    [Google Scholar]
  37. Gaspar P, Arif S, Sumner-Rooney L, Kittelmann M, Odey AJ et al. 2020. Characterization of the genetic architecture underlying eye size variation within Drosophila melanogaster and Drosophila simulans. . Genes Genomes Genet 10:31005–18
    [Google Scholar]
  38. Gause GF. 1942. The relation of adaptability to adaptation. Q. Rev. Biol. 17:99–114
    [Google Scholar]
  39. Ghalambor CK, Angeloni L, Carroll SP 2010. Behavior as phenotypic plasticity. Evolutionary Behavioral Ecology C Fox, D Westneat 90–107 New York: Oxford Univ. Press
    [Google Scholar]
  40. Godfray-Smith P. 2017. The subject as cause and effect in evolution. Interface Focus 7:20170022
    [Google Scholar]
  41. Grosjean Y, Rytz R, Farine J-P, Abuin L, Cortot J et al. 2011. An olfactory receptor for food-derived odours promotes male courtship in Drosophila. Nature 478:236–40
    [Google Scholar]
  42. Hedrick BP, Dickson BV, Dumont ER, Pierce SE. 2020. The evolutionary diversity of locomotor innovation in rodents is not linked to proximal limb morphology. Sci. Rep. 10:1717
    [Google Scholar]
  43. Hendry AP, Farrugia TJ, Kinnison MT. 2008. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 17:20–29
    [Google Scholar]
  44. Hernández-Hernández T, Wiens JJ. 2020. Why are there so many flowering plants? A multi-scale analysis of plant diversification. Am. Nat. 195:948–63
    [Google Scholar]
  45. Hindle AG. 2020. Diving deep: understanding the genetic components of hypoxia tolerance in marine mammals. J. Appl. Physiol. 128:1439–46
    [Google Scholar]
  46. Huey RB, Hertz PE, Sinervo B. 2003. Behavioral drive versus behavioral inertia in evolution: null model approach. Am. Nat. 161:3357–66
    [Google Scholar]
  47. Huxley JS. 1942. Evolution. The Modern Synthesis London: Allen & Unwin
  48. Ilardo MA, Moltke I, Korneliussen TS, Cheng J, Stern AJ et al. 2018. Physiological and genetic adaptations to diving in sea nomads. Cell 173:569–80
    [Google Scholar]
  49. Jezkova T, Wiens JJ. 2017. What explains patterns of diversification and richness among animal phyla?. Am. Nat. 189:201–12
    [Google Scholar]
  50. Jones BM, Robinson GE. 2018. Genetic accommodation and the role of ancestral plasticity in the evolution of insect eusociality. J. Exp. Biol. 21:jeb153163
    [Google Scholar]
  51. Jones PL, Agrawal AA. 2017. Learning in insect pollinators and herbivores. Annu. Rev. Entomol. 62:53–71
    [Google Scholar]
  52. Joseph RM, Carlson JR. 2015. Drosophila chemoreceptors: a molecular interface between the chemical world and the brain. Trends Genet 31:683–95
    [Google Scholar]
  53. Kapheim KM. 2019. Synthesis of Tinbergen's four questions and the future of sociogenomics. Behav. Ecol. Sociobiol. 73:186 Correction. 2019. Behav. Ecol. Sociobiol. 73:28
    [Google Scholar]
  54. Kapheim KM, Jones BM, Pan H, Cai L, Harpur BA et al. 2020. Developmental plasticity shapes social traits and selection in a facultatively eusocial bee. PNAS 117:2413615–25
    [Google Scholar]
  55. Konner M. 2010. The Evolution of Childhood Cambridge, MA: Harvard Univ. Press
  56. LaFreniere P, MacDonald K. 2013. A post-genomic view of behavioral development and adaptation to the environment. Dev. Rev. 33:289–102
    [Google Scholar]
  57. Langkilde T. 2009. Invasive fire ants alter behavior and morphology of native lizards. Ecology 90:208–17
    [Google Scholar]
  58. Lapiedra O, Schoener TW, Leal M, Losos JB, Kolbe JJ. 2018. Predator-driven natural selection on risk-taking behavior in anole lizards. Science 360:1017–20
    [Google Scholar]
  59. Lapiedra O, Sol D, Carranza S, Beaulieu JM 2013. Behavioural changes and the adaptative diversification of pigeons and doves. Proc. R. Soc. B 280:20122893
    [Google Scholar]
  60. Lefebvre L, Reader SM, Sol D. 2004. Brains, innovation and evolution in birds and primates. Brain Behav. Evol. 63:233–46
    [Google Scholar]
  61. Levis NA, Pfennig DW. 2016. Evaluating ‘plasticity-first’ evolution in nature: key criteria and empirical approaches. Trends Ecol. Evol. 31:7563–74
    [Google Scholar]
  62. Levis NA, Pfennig DW. 2019. Plasticity-led evolution: a survey of developmental mechanisms and empirical tests. Evol. Dev. 22:71–87
    [Google Scholar]
  63. Linneweber GA, Andriatsilavo M, Dutta S, Bengochea M, Hellbruegge L et al. 2020. A neurodevelopmental origin of behavioral individuality in the Drosophila visual system. Science 367:64821112–19
    [Google Scholar]
  64. Lister AM. 2014. Behavioural leads in evolution: evidence from the fossil record. Biol. J. Linn. Soc. 112:2315–31
    [Google Scholar]
  65. Lotka AJ. 1925. Elements of Physical Biology Baltimore, MD: Williams & Wilkins Co.
  66. Low BS, Wcislo WT. 1992. Foretibial plates and the mating behavior of Crabro cribrellifer (Hymenoptera: Sphecidae), with a review of expanded male forelegs in Apoidea. Ann. Entomol. Soc. Am. 85:219–23
    [Google Scholar]
  67. Lu L, Fritsch PW, Matzke NJ, Wang H, Kron KA et al. 2019. Why is fruit color so variable? Phylogenetic analyses reveal relationships between fruit-color evolution, biogeography, and diversification. Glob. Ecol. Biogeo. 28:891–913
    [Google Scholar]
  68. Luque J, Feldman RM, Vernygora O, Schweitzer CE, Cameron CB et al. 2019. Exceptional preservation of mid-Cretaceous marine arthropods and the evolution of novel forms via heterochrony. Sci. Adv. 5:eaav3875
    [Google Scholar]
  69. Marciniak S, Perry G. 2017. Harnessing ancient genomes to study the history of human adaptation. Nat. Rev. Genet. 18:659–74
    [Google Scholar]
  70. Mayr E. 1963. Animal Species and Evolution Cambridge, MA: Harvard Univ. Press
  71. Mayr E. 1988. Toward a New Philosophy of Biology Cambridge, MA: Harvard Univ. Press
  72. Müller J, Bickelmann C, Sobral G. 2018. The evolution and fossil history of sensory perception in amniote vertebrates. Ann. Rev. Earth Planet. Sci. 46:495–519
    [Google Scholar]
  73. Mullins DE. 2015. Physiology of environmental adaptations and resource acquisition in cockroaches. Annu. Rev. Entomol. 60:473–92
    [Google Scholar]
  74. Muñoz MM, Losos JB. 2018. Thermoregulatory behavior simultaneously promotes and forestalls evolution in a tropical lizard. Am. Nat. 191:E15–26
    [Google Scholar]
  75. Nicolakakis N, Sol D, Lefebvre L 2003. Behavioural flexibility predicts species richness in birds, but not extinction risk. Anim. Behav. 65:445–52
    [Google Scholar]
  76. Niepoth N, Bendesky A. 2020. How natural genetic variation shapes behavior. Annu. Rev. Genom. Hum. Genet. 21:437–63
    [Google Scholar]
  77. Niklas KJ. 2004. Computer models of early land plant evolution. Annu. Rev. Earth Planet. Sci. 32:47–66
    [Google Scholar]
  78. Odling-Smee FJ, Laland KN, Feldman MW 2003. Niche Construction: The Neglected Process in Evolution Princeton, NJ: Princeton Univ. Press
  79. Opacheloemphan C, Yan H, Leibholz A, Desplan C, Reinberg D. 2018. Recent advances in behavioral (epi)genetics in eusocial insects. Annu. Rev. Genet. 52:489–510
    [Google Scholar]
  80. Özer I, Carle T. 2020. Back to the light, coevolution between vision and olfaction in the “Dark-flies” (Drosophila melanogaster). PLOS ONE 15:2e0228939
    [Google Scholar]
  81. Papaj DR, Lewis AC 1993.. Insect Learning: Ecology and Evolutionary Perspectives London: Chapman and Hall
  82. Pauw A, Kahnt B, Kuhlmann M, Michez D, Montgomery GA et al. 2017. Long-legged bees make adaptive leaps: linking adaptation to coevolution in a plant-pollinator network. Proc. R. Soc. B 284: 1862.20171707
    [Google Scholar]
  83. Pegoraro M, Flavell LMM, Menegazzi P, Colombi P, Dao P et al. 2020. The genetic basis of diurnal preference in Drosophila melanogaster. BMC Genom 21:596
    [Google Scholar]
  84. Policarová J, Cardinal S, Martins AC, Straka J. 2019. The role of floral oils in the evolution of apid bees (Hymenoptera: Apidae). Biol. J. Linn. Soc. 128:486–97
    [Google Scholar]
  85. Porter CK, Akcali CK. 2020. Evolutionary implications of habitat choice. eLS 1: https://doi.org/10.1002/9780470015902.a0029011
    [Crossref] [Google Scholar]
  86. Price TD. 2006. Phenotypic plasticity, sexual selection and the evolution of colour patterns. J. Exp. Biol. 209:2368–76
    [Google Scholar]
  87. Price TD, Qvarnström A, Irwin DE 2003. The role of phenotypic plasticity in driving genetic evolution. Proc. R. Soc. B 270:1433–40
    [Google Scholar]
  88. Reader SM, Laland KN. 2002. Social intelligence, innovation, and enhanced brain size in primates. PNAS 99:4436–41
    [Google Scholar]
  89. Rensch B. 1959. Evolution Above the Species Level New York: Columbia Univ. Press
  90. Renn SCP, Schumer ME. 2013. Genetic accommodation and behavioural evolution: insights from genomic studies. Anim. Behav. 85:1012–22
    [Google Scholar]
  91. Renner SS, Schaefer H. 2010. The evolution and loss of oil-offering flowers: new insights from dated phylogenies for angiosperms and bees. Phil. Trans. R. Soc. B 635:423–35
    [Google Scholar]
  92. Román-Palacios C, Scholl JP, Wiens JJ. 2019. Evolution of diet across the animal tree of life. Evol. Lett. 3:339–47
    [Google Scholar]
  93. Roe A, Simpson GC 1958. Behavior and Evolution. New Haven: Yale Univ. Press
  94. Rubenstein DR, Agren JA, Carbone L, Elde NC, Hoekstra HE et al. 2019. Coevolution of genome architecture and social behavior. Trends Ecol. Evol. 34:9844–55
    [Google Scholar]
  95. Rueffler C, van Dooren TJM, Metz JAJ. 2007. The interplay between behavior and morphology in the evolutionary dynamics of resources specialization. Am. Nat. 169:2R34–52
    [Google Scholar]
  96. Schlichting CD, Wund MA. 2014. Phenotypic plasticity and epigenetic marking: an assessment of evidence for genetic accommodation. Evolution 68:3656–72
    [Google Scholar]
  97. Schmalhausen II. 1949 (1986). Factors of Evolution Chicago: Univ. Chicago Press
  98. Scott-Phillips TC, Laland KN, Shuker DM, Dickins TE, West SA. 2014. The niche construction perspective: a critical appraisal. Evolution 68:1231–43
    [Google Scholar]
  99. Seitz BM, Aktipis A, Buss DM, Alcock J, Bloom P et al. 2020. The pandemic exposes human nature: 10 evolutionary insights. PNAS 117:27767–76
    [Google Scholar]
  100. Simpson GC. 1953. The Baldwin effect. Evolution 7:110–17
    [Google Scholar]
  101. Snell-Rood EC, Steck MK 2019. Behaviour shapes environmental variation and selection on learning and plasticity: review of mechanisms and implications. Anim. Behav. 147:147–56
    [Google Scholar]
  102. Socolar JB, Epanchin PN, Beissinger SR, Tingley MW. 2017. Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts. PNAS 114:4912976–81
    [Google Scholar]
  103. Sol D, Price TD 2008. Brain size and the diversification of body size in birds. Am. Nat. 172:2170–77
    [Google Scholar]
  104. Sol D, Stirling DG, Lefebvre L. 2005. Behavioral drive or behavioral inhibition in evolution: subspecific diversification in Holarctic passerines. Evolution 59:122669–77
    [Google Scholar]
  105. Stewart AJ, Persons TL, Plotkin JB. 2016. Evolutionary consequences of behavioral diversity. PNAS 113:45e7003–9
    [Google Scholar]
  106. Storz JF, Scott GR, Cheviron ZA. 2010. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. J. Exp. Biol. 213:4125–36
    [Google Scholar]
  107. Streelman JT, Danley PD. 2003. The stages of vertebrate evolutionary radiation. Trends Ecol. Evol. 18:126–31
    [Google Scholar]
  108. Tan S, Amos W, Laughlin SB 2005. Captivity selects for smaller eyes. Curr. Biol. 15:14R540–42
    [Google Scholar]
  109. Tierney SM, Friedrich M, Humphreys WF, Jones TM, Warrant EJ, Wcislo WT. 2017. Consequences of evolutionary transitions in changing photic environments. Aust. Entomol. 56:123–46
    [Google Scholar]
  110. Tierney SM, Sanjur O, Grajales GG, Santos LM, Bermingham E, Wcislo WT 2012. Photic niche invasions: phylogenetic history of the dim-light foraging augochlorine bees (Halictidae). Proc. R. Soc. B 279:794–803
    [Google Scholar]
  111. Toju H. 2009. Natural selection drives the fine-scale divergence of a coevolutionary arms race involving a long-mouthed weevil and its obligate host plant. BMC Evol. Biol. 9:273
    [Google Scholar]
  112. Trewavas T. 2014. Plant Behaviour and Intelligence Oxford, UK: Oxford Univ. Press
  113. Uy JAC, Irwin DE, Webster MS 2018. Behavioral isolation and incipient speciation in birds. Annu. Rev. Ecol. Evol. Syst. 49:1–24
    [Google Scholar]
  114. Vermeij GJ. 2013. On escalation. Annu. Rev. Earth Planet. Sci. 41:1–19
    [Google Scholar]
  115. Vermeij GJ. 2017. How the land became the locus of major evolutionary innovations. Curr. Biol. 27:3178–82.e1
    [Google Scholar]
  116. Wada-Katsumata A, Silverman J, Schal C. 2013. Changes in taste neurons support the emergence of an adaptative behavior in cockroaches. Science 340:972–75
    [Google Scholar]
  117. Waddington CH. 1975. The Evolution of an Evolutionist Ithaca, NY: Cornell Univ. Press
  118. Wcislo WT. 1989. Behavioral environments and evolutionary change. Ann. Rev. Ecol. Syst. 20:137–69
    [Google Scholar]
  119. Wcislo WT, Fewell JH. 2017. Sociality in bees. Comparative Social Evolution DR Rubenstein, P Abbot 50–83 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  120. Wcislo WT, Tierney S. 2009. Behavioral environments and niche construction: the evolution of dim-light foraging in bees. Biol. Rev. Camb. Philos. Soc. 84:19–37
    [Google Scholar]
  121. West-Eberhard MJ. 2003. Developmental Plasticity and Evolution Oxford, UK: Oxford Univ. Press
  122. West-Eberhard MJ. 2019. Modularity as a universal emergent property of biological traits. J. Exp. Zool. (Mol. Dev. Evol.) 332:8356–64
    [Google Scholar]
  123. Whishaw Q, Sarnas JR, Pellis SM. 1998. Evidence for rodent-common and species-typical limb and digit use in eating, derived from a comparative analysis of ten rodent species. Behav. Brain Res. 96:79–91
    [Google Scholar]
  124. Wiens JJ, Tuschhoff E. 2020. Songs versus colours versus horns: what explains the diversity of sexually selected traits?. Biol. Rev. 95:847–64
    [Google Scholar]
  125. Wilson DS, Hayes SC, Biglan A, Embry DD. 2014. Evolving the future: toward a science of international change. Behav. Brain Sci. 37:4395–416
    [Google Scholar]
  126. Wittwer B, Hefetz A, Simon T, Murphy LEK, Elgar MA et al. 2017. Solitary bees reduce investment in communication compared with their social relatives. PNAS 114:256569–74
    [Google Scholar]
  127. Wright S. 1931. Evolution in Mendelian populations. Genetics 16:97–159
    [Google Scholar]
  128. Yohe LR, Brand P. 2018. Evolutionary ecology of chemosensation and its role in sensory drive. Curr. Zool. 64:4525–33
    [Google Scholar]
  129. York RA. 2018. Assessing the genetic landscape of animal behavior. Genetics 209:223–32
    [Google Scholar]
  130. Zuk M, Bastiaans E, Langkilde T, Swanger E 2014. The role of behaviour in the establishment of novel traits. Anim. Behav. 92:333–44
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-012921-052523
Loading
/content/journals/10.1146/annurev-ecolsys-012921-052523
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error