1932

Abstract

We see stunning morphological diversity across the animal world. Less conspicuous but equally fascinating are the sensory and cognitive adaptations that determine animals’ interactions with their environments and each other. We discuss the development of the fields of sensory and cognitive ecology and the importance of integrating these fields to understand the evolution of adaptive behaviors. Bats, with their extraordinarily high ecological diversity, are ideal animals for this purpose. An explosion in recent research allows for better understanding of the molecular, genetic, neural, and behavioral bases for sensory ecology and cognition in bats. We give examples of studies that illuminate connections between sensory and cognitive features of information filtering, evolutionary trade-offs in sensory and cognitive processing, and multimodal sensing and integration. By investigating the selective pressures underlying information acquisition, processing, and use in bats, we aim to illuminate patterns and processes driving sensory and cognitive evolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-012921-052635
2021-11-03
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/52/1/annurev-ecolsys-012921-052635.html?itemId=/content/journals/10.1146/annurev-ecolsys-012921-052635&mimeType=html&fmt=ahah

Literature Cited

  1. Alem S, Koselj K, Siemers BM, Greenfield MD. 2011. Bat predation and the evolution of leks in acoustic moths. Behav. Ecol. Sociobiol. 65:2105–16
    [Google Scholar]
  2. Altringham JD, Fenton MB 2003. Sensory ecology and communication in the Chiroptera. Bat Ecology TH Kunz, MB Fenton 90–127 Chicago: Univ. Chicago Press
    [Google Scholar]
  3. Bahlman JW, Kelt DA. 2007. Use of olfaction during prey location by the common vampire bat (Desmodus rotundus). Biotropica 39:147–49
    [Google Scholar]
  4. Barber JR, Chadwell BA, Garrett N, Schmidt-French B, Conner WE. 2009. Naïve bats discriminate arctiid moth warning sounds but generalize their aposematic meaning. J. Exp. Biol. 212:2141–48
    [Google Scholar]
  5. Bohn KM, Moss CF, Wilkinson GS. 2006. Correlated evolution between hearing sensitivity and social calls in bats. Biol. Lett. 2:561–64
    [Google Scholar]
  6. Boonman A, Bumrungsri S, Yovel Y. 2014. Nonecholocating fruit bats produce biosonar clicks with their wings. Curr. Biol. 24:2962–67
    [Google Scholar]
  7. Boonman A, Rieger I, Amichai E, Greif S, Eitan O et al. 2020. Echolocating bats can adjust sensory acquisition based on internal cues. BMC Biol 18:166
    [Google Scholar]
  8. Chaverri G, Ancillotto L, Russo D 2018. Social communication in bats. Biol. Rev. 93:1938–54
    [Google Scholar]
  9. Conner WE, Corcoran AJ. 2012. Sound strategies: the 65-million-year-old battle between bats and insects. Annu. Rev. Entomol. 57:21–39
    [Google Scholar]
  10. Danilovich S, Krishnan A, Lee WJ, Borrisov I, Eitan O et al. 2015. Bats regulate biosonar based on the availability of visual information. Curr. Biol. 25:R1124–25
    [Google Scholar]
  11. Danilovich S, Yovel Y. 2019. Integrating vision and echolocation for navigation and perception in bats. Sci. Adv. 5:eaaw6503
    [Google Scholar]
  12. DeCasien AR, Williams SA, Higham JP 2017. Primate brain size is predicted by diet but not sociality. Nat. Ecol. Evol. 1:0112
    [Google Scholar]
  13. Dechmann DK, Safi K. 2009. Comparative studies of brain evolution: a critical insight from the Chiroptera. Biol Rev. Camb. Philos. Soc. 84:161–72
    [Google Scholar]
  14. Denzinger A, Tschapka M, Schnitzler H-U. 2018. The role of echolocation strategies for niche differentiation in bats. Can. J. Zool. 96:171–81
    [Google Scholar]
  15. Dominoni DM, Halfwerk W, Baird E, Buxton RT, Fernández-Juricic E et al. 2020. Why conservation biology can benefit from sensory ecology. Nat. Ecol. Evol. 4:502–11
    [Google Scholar]
  16. Dorado-Correa AM, Goerlitz HR, Siemers BM. 2013. Interspecific acoustic recognition in two European bat communities. Front. Physiol. 4:192
    [Google Scholar]
  17. Dukas R 1998. Cognitive Ecology: The Evolutionary Ecology of Information Processing and Decision Making Chicago: Univ. Chicago Press
  18. Dukas R, Ratcliffe JM 2009. Cognitive Ecology II Chicago: Univ. Chicago Press
  19. Dusenbery DB. 1992. Sensory Ecology: How Organisms Acquire and Respond to Information New York: Freeman
  20. Eisenberg JF, Wilson DE. 1978. Relative brain size and feeding strategies in the Chiroptera. Evolution 32:740–51
    [Google Scholar]
  21. Fenton MB. 2003. Eavesdropping on the echolocation and social calls of bats. Mammal. Rev. 33:193–204
    [Google Scholar]
  22. Fenton MB, Faure PA, Ratcliffe JM. 2012. Evolution of high duty cycle echolocation in bats. J. Exp. Biol. 215:2935–44
    [Google Scholar]
  23. Gager Y. 2019. Information transfer about food as a reason for sociality in bats. Mammal. Rev. 49:113–20
    [Google Scholar]
  24. Garland T. 2014. Trade-offs. Curr. Biol. 24:R60–61
    [Google Scholar]
  25. Geipel I, Lattenkamp EZ, Dixon MM, Wiegrebe L, Page RA 2021. Hearing sensitivity: an underlying mechanism for niche differentiation in gleaning bats. PNAS 118:e2024943118
    [Google Scholar]
  26. Geva-Sagiv M, Romani S, Las L, Ulanovsky N 2016. Hippocampal global remapping for different sensory modalities in flying bats. Nat. Neurosci. 19:952–58
    [Google Scholar]
  27. Gillam E, McCracken GF 2007. Variability in the echolocation of Tadarida brasiliensis: effects of geography and local acoustic environment. Anim. Behav. 74:277–86
    [Google Scholar]
  28. Gomes DGE, Francis CD, Barber JR. 2021. Using the past to understand the present: coping with natural and anthropogenic noise. BioScience 71:223–34
    [Google Scholar]
  29. Gomes DGE, Page RA, Geipel I, Taylor RC, Ryan MJ, Halfwerk W 2016. Bats perceptually weight prey cues across sensory systems when hunting in noise. Science 353:1277–80
    [Google Scholar]
  30. Greif S, Borissov I, Yovel Y, Holland RA 2014. A functional role of the sky's polarization pattern for orientation in the greater mouse-eared bat. Nat. Commun. 5:4488
    [Google Scholar]
  31. Griffin D. 1958. Listening in the Dark: The Acoustic Orientation of Bats and Men New Haven, CT: Yale Univ. Press
  32. Gröger U, Wiegrebe L. 2006. Classification of human breathing sounds by the common vampire bat, Desmodus rotundus. BMC Biol 4:18
    [Google Scholar]
  33. Gutierrez EA, Castiglione GM, Morrow JM, Schott RK, Loureiro LO et al. 2018. Functional shifts in bat dim-light visual pigment are associated with differing echolocation abilities and reveal molecular adaptation to photic-limited environments. Mol. Biol. Evol. 35:2422–34
    [Google Scholar]
  34. Hage SR, Jiang T, Berquist SW, Feng J, Metzner W 2013. Ambient noise induces independent shifts in call frequency and amplitude within the Lombard effect in echolocating bats. PNAS 110:4063–68
    [Google Scholar]
  35. Hayden S, Bekaert M, Goodbla A, Murphy WJ, Dávalos LM, Teeling EC. 2014. A cluster of olfactory receptor genes linked to frugivory in bats. Mol. Biol. Evol. 31:917–27
    [Google Scholar]
  36. Healy S, Braithwaite V. 2000. Cognitive ecology: a field of substance?. Trends. Ecol. Evol. 15:22–26
    [Google Scholar]
  37. Healy SD, Rowe C. 2007. A critique of comparative studies of brain size. Proc. R. Soc. B 274:453–64
    [Google Scholar]
  38. Heffner RS, Koay G, Heffner HE. 2013. Hearing in American leaf-nosed bats. IV: the common vampire bat, Desmodus rotundus. Hear. Res. 296:42–50
    [Google Scholar]
  39. Holland RA, Borissov I, Siemers BM. 2010. A nocturnal mammal, the greater mouse-eared bat, calibrates a magnetic compass by the sun. PNAS 107:6941–45
    [Google Scholar]
  40. Holland RA, Kirschvink JL, Doak TG, Wikelski M. 2008. Bats use magnetite to detect the earth's magnetic field. PLOS ONE 3:e1676
    [Google Scholar]
  41. Höller P, Schmidt U. 1996. The orientation behaviour of the lesser spearnosed bat, Phyllostomus discolor (Chiroptera) in a model roost. Concurrence of visual, echoacoustical and endogenous spatial information. J. Comp. Physiol. A 179:245–54
    [Google Scholar]
  42. Horowitz SS, Cheney CA, Simmons JA. 2004. Interaction of vestibular, echolocation, and visual modalities guiding flight by the big brown bat, Eptesicus fuscus. J. Vestib. Res. 14:17–32
    [Google Scholar]
  43. Hristov N, Conner WE. 2005. Effectiveness of tiger moth (Lepidoptera, Arctiidae) chemical defenses against an insectivorous bat (Eptesicus fuscus). Chemoecology 15:105–13
    [Google Scholar]
  44. Hügel T, van Meir V, Muñoz-Meneses A, Clarin BM, Siemers BM, Goerlitz HR. 2017. Does similarity in call structure or foraging ecology explain interspecific information transfer in wild Myotis bats?. Behav. Ecol. Sociobiol. 71:168
    [Google Scholar]
  45. Jacobs GH. 2009. Evolution of colour vision in mammals. Philos. Trans. R. Soc. B 364:2957–67
    [Google Scholar]
  46. Jiao H, Wang Y, Zhang L, Jiang P, Zhao H. 2018. Lineage-specific duplication and adaptive evolution of bitter taste receptor genes in bats. Mol. Ecol. 27:4475–88
    [Google Scholar]
  47. Jones G, Teeling EC, Rossiter SJ. 2013. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats. Front. Physiol. 4:117
    [Google Scholar]
  48. Jones KE, MacLarnon AM. 2004. Affording larger brains: testing hypotheses of mammalian brain evolution on bats. Am. Nat. 164:E20–31
    [Google Scholar]
  49. Jonker MN, De Boer WF, Kurvers RHJM, Dekker JJA. 2010. Foraging and public information use in common pipistrelle bats (Pipistrellus pipistrellus): a field experiment. Acta Chiropterologica 12:197–204
    [Google Scholar]
  50. Koay G, Heffner HE, Heffner RS. 1997. Audiogram of the big brown bat (Eptesicus fuscus). Hear. Res. 105:202–10
    [Google Scholar]
  51. Kries K, Barros MAS, Duytschaever G, Orkin JD, Janiak MC et al. 2018. Colour vision variation in leaf-nosed bats (Phyllostomidae): links to cave roosting and dietary specialization. Mol. Ecol. 27:3627–40
    [Google Scholar]
  52. Kürten L, Schmidt U. 1982. Thermoperception in the common vampire bat (Desmodus rotundus). J. Comp. Physiol. 146:223–28
    [Google Scholar]
  53. Lattenkamp EZ, Kaiser S, Kaučič R, Großmann M, Koselj K, Goerlitz HR 2018. Environmental acoustic cues guide the biosonar attention of a highly specialised echolocator. J. Exp. Biol. 221:jeb165696
    [Google Scholar]
  54. Lattenkamp EZ, Nagy M, Drexl M, Vernes SC, Wiegrebe L, Knörnschild M 2021. Hearing sensitivity and amplitude coding in bats are differentially shaped by echolocation calls and social calls. Proc. R. Soc. B 288:20202600
    [Google Scholar]
  55. Leavell BC, Rubin JJ, McClure CJW, Miner KA, Branham MA, Barber JR. 2018. Fireflies thwart bat attack with multisensory warnings. Sci. Adv. 4:eaat6601
    [Google Scholar]
  56. Lewanzik D, Sundaramurthy AK, Goerlitz HR. 2019. Insectivorous bats integrate social information about species identity, conspecific activity and prey abundance to estimate cost–benefit ratio of interactions. J. Anim. Ecol. 88:1462–73
    [Google Scholar]
  57. Lindecke O, Voigt CC, Pētersons G, Holland RA. 2015. Polarized skylight does not calibrate the compass system of a migratory bat. Biol. Lett. 11:20150525
    [Google Scholar]
  58. Liu HQ, Wei JK, Li B, Wang MS, Wu RQ et al. 2015. Divergence of dim-light vision among bats (order: Chiroptera) as estimated by molecular and electrophysiological methods. Sci. Rep. 5:11531
    [Google Scholar]
  59. Liu Z, Liu G, Hailer F, Orozco-terWengel P, Tan X et al. 2016. Dietary specialization drives multiple independent losses and gains in the bitter taste gene repertoire of Laurasiatherian Mammals. Front. Zool. 13:28
    [Google Scholar]
  60. Long GR, Schnitzler H-U. 1975. Behavioural audiograms from the bat, Rhinolophus ferrumequinum. J. Comp. Physiol. 100:211–19
    [Google Scholar]
  61. McGuire LP, Ratcliffe JM. 2011. Light enough to travel: Migratory bats have smaller brains, but not larger hippocampi, than sedentary species. Biol. Lett. 7:233–36
    [Google Scholar]
  62. Moser EI, Moser MB, McNaughton BL. 2017. Spatial representation in the hippocampal formation: a history. Nat. Neurosci. 20:1448–64
    [Google Scholar]
  63. Moss CF, Surlykke A. 2010. Probing the natural scene by echolocation in bats. Front. Behav. Neurosci. 4:33
    [Google Scholar]
  64. Muheim R, Moore FR, Phillips JB 2006. Calibration of magnetic and celestial compass cues in migratory birds—a review of cue-conflict experiments. J. Exp. Biol. 209:2–17
    [Google Scholar]
  65. Munger SD, Leinders-Zufall T, McDougall LM, Cockerham RE, Schmid A et al. 2010. An olfactory subsystem that detects carbon disulfide and mediates food-related social learning. Curr. Biol. 20:1438–44
    [Google Scholar]
  66. Munoz NE, Blumstein DT. 2012. Multisensory perception in uncertain environments. Behav. Ecol. 23:457–62
    [Google Scholar]
  67. Nagel T. 1974. What is it like to be a bat?. Philos. Rev. 83:435–50
    [Google Scholar]
  68. Niven JE, Laughlin SB 2008. Energy limitation as a selective pressure on the evolution of sensory systems. J. Exp. Biol. 211:1792–804
    [Google Scholar]
  69. Norberg UM, Rayner JMV. 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos. Trans. R. Soc. B 316:335–427
    [Google Scholar]
  70. O'Mara MT, Dechmann DKN, Page RA 2014. Frugivorous bats evaluate the quality of social information when choosing novel foods. Behav. Ecol. 25:1233–39
    [Google Scholar]
  71. Pack AA, Herman LM. 1995. Sensory integration in the bottlenosed dolphin: immediate recognition of complex shapes across the senses of echolocation and vision. J. Acoustical Soc. Am. 98:722–33
    [Google Scholar]
  72. Page RA, Bernal XE. 2020. The challenge of detecting prey: private and social information use in predatory bats. Funct. Ecol. 34:344–63
    [Google Scholar]
  73. Page RA, Ryan MJ. 2008. The effect of signal complexity on localization performance in bats that localize frog calls. Anim. Behav. 76:761–69
    [Google Scholar]
  74. Page RA, Schnelle T, Kalko EKV, Bunge T, Bernal XE. 2012. Sequential assessment of prey through the use of multiple sensory cues by an eavesdropping bat. Naturwissenschaften 99:505–9
    [Google Scholar]
  75. Pirlot P, Stephan H. 1970. Encephalization in Chiroptera. Can. J. Zool. 48:433–44
    [Google Scholar]
  76. Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S et al. 2008. Neuroscience Sunderland, MA: Sinauer
  77. Ramakers JJC, Dechmann DKN, Page RA, O'Mara MT. 2016. Frugivorous bats prefer information from novel social partners. Anim. Behav. 116:83–87
    [Google Scholar]
  78. Ratcliffe JM, Fenton MB, Galef BG Jr. 2003. An exception to the rule: Common vampire bats do not learn taste aversions. Anim. Behav. 65:285–389
    [Google Scholar]
  79. Ratcliffe JM, Fenton MB, Shettleworth SJ. 2006. Behavioral flexibility positively correlated with relative brain volume in predatory bats. Brain Behav. Evol. 67:165–76
    [Google Scholar]
  80. Ratcliffe JM, Fullard JH. 2005. The adaptive function of tiger moth clicks against echolocating bats: an experimental and synthetic approach. J. Exp. Biol. 208:4689–98
    [Google Scholar]
  81. Ratcliffe JM, Phelps SM. 2019. Twenty-five years of cognitive ecology. Anim. Behav. 147:127–28
    [Google Scholar]
  82. Ratcliffe JM, ter Hofstede HM. 2005. Roosts as information centres: social learning of food preferences in bats. Biol. Lett. 1:72–74
    [Google Scholar]
  83. Real LA. 1993. Toward a cognitive ecology. Trends Ecol. Evol. 8:413–17
    [Google Scholar]
  84. Rhebergen F, Page RA, Ryan MJ, Taylor R, Halfwerk W 2015. Multimodal cues improve prey localisation under complex environmental conditions. Proc. R. Soc. B 282:20151403
    [Google Scholar]
  85. Rieger JF, Jakob EM. 1988. The use of olfaction in food location by frugivorous bats. Biotropica 20:161–64
    [Google Scholar]
  86. Rodríguez-San Pedro A, Allendes JL. 2017. Echolocation calls of free-flying common vampire bats Desmodus rotundus (Chiroptera: Phyllostomidae) in Chile. Bioacoustics 26:153–60
    [Google Scholar]
  87. Roeder KD. 1963. Nerve Cells and Insect Behavior Cambridge, MA: Harvard Univ. Press
  88. Rowe C. 1999. Receiver psychology and the evolution of multicomponent signals. Anim. Behav. 58:921–31
    [Google Scholar]
  89. Safi K, Dechmann DKN. 2005. Adaptation of brain regions to habitat complexity: a comparative analysis in bats (Chiroptera). Proc. R. Soc. B 272:179–86
    [Google Scholar]
  90. Safi K, Seid MA, Dechmann DKN. 2005. Bigger is not always better: when brains get smaller. Biol. Lett. 1:283–86
    [Google Scholar]
  91. Sato JJ, Wolsan M. 2012. Loss or major reduction of umami taste sensation in pinnipeds. Naturwissenschaften 99:655–59
    [Google Scholar]
  92. Schaefer HM, Schmidt V, Winkler H. 2003. Testing the defence trade-off hypothesis: how contents of nutrients and secondary compounds affect fruit removal. Oikos 102:318–28
    [Google Scholar]
  93. Schaub A, Ostwald J, Siemers BM. 2008. Foraging bats avoid noise. J. Exp. Biol. 211:3174–80
    [Google Scholar]
  94. Schmidt S, Türke B, Vogler B 1984. Behavioural audiogram from the bat, Megaderma lyra (Geoffroy, 1810; Microchiroptera). Myotis 22:62–66
    [Google Scholar]
  95. Schmidt U, Schlegel P, Schweizer H, Neuweiler G. 1991. Audition in vampire bats, Desmodus rotundus. J. Comp. Physiol. A 168:45–51
    [Google Scholar]
  96. Schnitzler H-U, Kalko EKV. 2001. Echolocation by insect-eating bats. Bioscience 51:557–59
    [Google Scholar]
  97. Simmons NB, Geisler JH. 1998. Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bull. Am. Mus. Nat. Hist. 235:4–182
    [Google Scholar]
  98. Simões BF, Foley NM, Hughes GM, Zhao H, Zhang S et al. 2019. As blind as a bat? Opsin phylogenetics illuminates the evolution of color vision in bats. Mol. Biol. Evol. 36:54–68
    [Google Scholar]
  99. Sol D, Lefebvre L, Rodríguez-Teijeiro JD. 2005. Brain size, innovative propensity and migratory behaviour in temperate Palaearctic birds. Proc. Biol. Sci. 272:1433–41
    [Google Scholar]
  100. Sterbing-D'Angelo S, Chadha M, Chiu C, Falk B, Xian W et al. 2011. Bat wing sensors support flight control. PNAS 108:11291–96
    [Google Scholar]
  101. Stevens M. 2013. Sensory Ecology, Behaviour, and Evolution Oxford, UK: Oxford Univ. Press
  102. Teeling EC, Springer MS, Madsen O, Bates P, O'Brien SJ, Murphy WJ. 2005. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580–84
    [Google Scholar]
  103. ter Hofstede HM, Ratcliffe JM. 2016. Evolutionary escalation: the bat–moth arms race. J. Exp. Biol. 219:1589–602
    [Google Scholar]
  104. Thiagavel J, Brinkløv S, Geipel I, Ratcliffe JM 2020. Sensory and cognitive ecology. Phyllostomid Bats: A Unique Mammalian Radiation TH Fleming, LM Dávalos, MA Mello Chicago: Univ. Chicago Press
    [Google Scholar]
  105. Thiagavel J, Cechetto C, Santana SE, Jakobsen L, Warrant EJ, Ratcliffe JM. 2018. Auditory opportunity and visual constraint enabled the evolution of echolocation in bats. Nat. Commun. 9:98
    [Google Scholar]
  106. Thies W, Kalko EKV, Schnitzler H-U. 1998. The roles of echolocation and olfaction in two Neotropical fruit-eating bats, Carollia perspicillata and C. castanea, feeding on Piper. Behav. Ecol. Sociobiol. 42:397–409
    [Google Scholar]
  107. Tsagkogeorga G, Müller S, Dessimoz C, Rossiter SJ. 2017. Comparative genomics reveals contraction in olfactory receptor genes in bats. Sci. Rep. 7:259
    [Google Scholar]
  108. Tuttle MD, Ryan MJ. 1982. The roles of synchronized calling, ambient noise, and ambient light in the anti-bat-predator behavior of a treefrog. Behav. Ecol. Sociobiol. 11:125–31
    [Google Scholar]
  109. Tuttle MD, Taft LK, Ryan MJ. 1982. Evasive behavior of a frog in response to bat predation. Anim. Behav. 30:393–97
    [Google Scholar]
  110. Ulanovsky N, Moss CF. 2007. Hippocampal cellular and network activity in freely moving echolocating bats. Nat. Neurosci. 10:224–33
    [Google Scholar]
  111. Veilleux CC, Kirk EC. 2014. Visual acuity in mammals: effects of eye size and ecology. Brain Behav. Evol. 83:43–53
    [Google Scholar]
  112. von der Emde G, Warrant E 2015. The Ecology of Animal Senses: Matched Filters for Economical Sensing Cham, Switz: Springer
  113. von Uexküll J. 1909. Umwelt und Innenwelt der Tiere Berlin: J. Springer
  114. Ward P, Zahavi A 1973. The importance of certain assemblages of birds as “information-centres” for food-finding. Ibis 115:517–34
    [Google Scholar]
  115. Williams TC, Williams JM, Griffin DR 1966. The homing ability of the neotropical bat Phyllostomus hastatus, with evidence for visual orientation. Anim. Behav. 14:468–73
    [Google Scholar]
  116. Wohlgemuth MJ, Yu C, Moss CF 2018. 3D hippocampal place field dynamics in free-flying echolocating bats. Front. Cell Neurosci. 12:270
    [Google Scholar]
  117. Wright GS 2016. Social learning and information transfer in bats: conspecific influence regarding roosts, calls, and food. Sociality in Bats J Ortega 211–30 Cham, Switz.: Springer Int. Publ.
    [Google Scholar]
  118. Yao L, Brown JP, Stampanoni M, Marone F, Isler K, Martin RD. 2012. Evolutionary change in the brain size of bats. Brain Behav. Evol. 80:15–25
    [Google Scholar]
  119. Yohe LR, Hoffmann S, Curtis A. 2018. Vomeronasal and olfactory structures in bats revealed by diceCT clarify genetic evidence of function. Front. Neuroanat. 12:32
    [Google Scholar]
  120. Yovel Y, Falk B, Moss CF, Ulanovsky N. 2010. Optimal localization by pointing off axis. Science 327:701–4
    [Google Scholar]
  121. Zhao H, Xu D, Zhang S, Zhang J. 2012. Genomic and genetic evidence for the loss of umami taste in bats. Genome Biol. Evol. 4:73–79
    [Google Scholar]
  122. Zhao H, Zhou Y, Pinto CM, Charles-Dominique P, Galindo-González J et al. 2010. Evolution of the sweet taste receptor gene Tas1r2 in bats. Mol. Biol. Evol. 27:2642–50
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-012921-052635
Loading
/content/journals/10.1146/annurev-ecolsys-012921-052635
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error