1932

Abstract

Greenhouse gas emissions are warming the ocean with profound consequences at all levels of organization, from organismal rates to ecosystem processes. The proximate driver is an interplay between anthropogenic warming (the trend) and natural fluctuations in local temperature. These two properties cause anomalously warm events such as marine heatwaves to occur with increasing frequency and magnitude. Because warming and variance are not uniform, there is a large degree of geographic variation in temporal temperature variability. We review the underappreciated interaction between trend and variance in the ocean and how it modulates ecological responses to ocean warming. For example, organisms in more thermally variable environments are often more acclimatized and/or adapted to temperature extremes and are thus less sensitive to anthropogenic heatwaves. Considering both trend and variability highlights the importance of processes like legacy effects and extinction debt that influence the rate of community transformation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-022323-082123
2023-11-02
2024-05-29
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/54/1/annurev-ecolsys-022323-082123.html?itemId=/content/journals/10.1146/annurev-ecolsys-022323-082123&mimeType=html&fmt=ahah

Literature Cited

  1. Alexander MA, Scott JD, Friedland KD, Mills KE, Nye JA et al. 2018. Projected sea surface temperatures over the 21st century: changes in the mean, variability and extremes for large marine ecosystem regions of Northern Oceans. Elem. Sci. Anthropocene 6:9
    [Google Scholar]
  2. Allen AP, Brown JH, Gillooly JF. 2002. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297:1545–48
    [Google Scholar]
  3. Baird A, Madin J, Álvarez-Noriega M, Fontoura L, Kerry J et al. 2018. A decline in bleaching suggests that depth can provide a refuge from global warming in most coral taxa. Mar. Ecol. Prog. Ser. 603:257–64
    [Google Scholar]
  4. Barneche DR, Robertson DR, White CR, Marshall DJ. 2018. Fish reproductive-energy output increases disproportionately with body size. Science 360:6389642–45
    [Google Scholar]
  5. Bensoussan N, Romano J-C, Harmelin J-G, Garrabou J. 2010. High resolution characterization of northwest Mediterranean coastal waters thermal regimes: to better understand responses of benthic communities to climate change. Estuar. Coast. Shelf Sci. 87:3431–41
    [Google Scholar]
  6. Bongaerts P, Ridgway T, Sampayo EM, Hoegh-Guldberg O. 2010. Assessing the ‘deep reef refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–27
    [Google Scholar]
  7. Bongaerts P, Riginos C, Brunner R, Englebert N, Smith SR, Hoegh-Guldberg O 2017. Deep reefs are not universal refuges: Reseeding potential varies among coral species. Sci. Adv. 3:2e1602373
    [Google Scholar]
  8. Bove CB, Mudge L, Bruno JF. 2022. A century of warming on Caribbean reefs. PLOS Clim. 1:3e0000002
    [Google Scholar]
  9. Bridge TCL, Hoey AS, Campbell SJ, Muttaqin E, Rudi E et al. 2013. Depth-dependent mortality of reef corals following a severe bleaching event: implications for thermal refuges and population recovery. F1000Res. 2:187
    [Google Scholar]
  10. Byrne M, Foo SA, Ross PM, Putnam HM. 2020. Limitations of cross- and multigenerational plasticity for marine invertebrates faced with global climate change. Glob. Chang. Biol. 26:180–102
    [Google Scholar]
  11. Caesar L, McCarthy GD, Thornalley DJR, Cahill N, Rahmstorf S. 2021. Current Atlantic meridional overturning circulation weakest in last millennium. Nat. Geosci. 14:3118–20
    [Google Scholar]
  12. Caesar L, Rahmstorf S, Robinson A, Feulner G, Saba V. 2018. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556:7700191–96
    [Google Scholar]
  13. Caves EM, Johnsen S. 2021. The sensory impacts of climate change: bathymetric shifts and visually mediated interactions in aquatic species. Proc. R. Soc. B 288:20210396
    [Google Scholar]
  14. Chaudhary C, Richardson AJ, Schoeman DS, Costello MJ. 2021. Global warming is causing a more pronounced dip in marine species richness around the equator. PNAS 118:15e2015094118
    [Google Scholar]
  15. Chefaoui RM, Duarte CM, Serrão EA. 2018. Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Glob. Chang. Biol. 24:104919–28
    [Google Scholar]
  16. Cheng L, Abraham J, Trenberth KE, Fasullo J, Boyer T et al. 2021. Upper ocean temperatures hit record high in 2020. Adv. Atmos. Sci. 38:4523–30
    [Google Scholar]
  17. Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Pauly D 2009. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish 10:3235–51
    [Google Scholar]
  18. Claar DC, Starko S, Tietjen KL, Epstein HE, Cunning R et al. 2020. Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat. Commun. 11:6097
    [Google Scholar]
  19. Costantini D. 2014. Does hormesis foster organism resistance to extreme events?. Front. Ecol. Environ. 12:4209–10
    [Google Scholar]
  20. Dal Bello M, Rindi L, Benedetti-Cecchi L 2017. Legacy effects and memory loss: how contingencies moderate the response of rocky intertidal biofilms to present and past extreme events. Glob. Chang. Biol. 23:83259–68
    [Google Scholar]
  21. Dulvy NK, Rogers SI, Jennings S, Stelzenmüller V, Dye SR, Skjoldal HR. 2008. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45:41029–39
    [Google Scholar]
  22. Eakin CM, Lough JM, Heron SF 2009. Climate variability and change: monitoring data and evidence for increased coral bleaching stress. Coral Bleaching: Patterns, Processes, Causes, and Consequences MJH van Oppen, JM Lough 41–67. Berlin: Springer
    [Google Scholar]
  23. Edmunds PJ. 2019. Three decades of degradation lead to diminished impacts of severe hurricanes on Caribbean reefs. Ecology 100:3e02587
    [Google Scholar]
  24. Essl F, Dullinger S, Rabitsch W, Hulme PE, Pyšek P et al. 2015. Historical legacies accumulate to shape future biodiversity in an era of rapid global change. Divers. Distrib. 21:5534–47
    [Google Scholar]
  25. Fiedler PC. 2010. Comparison of objective descriptions of the thermocline. Limnol. Oceanogr. Methods. 8:6313–25
    [Google Scholar]
  26. Frade PR, Bongaerts P, Englebert N, Rogers A, Gonzalez-Rivero M, Hoegh-Guldberg O 2018. Deep reefs of the Great Barrier Reef offer limited thermal refuge during mass coral bleaching. Nat. Commun. 9:13447
    [Google Scholar]
  27. Frölicher TL, Fischer EM, Gruber N. 2018. Marine heatwaves under global warming. Nature 560:7718360–64
    [Google Scholar]
  28. García Molinos J, Halpern BS, Schoeman DS, Brown CJ, Kiessling W et al. 2015. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Chang. 6:183–88
    [Google Scholar]
  29. Garpe K, Yahya S, Lindahl U, Öhman M. 2006. Long-term effects of the 1998 coral bleaching event on reef fish assemblages. Mar. Ecol. Prog. Ser. 315:237–47
    [Google Scholar]
  30. Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonné P et al. 2009. Mass mortality in northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Chang. Biol. 15:51090–103
    [Google Scholar]
  31. Garrabou J, Gómez-Gras D, Ledoux J-B, Linares C, Bensoussan N et al. 2019. Collaborative database to track mass mortality events in the Mediterranean Sea. Front. Mar. Sci. 6:707
    [Google Scholar]
  32. Garrabou J, Gómez-Gras D, Medrano A, Cerrano C, Ponti M et al. 2022. Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Glob. Chang. Biol. 28:5708–25
    [Google Scholar]
  33. Glynn PW. 1996. Coral reef bleaching: facts, hypotheses and implications. Glob. Chang. Biol. 2:6495–509
    [Google Scholar]
  34. Grottoli AG, Warner ME, Levas SJ, Aschaffenburg MD, Schoepf V et al. 2014. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Chang. Biol. 20:382333
    [Google Scholar]
  35. Hackerott S, Martell HA, Eirin-Lopez JM. 2021. Coral environmental memory: causes, mechanisms, and consequences for future reefs. Trends Ecol. Evol. 36:111011–23
    [Google Scholar]
  36. Harris RMB, Beaumount LJ, Vance TR, Tozer CR, Remenyi TA et al. 2022. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Chang. 8:579–87
    [Google Scholar]
  37. Haumann FA, Gruber N, Münnich M. 2020. Sea-ice induced Southern Ocean subsurface warming and surface cooling in a warming climate. AGU Adv 1:2e2019AV000132
    [Google Scholar]
  38. Hiddink JG, Burrows MT, García Molinos J. 2015. Temperature tracking by North Sea benthic invertebrates in response to climate change. Glob. Chang. Biol. 21:1117–29
    [Google Scholar]
  39. Hobday AJ, Alexander LV, Perkins SE, Smale DA, Straub SC et al. 2016. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr 141:227–38
    [Google Scholar]
  40. Hughes TP, Kerry JT, Alvarez -Noriega M, Alvarez -Romero JG, Anderson KD et al. 2017. Global warming and recurrent mass bleaching of corals. Nature 543:373–77
    [Google Scholar]
  41. Hughes TP, Kerry JT, Connolly SR, Baird AH, Eakin CM et al. 2019. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Chang. 9:140–43
    [Google Scholar]
  42. Hughes TP, Tanner JE. 2000. Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81:82250–63
    [Google Scholar]
  43. Hylander K, Ehrlén J. 2013. The mechanisms causing extinction debts. Trends Ecol. Evol. 28:341–46
    [Google Scholar]
  44. Jackson ST, Sax DF. 2010. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25:3153–60
    [Google Scholar]
  45. Jacox MG. 2019. Marine heatwaves in a changing climate. Nature 571:7766485–87
    [Google Scholar]
  46. Jones MC, Cheung WWL. 2015. Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J. Mar. Sci. 72:3741–52
    [Google Scholar]
  47. Jorda G, Marbà N, Bennett S, Santana-Garcon J, Agusti S, Duarte CM. 2019. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4:1109–14
    [Google Scholar]
  48. Kossin JP, Knapp KR, Olander TL, Velden TS. 2020. Global increase in major tropical cyclone exceedance probability over the past four decades. PNAS 117:11975–80
    [Google Scholar]
  49. Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J et al. 2009. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24:10564–71
    [Google Scholar]
  50. Lefcheck JS, Marion SR, Lombana AV, Orth RJ. 2016. Faunal communities are invariant to fragmentation in experimental seagrass landscapes. PLOS ONE 11:5e0156550
    [Google Scholar]
  51. Leichter JJ, Wing SR, Miller SL, Denny MW. 1996. Pulsed delivery of sub-thermocline water to Conch Reef (Florida Keys) by internal tidal bores. Limnol. Oceanogr. 41:1490–501
    [Google Scholar]
  52. Lesser MP, Slattery M, Leichter JJ. 2009. Ecology of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 375:1–21–8
    [Google Scholar]
  53. Levin LA. 2003. Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanogr. Mar. Biol. 41:1–45
    [Google Scholar]
  54. Mills K, Pershing A, Brown C, Chen Y, Chiang F-S et al. 2013. Fisheries management in a changing climate: lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography 26:2191–95
    [Google Scholar]
  55. Muir PR, Marshall PA, Abdulla A, Aguirre JD. 2017. Species identity and depth predict bleaching severity in reef-building corals: Shall the deep inherit the reef?. Proc. R. Soc. B 284:186420171551
    [Google Scholar]
  56. Muñiz-Castillo AI, Rivera-Sosa A, Chollett I, Eakin CM, Andrade-Gómez L et al. 2019. Three decades of heat stress exposure in Caribbean coral reefs: a new regional delineation to enhance conservation. Sci. Rep. 9:111013
    [Google Scholar]
  57. Oliver ECJ, Benthuysen JA, Darmaraki S, Donat MG, Hobday AJ et al. 2021. Marine heatwaves. Annu. Rev. Mar. Sci. 13:313–42
    [Google Scholar]
  58. Oliver ECJ, Donat MG, Burrows MT, Moore PJ, Smale DA et al. 2018. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9:11324
    [Google Scholar]
  59. Pershing AJ, Alexander MA, Brady DC, Brickman D, Curchitser EN et al. 2021. Climate impacts on the Gulf of Maine ecosystem. Elem. Sci. Anthropocene 9:100076
    [Google Scholar]
  60. Pershing AJ, Record NR, Franklin BS, Kennedy BT, McClenachan L et al. 2019. Challenges to natural and human communities from surprising ocean temperatures. PNAS 116:3718378–83
    [Google Scholar]
  61. Pershing AJ, Stamieszkin K. 2020. The North Atlantic ecosystem, from plankton to whales. Annu. Rev. Mar. Sci. 12:339–59
    [Google Scholar]
  62. Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA. 2013. Marine taxa track local climate velocities. Science 341:61511239–42
    [Google Scholar]
  63. Pratchett M, Munday P, Wilson S, Graham N, Cinner J, Bellwood D. 2008. Effects of climate-induced coral bleaching on coral-reef fishes, ecological and economic consequences. Oceanogr. Mar. Biol. Annu. Rev. 46:251–96
    [Google Scholar]
  64. Putnam HM. 2021. Avenues of reef-building coral acclimatization in response to rapid environmental change. J. Exp. Biol. 224:Suppl. 1jeb239319
    [Google Scholar]
  65. Rhoades O, Brandt M, Witman JD. 2023. La Niña -related coral death triggers biodiversity loss of associated communities in the Galápagos. Mar. Ecol. https://doi.org/10.1111/maec.12767
    [Crossref] [Google Scholar]
  66. Riegl B, Piller WE. 2003. Possible refugia for reefs in times of environmental stress. Int. J. Earth Sci. 92:4520–31
    [Google Scholar]
  67. Rombouts I, Beaugrand G, Ibanez F, Chiba A, Legendre L. 2011. Marine copepod diversity and the metabolic theory of ecology. Oecologia 166:349–55
    [Google Scholar]
  68. Ryo M, Aguilar-Trigueros CA, Pinek L, Muller LAH, Rillig MC. 2019. Basic principles of temporal dynamics. Trends Ecol. Evol. 34:8723–33
    [Google Scholar]
  69. Santana-Falcón Y, Séférian R. 2022. Climate change impacts the vertical structure of marine ecosystem thermal ranges. Nat. Clim. Chang. 12:10935–42
    [Google Scholar]
  70. Schuetz JG, Mills KE, Allyn AJ, Stamieszkin K, Bris AL, Pershing AJ. 2019. Complex patterns of temperature sensitivity, not ecological traits, dictate diverse species responses to climate change. Ecography 42:1111–24
    [Google Scholar]
  71. Selig ER, Casey KS, Bruno JF. 2010. New insights into global patterns of ocean temperature anomalies: implications for coral reef health and management. Glob. Ecol. Biogeogr. 19:397–411
    [Google Scholar]
  72. Sheppard C. 2009. Large temperature plunges recorded by data loggers at different depths on an Indian Ocean atoll: comparison with satellite data and relevance to coral refuges. Coral Reefs 28:2399–403
    [Google Scholar]
  73. Smith KE, Burrows MT, Hobday AJ, King NG, Moore PJ et al. 2023. Biological impacts of marine heatwaves. Annu. Rev. Mar. Sci. 15:119–45
    [Google Scholar]
  74. Smith TB, Glyn PW, Mate JL, Toth LT, Gyory J. 2014. A depth refugium from catastrophic coral bleaching prevents regional extinction. Ecology 95:1663–73
    [Google Scholar]
  75. Somero GN. 2010. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers.’. J. Exp. Biol. 213:6912–20
    [Google Scholar]
  76. Stillman JH. 2003. Acclimation capacity underlies susceptibility to climate change. Science 301:562965
    [Google Scholar]
  77. Stipcich P, Marín-Guirao L, Pansini A, Pinna F, Procaccini G et al. 2022. Effects of current and future summer marine heat waves on Posidonia oceanica: plant origin matters?. Front. Clim. 4:844831
    [Google Scholar]
  78. Stone L, Eilam E, Abelson A, Ilan M. 1996. Modelling coral reef biodiversity and habitat destruction. Mar. Ecol. Prog. Ser. 134:299–302
    [Google Scholar]
  79. Stuart-Smith RD, Brown CJ, Ceccarelli DM, Edgar GJ. 2018. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560:771692–96
    [Google Scholar]
  80. Thatje S. 2021. Climate warming affects the depth distribution of marine ectotherms. Mar. Ecol. Prog. Ser. 660:233–40
    [Google Scholar]
  81. Tilman D, May RM, Lehman CL, Novak MA. 1994. Habitat destruction and the extinction debt. Nature 371:65–66
    [Google Scholar]
  82. Venegas RM, Oliver T, Liu G, Heron SF, Clark SJ et al. 2019. The rarity of depth refugia from coral bleaching heat stress in the western and central Pacific Islands. Sci. Rep. 9:119710
    [Google Scholar]
  83. Watts K, Whytock RC, Park KJ, Fuentes-Montemayor E, Macgregor NA et al. 2020. Ecological time lags and the journey towards conservation success. Nat. Ecol. Evol. 4:3304–11
    [Google Scholar]
  84. Weissburg M, Helmuth B, Witman J 2014. The physical context of marine communities. Marine Community Ecology and Conservation MD Bertness, BB Silliman, J Stachowicz 11–36. Sunderland, MA: Sinauer Press
    [Google Scholar]
  85. White PS, Jentsch A 2001. The search for generality in studies of disturbance and ecosystem dynamics. Progress in Botany, Vol. 62 K Esser, U Lüttge, JW Kadereit, W Beyschlag 399–450. Berlin, Heidelberg: Springer
    [Google Scholar]
  86. Witman JD. 1992. Physical disturbance and community structure of exposed and protected reefs: a case study from St. John, U.S. Virgin Islands. Am. Zool. 32:641–54
    [Google Scholar]
  87. Witman JD, Dayton PK 2001. Rocky subtidal communities. Marine Community Ecology MD Bertness, SD Gaines, M Hay 339–66. Sunderland, MA: Sinauer Press
    [Google Scholar]
  88. Witman JD, Lamb RW. 2018. Persistent differences between coastal and offshore kelp forest communities in a warming Gulf of Maine. PLOS ONE 13:1e0189388
    [Google Scholar]
  89. Witman JD, Leichter JJ, Genovese SJ, Brooks DA. 1993. Pulsed phytoplankton supply to the rocky subtidal zone: influence of internal waves. PNAS 90:1686–90
    [Google Scholar]
  90. Wolanski E, Colin PL, Naithani J, Deleersnijder E, Golbuu Y. 2004. Large amplitude, leaky, island-generated, internal waves around Palau, Micronesia. Estuar. Coast. Shelf Sci. 60:705–16
    [Google Scholar]
  91. Wyatt ASJ, Leichter JJ, Toth LT, Miyajima T, Aronson RB, Nagata T. 2020. Heat accumulation on coral reefs mitigated by internal waves. Nat. Geosci. 13:128–34
    [Google Scholar]
  92. Yang LH, Bastow JL, Spence KO, Wright AN. 2008. What can we learn from resource pulses?. Ecology 89:621–34
    [Google Scholar]
  93. Zeidberg LD, Robison BH. 2007. Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific. PNAS 104:3112948–50
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-022323-082123
Loading
/content/journals/10.1146/annurev-ecolsys-022323-082123
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error