1932

Abstract

Functional trait–based mediation of animal invasions is only now developing, yet it is already showing as much promise as the approach has for plant invasion biology. Here, we provide a theory-founded examination of functional trait–based ecology with respect to animal invasions, together with a review of the empirical research. Recent developments in the scaling of traits to ecosystems, along with the frameworks for invasion ecology, provide a powerful foundation for investigations. Despite growing empirical research in this field, interspecific comparisons incorporating comparative phylogenetic approaches remain uncommon, and those examining assemblages are even more so. Despite the importance of time since introduction, it is rarely included in studies. Broad environmental tolerances, life history traits associated with fast growth or greater reproduction, and in some cases, greater phenotypic plasticity of traits, mediate the success of animal alien species at various stages of invasion, although introduction effort remains one of the most important factors affecting success.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102220-013423
2023-11-02
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/54/1/annurev-ecolsys-102220-013423.html?itemId=/content/journals/10.1146/annurev-ecolsys-102220-013423&mimeType=html&fmt=ahah

Literature Cited

  1. Allen WL, Street SE, Capellini I. 2017. Fast life history traits promote invasion success in amphibians and reptiles. Ecol. Lett. 20:222–30
    [Google Scholar]
  2. Araspin L, Martinez AS, Wagener C, Courant J, Louppe V et al. 2020. Rapid shifts in the temperature dependence of locomotor performance in an invasive frog, Xenopus laevis, implications for conservation. Integr. Comp. Biol. 60:456–66
    [Google Scholar]
  3. Baker HG. 1965. Characteristics and modes of origin of weeds. The Genetics of Colonizing Species Baker HG, Stebbins GL 147–68. New York: Academic
    [Google Scholar]
  4. Baker HG, Stebbins GL. 1965. The Genetics of Colonizing Species New York: Academic
    [Google Scholar]
  5. Bartheld JL, Gaitan-Espitia JD, Artacho P, Salgado-Luarte C, Gianoli E, Nespolo RF. 2015. Energy expenditure and body size are targets of natural selection across a wide geographic range, in a terrestrial invertebrate. Funct. Ecol. 29:1463–74
    [Google Scholar]
  6. Bates AE, McKelvie CM, Sorte CJB, Morley SA, Jones NAR et al. 2013. Geographical range, heat tolerance and invasion success in aquatic species. Proc. R. Soc. B 280:20131958
    [Google Scholar]
  7. Belmaker J, Brokovich E, China V, Golani D, Kiflawi M. 2009. Estimating the rate of biological introductions: Lessepsian fishes in the Mediterranean. Ecology 90:1134–41
    [Google Scholar]
  8. Belmaker J, Parravicini V, Kulbicki M. 2013. Ecological traits and environmental affinity explain Red Sea fish introduction into the Mediterranean. Global Change Biol. 19:1373–82
    [Google Scholar]
  9. Bennett JM, Calosi P, Clusella-Trullas S, Martinez B, Sunday J et al. 2018. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5:180022
    [Google Scholar]
  10. Bernery C, Bellard C, Courchamp F, Brosse S, Gozlan RE et al. 2022. Freshwater fish invasions: a comprehensive review. Annu. Rev. Ecol. Evol. Syst. 53:427–56
    [Google Scholar]
  11. Blackburn TM, Duncan RP. 2001. Determinants of establishment success in introduced birds. Nature 414:195–97
    [Google Scholar]
  12. Blackburn TM, Essl F, Evans TA, Hulme PE, Jeschke JM et al. 2014. A unified classification of alien species based on the magnitude of their environmental impacts. PLOS Biol. 12:e1001850
    [Google Scholar]
  13. Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP et al. 2011. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26:333–39
    [Google Scholar]
  14. Boardman L, Lockwood JL, Angilletta MJ, Krause JS, Lau JA et al. 2022. The future of invasion science needs physiology. BioScience 72:1204–19
    [Google Scholar]
  15. Boltovskoy D, Correa NM, Burlakova LE, Karatayev AY, Thuesen EV et al. 2021. Traits and impacts of introduced species: a quantitative review of meta-analyses. Hydrobiologia 848:2225–58
    [Google Scholar]
  16. Brown AM, Warton DI, Andrew NR, Binns M, Cassis G et al. 2014. The fourth-corner solution – using predictive models to understand how species traits interact with the environment. Methods Ecol. Evol. 5:344–52
    [Google Scholar]
  17. Brown JH, West GB. 2000. Scaling in Biology Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  18. Buckwalter JD, Frimpong EA, Angermeier PL, Barney JN. 2020. Species traits predict stream-fish invaders in an Appalachian (USA) river basin. Freshw. Biol. 65:552–64
    [Google Scholar]
  19. Bujan J, Roeder KA, Yanoviak SP, Kaspari M. 2020. Seasonal plasticity of thermal tolerance in ants. Ecology 101:e03051
    [Google Scholar]
  20. Cadotte MW, Carboni M, Si X, Tatsumi S, Gibson D. 2019. Do traits and phylogeny support congruent community diversity patterns and assembly inferences?. J. Ecol. 107:2065–77
    [Google Scholar]
  21. Cadotte MW, Tucker CM. 2017. Should environmental filtering be abandoned?. Trends Ecol. Evol. 32:429–37
    [Google Scholar]
  22. Capellini I, Baker J, Allen WL, Street SE, Venditti C. 2015. The role of life history traits in mammalian invasion success. Ecol. Lett. 18:1099–107
    [Google Scholar]
  23. Carscadden KA, Emery NC, Arnillas CA, Cadotte MW, Afkhami ME et al. 2020. Niche breadth: causes and consequences for ecology, evolution, and conservation. Q. Rev. Biol. 95:179–214
    [Google Scholar]
  24. Cassey P, Delean S, Lockwood JL, Sadowski JS, Blackburn TM. 2018. Dissecting the null model for biological invasions: a meta-analysis of the propagule pressure effect. PLOS Biol. 16:e2005987
    [Google Scholar]
  25. Chacón-Labella J, Hinojo-Hinojo C, Bohner T, Castorena M, Violle C et al. 2023. How to improve scaling from traits to ecosystem processes. Trends Ecol. Evol. 38:228–37
    [Google Scholar]
  26. Chown SL. 2023. Macrophysiology for decision making. J. Zool. 319:1–22
    [Google Scholar]
  27. Chown SL, Gaston KJ. 2016. Macrophysiology – progress and prospects. Funct. Ecol. 30:330–44
    [Google Scholar]
  28. Chown SL, Hodgins KA, Griffin PC, Oakeshott JG, Byrne M, Hoffmann AA. 2015. Biological invasions, climate change and genomics. Evol. Appl. 8:23–46
    [Google Scholar]
  29. Chown SL, Janion-Scheepers C, Marshall A, Aitkenhead IJ, Hallas R et al. 2023. Indigenous and introduced Collembola differ in desiccation resistance but not its plasticity in response to temperature. Curr. Res. Insect Sci. 3:100051
    [Google Scholar]
  30. Chown SL, McGeoch MA. 2023. Registration of empirical data collection and analyses for functional trait variation along animal invasion pathways Monash Univ. Melbourne, Aust.: https://doi.org/10.26180/21893946.v1
    [Crossref] [Google Scholar]
  31. Chown SL, Slabber S, McGeoch MA, Janion C, Leinaas HP. 2007. Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Proc. R. Soc. B 274:2531–37
    [Google Scholar]
  32. Claunch NM, Goodman C, Reed RN, Guralnick R, Romagosa CM, Taylor EN. 2021. Invaders from islands: thermal matching, potential or flexibility?. Biol. J. Linn. Soc. 134:587–603
    [Google Scholar]
  33. Coccia C, Calosi P, Boyero L, Green AJ, Bilton DT. 2013. Does ecophysiology determine invasion success? A comparison between the invasive boatman Trichocorixa verticalis and the native Sigara lateralis (Hemiptera, Corixidae) in south-west Spain. PLOS ONE 8:e63105
    [Google Scholar]
  34. Colautti RI, Alexander JM, Dlugosch KM, Keller SR, Sultan SE. 2017. Invasions and extinctions through the looking glass of evolutionary ecology. Phil. Trans. R. Soc. B 372:20160031
    [Google Scholar]
  35. Colautti RI, Lau JA. 2015. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol. Ecol. 24:1999–2017
    [Google Scholar]
  36. Conv. Biol. Divers 2010. What are invasive alien species?. Convention on Biological Diversity https://www.cbd.int/invasive/WhatareIAS.shtml
    [Google Scholar]
  37. Copp GH, Fox MG, Kovac V. 2002. Growth, morphology and life history traits of a cool-water European population of pumpkinseed Lepomis gibbosus. Arch. Hydrobiol. 155:585–614
    [Google Scholar]
  38. Copp GH, Vilizzi L, Mumford J, Fenwick GV, Godard MJ, Gozlan RE. 2009. Calibration of FISK, an invasiveness screening tool for nonnative freshwater fishes. Risk Anal. 29:457–67
    [Google Scholar]
  39. Cortes PA, Puschel H, Acuna P, Bartheld JL, Bozinovic F. 2016. Thermal ecological physiology of native and invasive frog species: Do invaders perform better?. Conserv. Physiol. 4:cow056
    [Google Scholar]
  40. Courant J, Adil L, De Kegel B, Adriaens D, Herrel A 2019. Conserved growth rate and age structure of Xenopus laevis in the edge and core of an expanding population. Biol. J. Linn. Soc. 128:122–29
    [Google Scholar]
  41. Crystal-Ornelas R, Lockwood JL. 2020. The ‘known unknowns’ of invasive species impact measurement. Biol. Invas. 22:1513–25
    [Google Scholar]
  42. De Witt TJ, Scheiner SM. 2004. Phenotypic Plasticity. Functional and Conceptual Approaches Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  43. Deacon AE, Magurran AE. 2016. How behaviour contributes to the success of an invasive poeciliid fish: the Trinidadian guppy (Poecilia reticulata) as a model species. In Biological Invasions and Animal Behaviour JS Weis, D Sol 266–90. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  44. Diagne C, Leroy B, Vaissiere AC, Gozlan RE, Roiz D et al. 2021. High and rising economic costs of biological invasions worldwide. Nature 592:571–76
    [Google Scholar]
  45. Drouillard KG, Feary DA, Sun X, O'Neil JA, Leadley T, Johnson TB 2018. Comparison of thermal tolerance and standard metabolic rate of two Great Lakes invasive fish species. J. Great Lakes Res. 44:476–81
    [Google Scholar]
  46. Duffy GA, Kuyucu AC, Hoskins JL, Hay EM, Chown SL. 2021. Adequate sample sizes for improved accuracy of thermal trait estimates. Funct. Ecol. 35:2647–62
    [Google Scholar]
  47. Dybdahl MF, Kane SL. 2005. Adaptation versus phenotypic plasticity in the success of a clonal invader. Ecology 86:1592–601
    [Google Scholar]
  48. Einum S, Ullern ER, Walsh M, Burton T. 2022. Evolution of population dynamics following invasion by a non-native predator. Ecol. Evol. 12:e9348
    [Google Scholar]
  49. Ellis EC, Klein Goldewijk K, Siebert S, Lightman D, Ramankutty N. 2010. Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecol. Biogeogr. 19:589–606
    [Google Scholar]
  50. Enders M, Havemann F, Ruland F, Bernard-Verdier M, Catford JA et al. 2020. A conceptual map of invasion biology: integrating hypotheses into a consensus network. Global Ecol. Biogeogr. 29:978–91
    [Google Scholar]
  51. Evans J, Arndt E, Schembri PJ. 2020. Atlantic fishes in the Mediterranean: using biological traits to assess the origin of newcomer fishes. Mar. Ecol. Prog. Ser. 643:133–43
    [Google Scholar]
  52. Evans T, Jeschke JM, Liu C, Redding DW, Şekercioğlu ÇH, Blackburn TM. 2021. What factors increase the vulnerability of native birds to the impacts of alien birds?. Ecography 44:727–39
    [Google Scholar]
  53. Fowler AE, Gerner NV, Sewell MA. 2011. Temperature and salinity tolerances of Stage 1 zoeae predict possible range expansion of an introduced portunid crab, Charybdis japonica, in New Zealand. Biol. Invas. 13:691–99
    [Google Scholar]
  54. Garland T Jr., Adolph SC. 1994. Why not to do two-species comparative studies: limitations on inferring adaptation. Physiol. Zool. 67:797–828
    [Google Scholar]
  55. Gaspard G, Kim D, Chun Y. 2019. Residual spatial autocorrelation in macroecological and biogeographical modeling: a review. J. Ecol. Environ. 43:19
    [Google Scholar]
  56. Gewing MT, Goldstein E, Buba Y, Shenkar N. 2019. Temperature resilience facilitates invasion success of the solitary ascidian Herdmania momus. Biol. Invas. 21:349–61
    [Google Scholar]
  57. Goymann W, Schwabl H. 2021. The tyranny of phylogeny—a plea for a less dogmatic stance on two-species comparisons. Bioessays 43:e2100071
    [Google Scholar]
  58. Green SJ, Brookson CB, Hardy NA, Crowder LB. 2022. Trait-based approaches to global change ecology: moving from description to prediction. Proc. R. Soc. B 289:20220071
    [Google Scholar]
  59. Groom Q, Desmet P, Reyserhove L, Adriaens T, Oldoni D et al. 2019. Improving Darwin Core for research and management of alien species. Biodiv. Inform. Sci. Stand. 3:e38084
    [Google Scholar]
  60. Gross N, Le Bagousse-Pinguet Y, Liancourt P, Saiz H, Violle C, Munoz F. 2021. Unveiling ecological assembly rules from commonalities in trait distributions. Ecol. Lett. 24:1668–80
    [Google Scholar]
  61. Guevara-Molina EC, Gomes FR, Camacho A. 2020. Effects of dehydration on thermoregulatory behavior and thermal tolerance limits of Rana catesbeiana (Shaw, 1802). J. Thermal Biol. 93:102721
    [Google Scholar]
  62. Hay EM, McGee MD, Chown SL. 2022. Geographic range size and speciation in honeyeaters. BMC Ecol. Evol. 22:86
    [Google Scholar]
  63. Hill MP, Chown SL, Hoffmann AA. 2013. A predicted niche shift corresponds with increased thermal resistance in an invasive mite, Halotydeus destructor. Global Ecol. Biogeogr. 22:942–51
    [Google Scholar]
  64. Hinz HL, Winston RL, Schwadzländer M. 2019. How safe is weed biological control? A global review of direct nontarget attack. Q. Rev. Biol. 94:1–27
    [Google Scholar]
  65. Hodgins KA, Bock DG, Rieseberg LH. 2018. Trait evolution in invasive species. Annu. Plant Rev. 1:459–96
    [Google Scholar]
  66. Huey RB, Carlson M, Crozier L, Frazier M, Hamilton H et al. 2002. Plants versus animals: Do they deal with stress in different ways?. Integr. Comp. Biol. 42:415–23
    [Google Scholar]
  67. Hui C, Richardson DM. 2017. Invasion Dynamics Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  68. Hulme PE, Bacher S, Kenis M, Klotz S, Kühn I et al. 2008. Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J. Appl. Ecol. 45:403–14
    [Google Scholar]
  69. Ishikawa T, Shimose T, Tachihara K. 2013. Life history of an invasive and unexploited population of Nile tilapia (Oreochromis niloticus) and geographical variation across its native and non-native ranges. Environ. Biol. Fish. 96:603–16
    [Google Scholar]
  70. Janion-Scheepers C, Phillips L, Sgrò CM, Duffy GA, Hallas R, Chown SL. 2018. Basal resistance enhances warming tolerance of alien over indigenous species across latitude. PNAS 115:145–50
    [Google Scholar]
  71. Jarzyna MA, Jetz W. 2016. Detecting the multiple facets of biodiversity. Trends Ecol. Evol. 31:527–38
    [Google Scholar]
  72. Juliano SA, Lounibos LP. 2016. Invasions by mosquitoes: the roles of behaviour across the life cycle. In Biological Invasions and Animal Behaviour JS Weis, D Sol 245–65. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  73. Kearney MR, Jusup M, McGeoch MA, Kooijman SALM, Chown SL. 2021. Where do functional traits come from? The role of theory and models. Funct. Ecol. 35:1385–96
    [Google Scholar]
  74. Keller A, Ankenbrand MJ, Bruelheide H, Dekeyzer S, Enquist BJ et al. 2022. Ten (mostly) simple rules to future-proof trait data in ecological and evolutionary sciences. Methods Ecol. Evol. 11:16434–45
    [Google Scholar]
  75. Kelley AL. 2014. The role thermal physiology plays in species invasion. Conserv. Physiol. 2:cou045
    [Google Scholar]
  76. Kerfoot JR. 2022. Northward expansion leads to cold tolerance? Investigating thermal adaptation of the non-native pike killifish (Belonesox belizanus) in Florida. Environ. Biol. Fish. 105:487–97
    [Google Scholar]
  77. Kerfoot WC, Ma X, Lorence CS, Weider LJ. 2004. Toward resurrection ecology: Daphnia mendotae and D. retrocurva in the coastal region of Lake Superior, among the first successful outside invaders?. J. Great Lakes Res. 30:285–99
    [Google Scholar]
  78. Koffel T, Umemura K, Litchman E, Klausmeier CA. 2022. A general framework for species-abundance distributions: linking traits and dispersal to explain commonness and rarity. Ecol. Lett. 25:2359–71
    [Google Scholar]
  79. Kolar CS, Lodge DM. 2001. Progress in invasion biology: predicting invaders. Trends Ecol. Evol. 16:199–204
    [Google Scholar]
  80. Lande R. 2015. Evolution of phenotypic plasticity in colonizing species. Mol. Ecol. 24:2038–45
    [Google Scholar]
  81. Latham ADM, Warburton B, Byrom AE, Pech RP. 2017. The ecology and management of mammal invasions in forests. Biol. Invas. 19:3121–39
    [Google Scholar]
  82. Lawson KM, Hill JE. 2022. Life history strategies differentiate established from failed non-native freshwater fish in peninsular Florida. Divers. Distrib. 28:160–72
    [Google Scholar]
  83. Le Bagousse-Pinguet Y, Soliveres S, Gross N, Torices R, Berdugo M, Maestre FT 2019. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. PNAS 116:8419–24
    [Google Scholar]
  84. Le Galliard JF, Chabaud C, de Andrade DOV, Brischoux F, Carretero MA et al. 2021. A worldwide and annotated database of evaporative water loss rates in squamate reptiles. Global Ecol. Biogeogr. 30:1938–50
    [Google Scholar]
  85. Le Hen G, Balzani P, Haase P, Kouba A, Liu C et al. 2023. Alien species and climate change drive shifts in a riverine fish community and trait compositions over 35 years. Sci. Total Environ. 867:161486
    [Google Scholar]
  86. Leibold MA, Chase JM. 2018. Metacommunity Ecology Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  87. Lenz M, da Gama BAP, Gerner NV, Gobin J, Groner F et al. 2011. Non-native marine invertebrates are more tolerant towards environmental stress than taxonomically related native species: results from a globally replicated study. Environ. Res. 111:943–52
    [Google Scholar]
  88. Levri EP, Krist AC, Bilka R, Dybdahl MF. 2014. Phenotypic plasticity of the introduced New Zealand mud snail, Potamopyrgus antipodarum, compared to sympatric native snails. PLOS ONE 9:e93985
    [Google Scholar]
  89. Liang SH, Walther BA, Shieh BS. 2017. Contrasting determinants for the introduction and establishment success of exotic birds in Taiwan using decision trees models. PeerJ 5:e3092
    [Google Scholar]
  90. Liu C, Comte L, Olden JD. 2017. Heads you win, tails you lose: Life-history traits predict invasion and extinction risk of the world's freshwater fishes. Aquat. Conserv. Mar. Freshw. Ecosyst. 27:773–79
    [Google Scholar]
  91. Liu C, Wolter C, Xian W, Jeschke JM. 2020. Most invasive species largely conserve their climatic niche. PNAS 117:23643–51
    [Google Scholar]
  92. Lockwood JL, Cassey P, Blackburn TM. 2009. The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Divers. Distrib. 15:904–10
    [Google Scholar]
  93. Lopez DP, Jungman AA, Rehage JS. 2012. Nonnative African jewelfish are more fit but not bolder at the invasion front: a trait comparison across an Everglades range expansion. Biol. Invas. 14:2159–74
    [Google Scholar]
  94. Louppe V, Courant J, Videlier M, Herrel A. 2018. Differences in standard metabolic rate at the range edge versus the center of an expanding invasive population of Xenopus laevis in the West of France. J. Zool. 305:163–72
    [Google Scholar]
  95. Marchetti MP, Moyle PB, Levine R. 2004. Invasive species profiling? Exploring the characteristics of non-native fishes across invasion stages in California. Freshw. Biol. 49:646–61
    [Google Scholar]
  96. Martel C, Guarini JM, Blanchard G, Sauriau PG, Trichet C et al. 2004. Invasion by the marine gastropod Ocinebrellus inornatus in France. III. Comparison of biological traits with the resident species Ocenebra erinacea. Marine Biol. 146:93–102
    [Google Scholar]
  97. Masson L, Brownscombe JW, Fox MG. 2016. Fine scale spatio-temporal life history shifts in an invasive species at its expansion front. Biol. Invas. 18:775–92
    [Google Scholar]
  98. McGeoch MA, Genovesi P, Bellingham PJ, Costello MJ, McGrannachan C, Sheppard A. 2016. Prioritizing species, pathways, and sites to achieve conservation targets for biological invasion. Biol. Invas. 18:299–314
    [Google Scholar]
  99. McGeoch MA, Jetz W. 2019. Measure and reduce the harm caused by biological invasions. One Earth 1:171–74
    [Google Scholar]
  100. McGeoch MA, Latombe G. 2016. Characterizing common and range expanding species. J. Biogeog. 43:217–28
    [Google Scholar]
  101. McMahon CR, Brook BW, Bowman D, Williamson GJ, Bradshaw CJA. 2011. Fertility partially drives the relative success of two introduced bovines (Bubalus bubalis and Bos javanicus) in the Australian tropics. Wildl. Res. 38:386–95
    [Google Scholar]
  102. Moreira A, Figueira E, Pecora IL, Soares A, Freitas R. 2017. Biochemical alterations in native and exotic oyster species in Brazil in response to increasing temperature. Comp. Biochem. Physiol. C 191:183–93
    [Google Scholar]
  103. O'Dea RE, Lagisz M, Jennions MD, Koricheva J, Noble DWA et al. 2021. Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: a PRISMA extension. Biol. Rev. 96:1695–722
    [Google Scholar]
  104. Ørsted M, Jørgensen LB, Overgaard J. 2022. Finding the right thermal limit: a framework to reconcile ecological, physiological and methodological aspects of CTmax in ectotherms. J. Exp. Biol. 225:jeb244514
    [Google Scholar]
  105. Owen MA, Lahti DC. 2020. Rapid evolution by sexual selection in a wild, invasive mammal. Evolution 74:740–48
    [Google Scholar]
  106. Penk MR, Jeschke JM, Minchin D, Donohue I. 2016. Warming can enhance invasion success through asymmetries in energetic performance. J. Animal Ecol. 85:419–26
    [Google Scholar]
  107. Perkins TA, Phillips BL, Baskett ML, Hastings A. 2013. Evolution of dispersal and life history interact to drive accelerating spread of an invasive species. Ecol. Lett. 16:1079–87
    [Google Scholar]
  108. Pertierra LR, Escribano-Álvarez P, Olalla-Tárraga MÁ. 2021. Cold tolerance is similar but heat tolerance is higher in the alien insect Trichocera maculipennis than in the native Parochlus steinenii in Antarctica. Polar Biol. 44:1203–8
    [Google Scholar]
  109. Phillips LM, Aitkenhead I, Janion-Scheepers C, King CK, McGeoch MA et al. 2020. Basal tolerance but not plasticity gives invasive springtails the advantage in an assemblage setting. Conserv. Physiol. 8:coaa049
    [Google Scholar]
  110. Pirtle EI, Tracy CR, Kearney MR. 2019. Hydroregulation. A neglected behavioral response of lizards to climate change?. Behavior of Lizards. Evolutionary and Mechanistic Perspectives VL Bels, AP Russell 343–71. Boca Raton, FL: CRC Press
    [Google Scholar]
  111. Pompei L, Giannetto D, Lorenzoni M. 2016. Reproductive parameters in native and non-native areas of Padogobius bonelli and comparison with P. nigricans (Actynopterigii, Gobiidae). Hydrobiologia 779:173–82
    [Google Scholar]
  112. Redding DW, Pigot AL, Dyer EE, Sekercioglu CH, Kark S, Blackburn TM. 2019. Location-level processes drive the establishment of alien bird populations worldwide. Nature 571:103–6
    [Google Scholar]
  113. Reisinger LS, Elgin AK, Towle KM, Chan DJ, Lodge DM. 2017. The influence of evolution and plasticity on the behavior of an invasive crayfish. Biol. Invas. 19:815–30
    [Google Scholar]
  114. Revell LJ, Harmon LJ. 2022. Phylogenetic Comparative Methods in R Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  115. Ricciardi A, Mottiar M. 2006. Does Darwin's naturalization hypothesis explain fish invasions?. Biol. Invas. 8:1403–7
    [Google Scholar]
  116. Saul W-C, Roy HE, Booy O, Carnevali L, Chen H-J et al. 2017. Assessing patterns in introduction pathways of alien species by linking major invasion data bases. J. Appl. Ecol. 54:657–69
    [Google Scholar]
  117. Schilman PE, Lighton JRB, Holway DA. 2007. Water balance in the Argentine ant (Linepithema humile) compared with five common native ant species from southern California. Physiol. Entomol. 32:1–7
    [Google Scholar]
  118. Schneider FD, Fichtmueller D, Gossner MM, Güntsch A, Jochum M et al. 2019. Towards an ecological trait-data standard. Methods Ecol. Evol. 10:2006–19
    [Google Scholar]
  119. Sibilia CD, Brosko KA, Hickling CH, Thompson LM, Grayson KL, Olson JR. 2018. Thermal physiology and developmental plasticity of pigmentation in the harlequin bug (Hemiptera: Pentatomidae). J. Insect Sci. 18:4
    [Google Scholar]
  120. Sobral M. 2021. All traits are functional: an evolutionary viewpoint. Trends Plant. Sci. 26:674–76
    [Google Scholar]
  121. Sol D, Duncan RP, Blackburn TM, Cassey P, Lefebvre L. 2005. Big brains, enhanced cognition, and response of birds to novel environments. PNAS 102:5460–65
    [Google Scholar]
  122. Sol D, Maspons J, Vall-Llosera M, Bartomeus I, García-Peña GE et al. 2012. Unraveling the life history of successful invaders. Science 337:580–83
    [Google Scholar]
  123. Steger J, Bosnjak M, Belmaker J, Galil BS, Zuschin M, Albano PG. 2022. Non-indigenous molluscs in the Eastern Mediterranean have distinct traits and cannot replace historic ecosystem functioning. Global Ecol. Biogeogr. 31:89–102
    [Google Scholar]
  124. Streit RP, Bellwood DR. 2023. To harness traits for ecology, let's abandon ‘functionality. ’. Trends Ecol. Evol. 38:402–11
    [Google Scholar]
  125. Su S, Cassey P, Blackburn TM. 2016. The wildlife pet trade as a driver of introduction and establishment in alien birds in Taiwan. Biol. Invas. 18:215–29
    [Google Scholar]
  126. Tricarico E, Vilizzi L, Gherardi F, Copp GH. 2010. Calibration of FI-ISK, an invasiveness screening tool for nonnative freshwater invertebrates. Risk Anal. 30:285–92
    [Google Scholar]
  127. van Heerwaarden B, Kellermann V. 2020. Does plasticity trade off with basal heat tolerance?. Trends Ecol. Evol. 35:874–85
    [Google Scholar]
  128. van Kleunen M, Dawson W, Schlaepfer DR, Jeschke JM, Fischer M. 2010. Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecol. Lett. 13:947–58
    [Google Scholar]
  129. Vanbergen AJ, Espindola A, Aizen MA. 2018. Risks to pollinators and pollination from invasive alien species. Nat. Ecol. Evol. 2:16–25
    [Google Scholar]
  130. Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C et al. 2007. Let the concept of trait be functional!. Oikos 116:882–92
    [Google Scholar]
  131. Violle C, Thuiller W, Mouquet N, Munoz F, Kraft NJB et al. 2017. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32:356–67
    [Google Scholar]
  132. Weiner SA, Noble K, Upton CT, Woods WA, Starks PT. 2011. A role for thermoregulation in the Polistes dominulus invasion: a comparison of the thermoregulatory abilities of the invasive wasp P. dominulus and the native wasp P. fuscatus. Insect. Soc. 58:185–90
    [Google Scholar]
  133. Weiss KCB, Ray CA. 2019. Unifying functional trait approaches to understand the assemblage of ecological communities: synthesizing taxonomic divides. Ecography 42:2012–20
    [Google Scholar]
  134. Wieczorek J, Bloom D, Guralnick R, Blum S, Doring M et al. 2012. Darwin Core: an evolving community-developed biodiversity data standard. PLOS ONE 7:e29715
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102220-013423
Loading
/content/journals/10.1146/annurev-ecolsys-102220-013423
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error