1932

Abstract

Over the past decade, a new set of methods for estimating dated trees has emerged. Originally referred to as the fossilized birth–death (FBD) process, this single model has expanded to a family of models that allows researchers to coestimate evolutionary parameters (e.g., diversification, sampling) and patterns alongside divergence times for a variety of applications from paleobiology to real-time epidemiology. We provide an overview of this family of models. We explore the ways in which these models correspond to methods in quantitative paleobiology, as the FBD process provides a framework through which neontological and paleontological approaches to phylogenetics and macroevolution can be unified. We also provide an overview of challenges associated with applying FBD models, particularly with an eye toward the fossil record. We conclude this review by discussing several exciting avenues for the inclusion of fossil data in phylogenetic analyses.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102220-030855
2022-11-02
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/53/1/annurev-ecolsys-102220-030855.html?itemId=/content/journals/10.1146/annurev-ecolsys-102220-030855&mimeType=html&fmt=ahah

Literature Cited

  1. Alroy J. 2008. Dynamics of origination and extinction in the marine fossil record. PNAS 105:Suppl. 111536–42
    [Google Scholar]
  2. Andréoletti J, Zwaans A, Warnock RCM, Aguirre-Fernández G, Barido-Sottani J et al. 2020. A skyline birth-death process for inferring the population size from a reconstructed tree with occurrences. bioRxiv 2020.10.27.356758. https://doi.org/10.1101/2020.10.27.356758
    [Crossref]
  3. Ardila NE, Giribet G, Sánchez JA. 2012. A time-calibrated molecular phylogeny of the precious corals: reconciling discrepancies in the taxonomic classification and insights into their evolutionary history. BMC Evol. Biol. 12:1246
    [Google Scholar]
  4. Azevedo GHF, Parreiras JS, Bougie T, Michalik P, Wunderlich J, Ramírez MJ. 2021. Fossils constrain biogeographical history in a clade of flattened spiders with transcontinental distribution. J. Biogeogr. 48:123032–46
    [Google Scholar]
  5. Bapst DW. 2013. A stochastic rate-calibrated method for time-scaling phylogenies of fossil taxa. Methods Ecol. Evol. 4:8724–33
    [Google Scholar]
  6. Bapst DW. 2014. Assessing the effect of time-scaling methods on phylogeny-based analyses in the fossil record. Paleobiology 40:3331–51
    [Google Scholar]
  7. Bapst DW, Hopkins MJ. 2017. Comparing cal3 and other a posteriori time-scaling approaches in a case study with the pterocephaliid trilobites. Paleobiology 43:149–67
    [Google Scholar]
  8. Bapst DW, Schreiber HA, Carlson SJ. 2018. Combined analysis of extant rhynchonellida (brachiopoda) using morphological and molecular data. Syst. Biol. 67:132–48
    [Google Scholar]
  9. Bapst DW, Wright AM, Matzke NJ, Lloyd GT. 2016. Topology, divergence dates, and macroevolutionary inferences vary between different tip-dating approaches applied to fossil theropods (dinosauria). Biol. Lett. 12:720160237
    [Google Scholar]
  10. Barido-Sottani J, Aguirre-Fernández G, Hopkins MJ, Stadler T, Warnock R. 2019. Ignoring stratigraphic age uncertainty leads to erroneous estimates of species divergence times under the fossilized birth–death process. Proc. R. Soc. B 286:190220190685
    [Google Scholar]
  11. Barido-Sottani J, Bošková V, Plessis LD, Kühnert D, Magnus C et al. 2018. Taming the BEAST—a community teaching material resource for BEAST 2. Syst. Biol. 67:1170–74
    [Google Scholar]
  12. Barido-Sottani J, van Tiel NM, Hopkins MJ, Wright DF, Stadler T, Warnock RC. 2020. Ignoring fossil age uncertainty leads to inaccurate topology and divergence time estimates in time calibrated tree inference. Front. Ecol. Evol. 8:183
    [Google Scholar]
  13. Beaulieu JM, O'Meara BC. 2021. Fossils do not substantially improve, and may even harm, estimates of diversification rate heterogeneity. bioRxiv 2021.11.06.467550. https://doi.org/10.1101/2021.11.06.467550
    [Crossref]
  14. Benson RB, Butler R, Close RA, Saupe E, Rabosky DL. 2021. Biodiversity across space and time in the fossil record. Curr. Biol. 31:19R1225–36
    [Google Scholar]
  15. Benson RB, Mannion PD, Butler RJ, Upchurch P, Goswami A, Evans SE. 2013. Cretaceous tetrapod fossil record sampling and faunal turnover: implications for biogeography and the rise of modern clades. Palaeogeogr. Palaeoclimatol. Palaeoecol. 372:88–107
    [Google Scholar]
  16. Benton MJ, Storrs GW. 1994. Testing the quality of the fossil record: Paleontological knowledge is improving. Geology 22:2111–14
    [Google Scholar]
  17. Bodenbender BE, Fisher DC. 2001. Stratocladistic analysis of blastoid phylogeny. J. Paleontol. 75:2351–69
    [Google Scholar]
  18. Bouckaert RR. 2010. DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 26:101372–73
    [Google Scholar]
  19. Brusatte SL, Benton MJ, Ruta M, Lloyd GT. 2008. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. Science 321:58951485–88
    [Google Scholar]
  20. Cau A. 2017. Specimen-level phylogenetics in paleontology using the Fossilized Birth-Death model with sampled ancestors. PeerJ 5:e3055
    [Google Scholar]
  21. Černý D, Madzia D, Slater GJ. 2021. Empirical and methodological challenges to the model-based inference of diversification rates in extinct clades. Syst. Biol. 71:1153–71
    [Google Scholar]
  22. Chamorro ML, de Medeiros BAS, Farrell BD. 2021. First phylogenetic analysis of Dryophthorinae (Coleoptera, Curculionidae) based on structural alignment of ribosomal DNA reveals Cenozoic diversification. Ecol. Evol. 11:51984–98
    [Google Scholar]
  23. Clarke JA, Middleton KM. 2008. Mosaicism, modules, and the evolution of birds: results from a Bayesian approach to the study of morphological evolution using discrete character data. Syst. Biol. 57:2185–201
    [Google Scholar]
  24. Close RA, Evers SW, Alroy J, Butler RJ. 2018. How should we estimate diversity in the fossil record? Testing richness estimators using sampling-standardised discovery curves. Methods Ecol. Evol. 9:61386–400
    [Google Scholar]
  25. Darwin C. 1859. On the Origin of Species by Means of Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life London: J. Murray
  26. Drummond AJ, Stadler T. 2016. Bayesian phylogenetic estimation of fossil ages. Philos. Trans. R. Soc. B 371:169920150129
    [Google Scholar]
  27. Fisher D. 1980. The role of stratigraphic data in phylogenetic inference. Geol. Soc. Am. Abstr. Programs 12:7426
    [Google Scholar]
  28. Fisher DC. 2008. Stratocladistics: integrating temporal data and character data in phylogenetic inference. Annu. Rev. Ecol. Evol. Syst. 39:365–85
    [Google Scholar]
  29. Foote M. 1996. On the probability of ancestors in the fossil record. Paleobiology 22:2141–51
    [Google Scholar]
  30. Foote M. 2000. Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26:S474–102
    [Google Scholar]
  31. Foote M, Hunter JP, Janis CM, Sepkoski JJ 1999. Evolutionary and preservational constraints on origins of biologic groups: divergence times of eutherian mammals. Science 283:54061310–14
    [Google Scholar]
  32. Gavryushkina A, Heath TA, Ksepka DT, Stadler T, Welch D, Drummond AJ. 2016. Bayesian total-evidence dating reveals the recent crown radiation of penguins. Syst. Biol. 66:1syw060
    [Google Scholar]
  33. Gavryushkina A, Welch D, Stadler T, Drummond AJ. 2014. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLOS Comput. Biol. 10:12e1003919
    [Google Scholar]
  34. Gould SJ. 1980. G.G. Simpson, paleontology, and the modern synthesis. The Evolutionary Synthesis E Mayr, WB Provine 153–72 Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  35. Green PJ. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:4711–32
    [Google Scholar]
  36. Gupta A, Manceau M, Vaughan T, Khammash M, Stadler T. 2020. The probability distribution of the reconstructed phylogenetic tree with occurrence data. J. Theor. Biol. 488:110115
    [Google Scholar]
  37. Hasegawa M, Kishino H, Yano T. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22:2160–74
    [Google Scholar]
  38. Heath TA, Huelsenbeck JP, Stadler T. 2014. The fossilized birth–death process for coherent calibration of divergence-time estimates. PNAS 111:29E2957–66
    [Google Scholar]
  39. Höhna S, Coghill LM, Mount GG, Thomson RC, Brown JM. 2018. P3: phylogenetic posterior prediction in RevBayes. Mol. Biol. Evol. 35:41028–34
    [Google Scholar]
  40. Höhna S, Landis MJ, Heath TA, Boussau B, Lartillot N et al. 2016. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst. Biol. 65:4726–36
    [Google Scholar]
  41. Hopkins MJ, Bapst DW, Simpson C, Warnock RC. 2018. The inseparability of sampling and time and its influence on attempts to unify the molecular and fossil records. Paleobiology 44:4561–74
    [Google Scholar]
  42. Huelsenbeck JP. 1994. Comparing the stratigraphic record to estimates of phylogeny. Paleobiology 20:4470–83
    [Google Scholar]
  43. Hunt G, Carrano MT. 2010. Models and methods for analyzing phenotypic evolution in lineages and clades. Paleontol. Soc. Papers 16:245–69
    [Google Scholar]
  44. Jukes TH, Cantor CR et al. 1969. Evolution of protein molecules. Mamm. Protein Metab. 3:21–132
    [Google Scholar]
  45. Klopfstein S, Ryer R, Coiro M, Spasojevic T. 2019. Mismatch of the morphology model is mostly unproblematic in total-evidence dating: insights from an extensive simulation study. bioRxiv 679084. https://doi.org/10.1101/679084
    [Crossref]
  46. Kocsis AT, Reddin CJ, Alroy J, Kiessling W. 2019. The R package divDyn for quantifying diversity dynamics using fossil sampling data. Methods Ecol. Evol. 10:5735–43
    [Google Scholar]
  47. Ksepka DT, Parham JF, Allman JF, Benton MJ, Carrano MT et al. 2015. The fossil calibration database—a new resource for divergence dating. Syst. Biol. 64:5853–59
    [Google Scholar]
  48. Kühnert D, Stadler T, Vaughan TG, Drummond AJ. 2016. Phylodynamics with migration: a computational framework to quantify population structure from genomic data. Mol. Biol. Evol. 33:82102–16
    [Google Scholar]
  49. Laurin M. 2004. The evolution of body size, Cope's rule and the origin of amniotes. Syst. Biol. 53:4594–622
    [Google Scholar]
  50. Legried B, Terhorst J. 2021. A class of identifiable phylogenetic birth-death models. bioRxiv 2021.10.04.463015. https://doi.org/10.1101/2021.10.04.463015
    [Crossref]
  51. Lepage T, Bryant D, Philippe H, Lartillot N 2007. A general comparison of relaxed molecular clock models. Mol. Biol. Evol. 24:122669–80
    [Google Scholar]
  52. Lepage T, Lawi S, Tupper P, Bryant D. 2006. Continuous and tractable models for the variation of evolutionary rates. Math. Biosci. 199:2216–33
    [Google Scholar]
  53. Lewis PO. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50:6913–25
    [Google Scholar]
  54. Liow LH, Nichols JD. 2010. Estimating rates and probabilities of origination and extinction using taxonomic occurrence data: capture-mark-recapture (CMR) approaches. Paleontol. Soc. Papers 16:81–94
    [Google Scholar]
  55. Lloyd GT, Slater GJ. 2021. A total-group phylogenetic metatree for Cetacea and the importance of fossil data in diversification analyses. Syst. Biol. 70:5922–39
    [Google Scholar]
  56. Lloyd GT, Wang SC, Brusatte SL. 2012. Identifying heterogeneity in rates of morphological evolution: discrete character change in the evolution of lungfish (Sarcopterygii; Dipnoi). Evol.: Int. J. Org. Evol. 66:2330–48
    [Google Scholar]
  57. Louca S, McLaughlin A, MacPherson A, Joy JB, Pennell MW. 2021. Fundamental identifiability limits in molecular epidemiology. Mol. Biol. Evol. 38:94010–24
    [Google Scholar]
  58. Louca S, Pennell MW. 2020. Extant timetrees are consistent with a myriad of diversification histories. Nature 580:502–5
    [Google Scholar]
  59. Luo A, Duchêne DA, Zhang C, Zhu CD, Ho SYW. 2020. A simulation-based evaluation of tip-dating under the fossilized birth–death process. Syst. Biol. 69:2325–44
    [Google Scholar]
  60. Luo ZX, Yuan CX, Meng QJ, Ji Q 2011. A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476:7361442–45
    [Google Scholar]
  61. MacPherson A, Louca S, McLaughlin A, Joy JB, Pennell MW. 2021. A general birth-death-sampling model for epidemiology and macroevolution. bioRxiv 2020.10.10.334383. https://doi.org/10.1101/2020.10.10.334383
    [Crossref]
  62. Manceau M, Gupta A, Vaughan T, Stadler T. 2021. The probability distribution of the ancestral population size conditioned on the reconstructed phylogenetic tree with occurrence data. J. Theor. Biol. 509:110400
    [Google Scholar]
  63. Marcot JD, Fox DL. 2008. StrataPhy: a new computer program for stratocladistic analysis. Palaeontol. Electron. 11:111.1.5A
    [Google Scholar]
  64. Marshall C 1995. Stratigraphy, the true order of species originations and extinctions, and testing ancestor-descendant hypotheses among Caribbean neogene bryozoans. New Approaches to Speciation in the Fossil Record D Erwin, R Anstey 208–35 New York: Columbia Univ. Press
    [Google Scholar]
  65. Marshall CR. 2010. Using confidence intervals to quantify the uncertainty in the end-points of stratigraphic ranges. Paleontol. Soc. Papers 16:291–316
    [Google Scholar]
  66. Matschiner M. 2019. Selective sampling of species and fossils influences age estimates under the fossilized birth–death model. Front. Genet. 10:1064
    [Google Scholar]
  67. Matschiner M, Musilová Z, Barth JM, Starostová Z, Salzburger W et al. 2017. Bayesian phylogenetic estimation of clade ages supports trans-Atlantic dispersal of cichlid fishes. Syst. Biol. 66:13–22
    [Google Scholar]
  68. May MR, Contreras DL, Sundue MA, Nagalingum NS, Looy CV, Rothfels CJ. 2021. Inferring the total-evidence timescale of marattialean fern evolution in the face of model sensitivity. Syst. Biol. 70:61232–55
    [Google Scholar]
  69. May MR, Rothfels CJ. 2021. Mistreating birth-death models as priors in phylogenetic analysis compromises our ability to compare models. bioRxiv 2021.07.12.452074. https://doi.org/10.1101/2021.07.12.452074
    [Crossref]
  70. Monarrez PM, Zimmt JB, Clement AM, Gearty W, Jacisin JJ et al. 2021. Our past creates our present: a brief overview of racism and colonialism in Western paleontology. Paleobiology https://doi.org/10.1017/pab.2021.28
    [Crossref] [Google Scholar]
  71. Norell MA 1992. Taxic origin and temporal diversity: the effect of phylogeny. Extinction and Phylogeny M Novacek, Q Wheeler 89–118 New York: Columbia Univ. Press
    [Google Scholar]
  72. Ogilvie HA, Bouckaert RR, Drummond AJ. 2017. StarBEAST2 brings faster species tree inference and accurate estimates of substitution rates. Mol. Biol. Evol. 34:82101–14
    [Google Scholar]
  73. Ogilvie HA, Mendes FK, Vaughan TG, Matzke NJ, Stadler T et al. 2021. Novel integrative modeling of molecules and morphology across evolutionary timescales. Syst. Biol. 71:1208–20
    [Google Scholar]
  74. O'Reilly JE, Donoghue PCJ 2018. The efficacy of consensus tree methods for summarizing phylogenetic relationships from a posterior sample of trees estimated from morphological data. Syst. Biol. 67:2354–62
    [Google Scholar]
  75. O'Reilly JE, Donoghue PCJ 2020. The effect of fossil sampling on the estimation of divergence times with the fossilized birth–death process. Syst. Biol. 69:1124–38
    [Google Scholar]
  76. Parham JF, Donoghue PCJ, Bell CJ, Calway TD, Head JJ et al. 2011. Best practices for justifying fossil calibrations. Syst. Biol. 61:2346–59
    [Google Scholar]
  77. Parins-Fukuchi C. 2018. Use of continuous traits can improve morphological phylogenetics. Syst. Biol. 67:2328–39
    [Google Scholar]
  78. Parins-Fukuchi C. 2021. Morphological and phylogeographic evidence for budding speciation: an example in hominins. Biol. Lett. 17:120200754
    [Google Scholar]
  79. Parins-Fukuchi C, Brown JW. 2017. What drives results in Bayesian morphological clock analyses?. bioRxiv 219048: https://doi.org/10.1101/219048
    [Crossref] [Google Scholar]
  80. Parins-Fukuchi C, Greiner E, MacLatchy LM, Fisher DC. 2019. Phylogeny, ancestors, and anagenesis in the hominin fossil record. Paleobiology 45:2378–93
    [Google Scholar]
  81. Patzkowsky ME, Holland SM. 2012. Stratigraphic Paleobiology Chicago: Univ. Chicago Press
  82. Pearson PN. 1998. Speciation and extinction asymmetries in paleontological phylogenies: evidence for evolutionary progress. Paleobiology 24:3305–35
    [Google Scholar]
  83. Pennell MW, Harmon LJ, Uyeda JC. 2014. Is there room for punctuated equilibrium in macroevolution?. Trends Ecol. Evol. 29:123–32
    [Google Scholar]
  84. Rabosky DL, Goldberg EE. 2015. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 64:2340–55
    [Google Scholar]
  85. Raja NB, Dunne EM, Matiwane A, Khan TM, Nätscher PS et al. 2022. Colonial history and global economics distort our understanding of deep-time biodiversity. Nat. Ecol. Evol. 6:145–54
    [Google Scholar]
  86. Raup DM. 1972. Taxonomic diversity during the Phanerozoic. Science 177:40541065–71
    [Google Scholar]
  87. Raup DM. 1979. Conflicts between Darwin and paleontology. Field Mus. . Nat. Hist. Bull. 50:122–29
    [Google Scholar]
  88. Ronquist F, Lartillot N, Phillips MJ. 2016. Closing the gap between rocks and clocks using total-evidence dating. Philos. Trans. R. Soc. B 371:169920150136
    [Google Scholar]
  89. Ruta M, Wagner PJ, Coates MI. 2006. Evolutionary patterns in early tetrapods. I. Rapid initial diversification followed by decrease in rates of character change. Proc. R. Soc. B 273:15982107–11
    [Google Scholar]
  90. Siddall ME. 1998. Stratigraphic fit to phylogenies: a proposed solution. Cladistics 14:2201–8
    [Google Scholar]
  91. Silvestro D, Schnitzler J, Liow LH, Antonelli A, Salamin N. 2014. Bayesian estimation of speciation and extinction from incomplete fossil occurrence data. Syst. Biol. 63:3349–67
    [Google Scholar]
  92. Silvestro D, Warnock RC, Gavryushkina A, Stadler T. 2018. Closing the gap between palaeontological and neontological speciation and extinction rate estimates. Nat. Commun. 9:15237
    [Google Scholar]
  93. Smith A. 1998. Is the fossil record adequate?. Nature https://doi.org/10.1038/nature28134
    [Crossref] [Google Scholar]
  94. Smith AB. 1994. Systematics and the Fossil Record: Documenting Evolutionary Patterns Hoboken, NJ: John Wiley & Sons
  95. Smith AB. 2001. Large–scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philos. Trans. R. Soc. B 356:1407351–67
    [Google Scholar]
  96. Stadler T. 2010. Sampling-through-time in birth–death trees. J. Theor. Biol. 267:3396–404
    [Google Scholar]
  97. Stadler T, Gavryushkina A, Warnock RC, Drummond AJ, Heath TA. 2018. The fossilized birth-death model for the analysis of stratigraphic range data under different speciation modes. J. Theor. Biol. 447:41–55
    [Google Scholar]
  98. Tavaré S. 1986. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect. Math. Life Sci. 17:57–86
    [Google Scholar]
  99. Terry RC, Novak M. 2015. Where does the time go?: Mixing and the depth-dependent distribution of fossil ages. Geology 43:6487–90
    [Google Scholar]
  100. Vaughan TG, Leventhal GE, Rasmussen DA, Drummond AJ, Welch D, Stadler T. 2019. Estimating epidemic incidence and prevalence from genomic data. Mol. Biol. Evol. 36:1804–16
    [Google Scholar]
  101. Vilhena DA, Smith AB. 2013. Spatial bias in the marine fossil record. PLOS ONE 8:10e74470
    [Google Scholar]
  102. Wagner PJ. 1995. Stratigraphic tests of cladistic hypotheses. Paleobiology 21:2153–78
    [Google Scholar]
  103. Wagner PJ. 1998. A likelihood approach for evaluating estimates of phylogenetic relationships among fossil taxa. Paleobiology 24:4430–49
    [Google Scholar]
  104. Wagner PJ, Erwin DH 1995. Phylogenetic patterns as tests of speciation models. New Approaches to Speciation in the Fossil Record D Erwin, R Anstey 87–122 New York: Columbia Univ. Press
    [Google Scholar]
  105. Warnock RC, Heath TA, Stadler T. 2020. Assessing the impact of incomplete species sampling on estimates of speciation and extinction rates. Paleobiology 46:2137–57
    [Google Scholar]
  106. Warnock RC, Wright AM. 2020. Understanding the Tripartite Approach to Bayesian Divergence Time Estimation Cambridge, UK: Cambridge Univ. Press
  107. Warnock RC, Yang Z, Donoghue PC 2012. Exploring uncertainty in the calibration of the molecular clock. Biol. Lett. 8:1156–59
    [Google Scholar]
  108. Wills MA. 1999. Congruence between phylogeny and stratigraphy: randomization tests and the gap excess ratio. Syst. Biol. 48:3559–80
    [Google Scholar]
  109. Wright A, Wagner PJ, Wright DF. 2021. Testing Character Evolution Models in Phylogenetic Paleobiology: A Case Study with Cambrian Echinoderms Cambridge, UK: Cambridge Univ. Press
  110. Wright AM, Hillis DM. 2014. Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data. PLOS ONE 9:10e109210
    [Google Scholar]
  111. Zhang C, Stadler T, Klopfstein S, Heath TA, Ronquist F. 2016. Total-evidence dating under the fossilized birth–death process. Syst. Biol. 65:2228–49
    [Google Scholar]
  112. Zuckerkandl E, Pauling L 1965. Evolutionary divergence and convergence in proteins. Evolving Genes and Proteins V Bryson, HJ Vogel 97–166 New York: Academic
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102220-030855
Loading
/content/journals/10.1146/annurev-ecolsys-102220-030855
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error