1932

Abstract

Sky islands are unique geologic formations, home to populations of organisms that have weathered climate change since the Pleistocene. Long-term isolation and climatic differences between sky islands and adjacent mountain chains result in natural laboratories well suited for examining the direct effects of climate change. Here, we review the global sky island literature to examine how taxa have responded to climate change. Results show lineage formation, reduced genetic variation, and trait evolution across taxa driven by genetic drift and natural selection. These effects continue today due to ongoing habitat reduction and steep selective gradients on sky islands relative to mountain chains. Comparative studies and experimental manipulations are needed to build broad inference into how past climate change has shaped the structure and function of whole ecosystems. The next era of sky island research is poised to create a model for climate change responses and eco-evolutionary dynamics, with profound conservation implications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102221-050029
2023-11-02
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/54/1/annurev-ecolsys-102221-050029.html?itemId=/content/journals/10.1146/annurev-ecolsys-102221-050029&mimeType=html&fmt=ahah

Literature Cited

  1. Archambeau J, Garzón MB, Barraquand F, de Miguel M, Plomion C, González-Martínez SC. 2022. Combining climatic and genomic data improves range-wide tree height growth prediction in a forest tree. Am. Nat. 200:4E141–59
    [Google Scholar]
  2. Atwood TC, Young JK, Beckmann JP, Breck SW, Fike J et al. 2011. Modeling connectivity of black bears in a desert sky island archipelago. Biol. Conserv. 144:122851–62
    [Google Scholar]
  3. Barres L, Batalha-Filho H, Schnadelbach AS, Roque N. 2019. Pleistocene climatic changes drove dispersal and isolation of Richterago discoidea (Asteraceae), an endemic plant of campos rupestres in the central and eastern Brazilian sky islands. Bot. J. Linn. Soc. 189:2132–52
    [Google Scholar]
  4. Barrowclough GF, Groth JG, Mertz LA, Gutiérrez RJ. 2006. Genetic structure of Mexican Spotted Owl (Strix occidentalis lucida) populations in a fragmented landscape. Auk 123:41090–102
    [Google Scholar]
  5. Bayliss SLJ, Mueller LO, Ware IM, Schweitzer JA, Bailey JK. 2020. Plant genetic variation drives geographic differences in atmosphere–plant–ecosystem feedbacks. Plant Environ. Interact. 1:3166–80
    [Google Scholar]
  6. Bayliss SLJ, Mueller LO, Ware IM, Schweitzer JA, Bailey JK. 2022a. Stacked distribution models predict climate-driven loss of variation in leaf phenology at continental scales. Commun. Biol. 5:11213
    [Google Scholar]
  7. Bayliss SLJ, Papeş M, Schweitzer JA, Bailey JK. 2022b. Aggregate population-level models informed by genetics predict more suitable habitat than traditional species-level model across the range of a widespread riparian tree. PLOS ONE 17:9e0274892
    [Google Scholar]
  8. Bell KC, Gunst JV, Teglas MB, Hsueh J, Matocq MD. 2021. Lost in a sagebrush sea: comparative genetic assessment of an isolated montane population of Tamias amoenus. J. Mammal. 102:1173–87
    [Google Scholar]
  9. Benkman CW, Holimon WC, Smith JW. 2001. The influence of a competitor on the geographic mosaic of coevolution between crossbills and lodgepole pine. Evolution 55:2282–94
    [Google Scholar]
  10. Benkman CW, Parchman TL, Favis A, Siepielski AM. 2003. Reciprocal selection causes a coevolutionary arms race between crossbills and lodgepole pine. Am. Nat. 162:2182–94
    [Google Scholar]
  11. Bonaccorso E, Guayasamin JM. 2013. On the origin of Pantepui montane biotas: a perspective based on the phylogeny of Aulacorhynchus toucanets. PLOS ONE 8:6e67321
    [Google Scholar]
  12. Brito-Morales I, Molinos JG, Schoeman DS, Burrows MT, Poloczanska ES et al. 2018. Climate velocity can inform conservation in a warming world. Trends Ecol. Evol. 33:6441–57
    [Google Scholar]
  13. Brown JH. 1971. Mammals on mountaintops: nonequilibrium insular biogeography. Am Nat. 105:945467–78
    [Google Scholar]
  14. Brown JH. 1978. The theory of insular biogeography and the distribution of boreal birds and mammals. Great Basin Nat. Mem. 2:14
    [Google Scholar]
  15. Browne RA, Ferree PM. 2007. Genetic structure of southern Appalachian sky island populations of the southern red-backed vole (Myodes gapperi). J. Mammal. 88:3759–68
    [Google Scholar]
  16. Brusca RC, Wiens JF, Meyer WM, Eble J, Franklin K et al. 2013. Dramatic response to climate change in the Southwest: Robert Whittaker's 1963 Arizona Mountain plant transect revisited. Ecol. Evol. 3:103307–19
    [Google Scholar]
  17. Chartier M, Dressler S, Schönenberger J, Mora AR, Sarthou C et al. 2016. The evolution of afro-montane Delphinium (Ranunculaceae): morphospecies, phylogenetics and biogeography. Taxon 65:61313–27
    [Google Scholar]
  18. Dalisio AC, Jensen WE, Parker TH. 2015. Divergence of vocal culture among isolated alpine habitats is inconsistent among three Oscine species. J. Ornithol. 156:1165–78
    [Google Scholar]
  19. de Oliveira FFR, Gehara M, Solé M, Lyra M, Haddad CFB et al. 2021. Quaternary climatic fluctuations influence the demographic history of two species of sky-island endemic amphibians in the Neotropics. Mol. Phylogenet. Evol. 160:107113
    [Google Scholar]
  20. DeBano LH, Ffolliott PH, Ortega-Rubio A, Gottfried GJ, Hamre RH, Edminster CB. 2005. Biodiversity and management of the Madrean Archipelago: the sky islands of southwestern United States and northwestern Mexico Gen. Tech. Rep. RM-GTR-264, U.S. Dep. Agric. For. Serv. Rocky Mt. For. Range Exp. Stn. Fort Collins, CO.:
    [Google Scholar]
  21. DeChaine EG, Martin AP. 2004. Historic cycles of fragmentation and expansion in Parnassius smintheus (Papilionidae) inferred using mitochondrial DNA. Evolution 58:1113–27
    [Google Scholar]
  22. DeChaine EG, Martin AP. 2005. Marked genetic divergence among sky island populations of Sedum lanceolatum (Crassulaceae) in the Rocky Mountains. Am. J. Bot. 92:3477–86
    [Google Scholar]
  23. Deng J, Fu R, Compton SG, Liu M, Wang Q et al. 2020. Sky islands as foci for divergence of fig trees and their pollinators in southwest China. Mol. Ecol. 29:4762–82
    [Google Scholar]
  24. Derkarabetian S, Ledford J, Hedin M. 2011. Genetic diversification without obvious genitalic morphological divergence in harvestmen (Opiliones, Laniatores, Sclerobunus robustus) from montane sky islands of western North America. Mol. Phylogenet. Evol. 61:3844–53
    [Google Scholar]
  25. do Amaral FR, Thom G, Lima-Ribeiro MS, Alvarado-Serrano DF, Montesanti JAC et al. 2021. Rugged relief and climate promote isolation and divergence between two neotropical cold-associated birds. Evolution 75:102371–87
    [Google Scholar]
  26. Dobrowski SZ, Parks SA. 2016. Climate change velocity underestimates climate change exposure in mountainous regions. Nat. Commun. 7:112349
    [Google Scholar]
  27. Dodge NN. 1943. Monument in the mountain: The Chiricahua is a study in rocks and history. Arizona Highways 19:320–28
    [Google Scholar]
  28. Dong F, Li S-H, Chiu C-C, Dong L, Yao C-T, Yang X-J. 2020. Strict allopatric speciation of sky island Pyrrhula erythaca species complex. Mol. Phylogenet. Evol. 153:106941
    [Google Scholar]
  29. Downie DA. 1999. Performance of native grape phylloxera on host plants within and among terrestrial islands in Arizona, USA. Oecologia 121:4527–36
    [Google Scholar]
  30. Favé MJ, Johnson RA, Cover S, Handschuh S, Metscher BD et al. 2015. Past climate change on Sky Islands drives novelty in a core developmental gene network and its phenotype. BMC Ecol. Evol 15:183
    [Google Scholar]
  31. Folk RA, Freudenstein JV. 2015. “Sky islands” in the eastern U.S.A.? — Strong phylogenetic structure in the Heuchera parviflora group (Saxifragaceae). Taxon 64:2254–71
    [Google Scholar]
  32. Gabor CR, Kivlin SN, Hua J, Bickford N, Reiskind MOB, Wright TF. 2021. Understanding organismal capacity to respond to anthropogenic change: barriers and solutions. Integr. Comp. Biol. 61:62132–44
    [Google Scholar]
  33. Genung MA, Schweitzer JA, Úbeda F, Fitzpatrick BM, Pregitzer CC et al. 2011. Genetic variation and community change – selection, evolution, and feedbacks. Funct. Ecol. 25:2408–19
    [Google Scholar]
  34. Gillespie RG, Clague DA. 2009. Encyclopedia of Islands Berkeley: Univ. Calif. Press. , 1st ed..
    [Google Scholar]
  35. Gomulkiewicz R, Drown DM, Dybdahl MF, Godsoe W, Nuismer SL et al. 2007. Dos and don'ts of testing the geographic mosaic theory of coevolution. Heredity 98:5249–58
    [Google Scholar]
  36. Graham MR, Santibáñez-López CE, Derkarabetian S, Hendrixson BE. 2020. Pleistocene persistence and expansion in tarantulas on the Colorado Plateau and the effects of missing data on phylogeographical inferences from RADseq. Mol. Ecol. 29:193684–701
    [Google Scholar]
  37. Halbritter DA, Storer CG, Kawahara AY, Daniels JC. 2019. Phylogeography and population genetics of pine butterflies: Sky islands increase genetic divergence. Ecol. Evol. 9:2313389–401
    [Google Scholar]
  38. Hampe A, Petit RJ. 2005. Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:5461–67
    [Google Scholar]
  39. He K, Gutiérrez EE, Heming NM, Koepfli K, Wan T et al. 2019. Cryptic phylogeographic history sheds light on the generation of species diversity in sky-island mountains. J. Biogeogr. 46:102232–47
    [Google Scholar]
  40. Heald W. 1967. Sky Island Princeton, NJ: Van Nostrand
    [Google Scholar]
  41. Heald WF. 1993. The Chiricahuas Sky Island Tucson, AZ: Marguerite Bantlin Publ.
    [Google Scholar]
  42. Hill T, Unckless RL. 2021. Adaptation, ancestral variation and gene flow in a ‘Sky Island’ Drosophila species. Mol. Ecol. 30:183–99
    [Google Scholar]
  43. Hirao AS, Shimono Y, Narita K, Wada N, Kudo G. 2019. Ecotypic divergences of the alpine herb Potentilla matsumurae adapted to fellfield-snowbed habitats across a series of mountain sky islands. Am. J. Bot. 106:6772–87
    [Google Scholar]
  44. Howell JT. 1947. Mono Mesa, Sierra, Sky Island. Sierra Club. Bulletin. 32:15–18
    [Google Scholar]
  45. Huxley JD, Spasojevic MJ. 2021. Area not geographic isolation mediates biodiversity responses of alpine refugia to climate change. Front. Ecol. Evol. 9:633697
    [Google Scholar]
  46. Kellermann JL, van Riper C. 2015. Detecting mismatches of bird migration stopover and tree phenology in response to changing climate. Oecologia 178:41227–38
    [Google Scholar]
  47. Knowles LL. 2000. Tests of Pleistocene speciation in montane grasshoppers (genus Melanoplus) from the sky islands of western North America. Evolution 54:41337–48
    [Google Scholar]
  48. Knowles LL. 2001a. Did the Pleistocene glaciations promote divergence? Tests of explicit refugial models in montane grasshopprers. Mol. Ecol. 10:3691–701
    [Google Scholar]
  49. Knowles LL. 2001b. Genealogical portraits of speciation in montane grasshoppers (genus Melanoplus) from the sky islands of the Rocky Mountains. Proc. R. Soc. B 268: 1464.319–24
    [Google Scholar]
  50. Knowles LL, Otte D. 2000. Phylogenetic analysis of montane grasshoppers from western North America (Genus Melanoplus, Acrididae: Melanoplinae). Ann. Entomol. Soc. Am. 93:3421–31
    [Google Scholar]
  51. Knowles LL, Richards CL. 2005. Importance of genetic drift during Pleistocene divergence as revealed by analyses of genomic variation. Mol. Ecol. 14:134023–32
    [Google Scholar]
  52. Koumoundouros T, Sumner J, Clemann N, Stuart-Fox D. 2009. Current genetic isolation and fragmentation contrasts with historical connectivity in an alpine lizard (Cyclodomorphus praealtus) threatened by climate change. Biol. Conserv. 142:5992–1002
    [Google Scholar]
  53. Kruckerberg AR. 1991. An essay: geoedaphics and island biogeography for vascular plants. Aliso 13:1225–38
    [Google Scholar]
  54. Kupfer JA, Cairns DM. 1996. The suitability of montane ecotones as indicators of global climatic change. Prog. Phys. Geogr. 20:3253–72
    [Google Scholar]
  55. Lamb T, Jones TR, Wettstein PJ. 1997. Evolutionary genetics and phylogeography of tassel-eared squirrels (Sciurus aberti). J. Mammal. 78:1117–33
    [Google Scholar]
  56. Lonsinger RC, Schweizer RM, Pollinger JP, Wayne RK, Roemer GW. 2015. Fine-scale genetic structure of the ringtail (Bassariscus astutus) in a Sky Island mountain range. J. Mammal. 96:2257–68
    [Google Scholar]
  57. Love SJ, Schweitzer JA, Bailey JK. 2023. Climate-driven convergent evolution in riparian ecosystems on sky islands. Sci. Rep. 13:12817
    [Google Scholar]
  58. Manthey JD, Moyle RG. 2015. Isolation by environment in White-breasted Nuthatches (Sitta carolinensis) of the Madrean Archipelago sky islands: a landscape genomics approach. Mol. Ecol. 24:143628–38
    [Google Scholar]
  59. Mastretta-Yanes A, Xue AT, Moreno-Letelier A, Jorgensen TH, Alvarez N et al. 2018. Long-term in situ persistence of biodiversity in tropical sky islands revealed by landscape genomics. Mol. Ecol. 27:2432–48
    [Google Scholar]
  60. McCormack JE, Huang H, Knowles LL 2009. Sky islands. Encyclopedia of Islands RG Gillespie, D Clague 839–43. Berkeley: Univ. Calif. Press
    [Google Scholar]
  61. Oline DK, Mitton JB, Grant MC. 2000. Population and subspecific genetic differentiation in the foxtail pine (Pinus balfouriana). Evolution 54:51813–19
    [Google Scholar]
  62. Pan T, Wang H, Orozcoterwengel P, Hu C-C, Wu G-Y et al. 2019. Long-term sky islands generate highly divergent lineages of a narrowly distributed stream salamander (Pachyhynobius shangchengensis) in mid-latitude mountains of East Asia. BMC Evol. Biol. 19:11
    [Google Scholar]
  63. Rehfeldt GE. 1999. Systematics and genetic structure of Ponderosae taxa (Pinaceae) inhabiting the mountain islands of the Southwest. Am. J. Bot. 86:5741–52
    [Google Scholar]
  64. Robin VV, Sinha A, Ramakrishnan U. 2010. Ancient geographical gaps and paleo-climate shape the phylogeography of an endemic bird in the sky islands of southern India. PLOS ONE 5:10e13321
    [Google Scholar]
  65. Robin VV, Vishnudas CK, Gupta P, Ramakrishnan U. 2015. Deep and wide valleys drive nested phylogeographic patterns across a montane bird community. Proc. R. Soc. B 282: 1810.20150861
    [Google Scholar]
  66. Rudgers JA, Afkhami ME, Bell-Dereske L, Chung YA, Crawford KM et al. 2020. Climate disruption of plant–microbe interactions. Annu. Rev. Ecol. Evol. Syst. 51:561–86
    [Google Scholar]
  67. Selvi E. 1997. Rare plants on Mount Amiata, Italy: vulnerability to extinction on an ecological ‘island.’. Biol. Conserv. 81:3257–66
    [Google Scholar]
  68. Skroch M. 2008. Sky Islands of North America—a globally unique and threatened inland archipelago. Terrain.org Jan. 21. https://www.terrain.org/2008/nonfiction/sky-islands-of-north-america/
    [Google Scholar]
  69. Slentz S, Boyd AE, McDade LA. 1999. Morphological differentiation among Madrean sky island populations of Castilleja austromontana (Scrophulariaceae). Madrono 46:2100–11
    [Google Scholar]
  70. Taylor EH. 1942. “Island” faunas on the Mexican Plateau. Proc. 8th Am. Sci. Congress 3:503–4
    [Google Scholar]
  71. Thompson JN. 2005. The Geographic Mosaic of Coevolution Chicago: Univ. Chicago Press
    [Google Scholar]
  72. Thompson RS, Anderson KH. 2000. Biomes of western North America at 18,000, 6000 and 0 14C yr bp reconstructed from pollen and packrat midden data. J. Biogeogr. 27:3555–84
    [Google Scholar]
  73. Tusiime FM, Gizaw A, Gussarova G, Nemomissa S, Popp M et al. 2020. Afro-alpine flagships revisited: parallel adaptation, intermountain admixture and shallow genetic structuring in the giant senecios (Dendrosenecio). PLOS ONE 15:3e0228979
    [Google Scholar]
  74. Van Nuland ME, Bailey JK, Schweitzer JA 2017. Divergent plant–soil feedbacks could alter future elevation ranges and ecosystem dynamics. Nat. Ecol. Evol. 1:60150
    [Google Scholar]
  75. Van Nuland ME, Vincent JB, Ware IM, Mueller LO, Bayliss SLJ et al. 2020. Intraspecific trait variation across elevation predicts a widespread tree species’ climate niche and range limits. Ecol. Evol. 10:93856–67
    [Google Scholar]
  76. Vásquez DLA, Balslev H, Hansen MM, Sklenář P, Romoleroux K. 2016. Low genetic variation and high differentiation across sky island populations of Lupinus alopecuroides (Fabaceae) in the northern Andes. Alpine Bot 126:2135–42
    [Google Scholar]
  77. Vuilleumier F. 1970. Insular biogeography in continental regions. I. The northern Andes of South America. Am. Nat. 104:938373–88
    [Google Scholar]
  78. Ware IM, Nuland MEV, Schweitzer JA, Yang Z, Schadt CW et al. 2019. Climate-driven reduction of genetic variation in plant phenology alters soil communities and nutrient pools. Glob. Change Biol. 25:41514–28
    [Google Scholar]
  79. Ware IM, Nuland MEV, Yang ZK, Schadt CW, Schweitzer JA, Bailey JK. 2021. Climate-driven divergence in plant-microbiome interactions generates range-wide variation in bud break phenology. Comm. Biol. 4:748748
    [Google Scholar]
  80. Weston KA, Robertson BC. 2015. Population structure within an alpine archipelago: strong signature of past climate change in the New Zealand rock wren (Xenicus gilviventris). Mol. Ecol. 24:184778–94
    [Google Scholar]
  81. Wiens JJ, Camacho A, Goldberg A, Jezkova T, Kaplan ME et al. 2019. Climate change, extinction, and Sky Island biogeography in a montane lizard. Mol. Ecol. 28:102610–24
    [Google Scholar]
  82. Woolbright SA, Whitham TG, Gehring CA, Allan GJ, Bailey JK. 2014. Climate relicts and their associated communities as natural ecology and evolution laboratories. Trends Ecol. Evol. 29:7406–16
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102221-050029
Loading
/content/journals/10.1146/annurev-ecolsys-102221-050029
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error