1932

Abstract

Complex statistical methods are continuously developed across the fields of ecology, evolution, and systematics (EES). These fields, however, lack standardized principles for evaluating methods, which has led to high variability in the rigor with which methods are tested, a lack of clarity regarding their limitations, and the potential for misapplication. In this review, we illustrate the common pitfalls of method evaluations in EES, the advantages of testing methods with simulated data, and best practices for method evaluations. We highlight the difference between method evaluation and validation and review how simulations, when appropriately designed, can refine the domain in which a method can be reliably applied. We also discuss the strengths and limitations of different evaluation metrics. The potential for misapplication of methods would be greatly reduced if funding agencies, reviewers, and journals required principled method evaluation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102320-093722
2022-11-02
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/53/1/annurev-ecolsys-102320-093722.html?itemId=/content/journals/10.1146/annurev-ecolsys-102320-093722&mimeType=html&fmt=ahah

Literature Cited

  1. Adrion JR, Cole CB, Dukler N, Galloway JG, Gladstein AL et al. 2020. A community-maintained standard library of population genetic models. eLife 9:54967
    [Google Scholar]
  2. AIAA (Am. Inst. Aeronaut. Astronaut.) 1998. Guide for the Verification and Validation of Computational Fluid Dynamics Simulations (AIAA G-077–1998(2002)) Reston, VA: Am. Inst. Aeronaut. Astronaut.
  3. Anderson D, Burnham K. 2004. Model Selection and Multi-Model Inference New York: Springer. , 2nd Ed..
  4. Arnold B, Corbett-Detig RB, Hartl D, Bomblies K. 2013. RADseq underestimates diversity and introduces genealogical biases due to nonrandom haplotype sampling. Mol. Ecol. 22:113179–90
    [Google Scholar]
  5. Austin MP, Belbin L, Meyers JA, Doherty LM. 2006. Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory. Ecol. Model. 199:2197–216Describes the use of virtual species for testing ecological theory related to modeling plant distributions.
    [Google Scholar]
  6. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W. 2012. Selecting pseudo-absences for species distribution models: how, where and how many?. Methods Ecol. Evol. 3:2327–38
    [Google Scholar]
  7. Bay RA, Harrigan RJ, Underwood VL, Gibbs HL, Smith TB, Ruegg K. 2018. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359:637183–86
    [Google Scholar]
  8. Beaulieu JM, O'Meara BC. 2016. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65:4583–601
    [Google Scholar]
  9. Beaulieu JM, O'Meara BC. 2018. Can we build it? Yes we can, but should we use it? Assessing the quality and value of a very large phylogeny of campanulid angiosperms. Am. J. Bot. 105:3417–32
    [Google Scholar]
  10. Berg JJ, Coop G. 2014. A population genetic signal of polygenic adaptation. PLOS Genet 10:8e1004412
    [Google Scholar]
  11. Bergstrom CT, West JD. 2021. Calling Bullshit: The Art of Skepticism in a Data-Driven World New York: Random House
  12. Blackmon H, Demuth JP. 2016. An information-theoretic approach to estimating the composite genetic effects contributing to variation among generation means: moving beyond the joint-scaling test for line cross analysis. Evolution 70:2420–32
    [Google Scholar]
  13. Blanquart F, Kaltz O, Nuismer SL, Gandon S. 2013. A practical guide to measuring local adaptation. Ecol. Lett. 16:91195–205
    [Google Scholar]
  14. Borowiec ML, Cover SP, Rabeling C. 2021. The evolution of social parasitism in Formica ants revealed by a global phylogeny. PNAS 118:38e2026029118
    [Google Scholar]
  15. Boulesteix A-L, Binder H, Abrahamowicz M, Sauerbrei W, Simul. Panel STRATOS Initiat. 2018. On the necessity and design of studies comparing statistical methods. Biom. J. 60:1216–18
    [Google Scholar]
  16. Boulesteix A-L, Wilson R, Hapfelmeier A. 2017. Towards evidence-based computational statistics: lessons from clinical research on the role and design of real-data benchmark studies. BMC Med. Res. Methodol. 17:1138Highlights how principles of clinical trial design can be applied to method evaluations.
    [Google Scholar]
  17. Box GEP 1979. Robustness in the strategy of scientific model building. Robustness in Statistics RL Launer, GN Wilkinson 201–36 New York: Academic
    [Google Scholar]
  18. Brier GW. 1950. Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78:11–3
    [Google Scholar]
  19. Brown JM, Hedtke SM, Lemmon AR, Lemmon EM. 2010. When trees grow too long: investigating the causes of highly inaccurate Bayesian branch-length estimates. Syst. Biol. 59:2145–61
    [Google Scholar]
  20. Capblancq T, Luu K, Blum MGB, Bazin E. 2018. Evaluation of redundancy analysis to identify signatures of local adaptation. Mol. Ecol. Resour. 18:61223–33
    [Google Scholar]
  21. Carnell R. 2021. lhs: Latin Hypercube Samples. Stat. Softw. Package, CRAN-R Proj. https://CRAN.R-project.org/package=lhs
    [Google Scholar]
  22. Chivers C, Leung B, Yan ND. 2014. Validation and calibration of probabilistic predictions in ecology. Methods Ecol. Evol. 5:101023–32
    [Google Scholar]
  23. Cottingham KL, Lennon JT, Brown BL. 2005. Knowing when to draw the line: designing more informative ecological experiments. Front. Ecol. Env. 3:3145–52
    [Google Scholar]
  24. Cunningham CW, Zhu H, Hillis DM. 1998. Best-fit maximum-likelihood models for phylogenetic inference: empirical tests with known phylogenies. Evolution 52:978–87
    [Google Scholar]
  25. Davis J, Goadrich M. 2006. The relationship between Precision-Recall and ROC curves. Proceedings of the 23rd International Conference on Machine Learning WW Cohen, A Moore 233–40 New York: Assoc. Comput. Mach.
  26. Dormann CF, Schymanski SJ, Cabral J, Chuine I, Graham C et al. 2012. Correlation and process in species distribution models: bridging a dichotomy. J. Biogeogr. 39:122119–31
    [Google Scholar]
  27. EFSA Sci. Comm 2011. Statistical significance and biological relevance. Europ. Food Safety Auth. Journal. 9:92372
    [Google Scholar]
  28. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:2129–51
    [Google Scholar]
  29. Elith J, Leathwick JR. 2009. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40:677–97
    [Google Scholar]
  30. Fawcett T. 2004. ROC graphs: notes and practical considerations for data mining researchers Tech. Rep. HPL-2003–4 HP Lab. Palo Alto, CA: https://www.hpl.hp.com/techreports/2003/HPL-2003-4.pdf
  31. Felsenstein J. 1985. Phylogenies and the comparative method. Am. Nat. 125:11–15
    [Google Scholar]
  32. Flagel L, Brandvain Y, Schrider DR. 2019. The unreasonable effectiveness of convolutional neural networks in population genetic inference. Mol. Biol. Evol. 36:2220–38
    [Google Scholar]
  33. Flanagan SP, Jones AG. 2018. Substantial differences in bias between single-digest and double-digest RAD-seq libraries: a case study. Mol. Ecol. Resour. 18:2264–80
    [Google Scholar]
  34. Forester BR, Jones MR, Joost S, Landguth EL, Lasky JR. 2016. Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Mol. Ecol. 25:1104–20
    [Google Scholar]
  35. Forester BR, Lasky JR, Wagner HH, Urban DL. 2018. Comparing methods for detecting multilocus adaptation with multivariate genotype–environment associations. Mol. Ecol. 27:92215–33
    [Google Scholar]
  36. Fourcade Y, Besnard AG, Secondi J. 2018. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob. Ecol. Biogeogr. 27:2245–56
    [Google Scholar]
  37. Freedman AH, Clamp M, Sackton TB. 2021. Error, noise and bias in de novo transcriptome assemblies. Mol. Ecol. Resour. 21:118–29
    [Google Scholar]
  38. Gautier M. 2015. Genome-wide scan for adaptive divergence and association with population-specific covariates. Genetics 201:41555–79
    [Google Scholar]
  39. Gautier M, Gharbi K, Cezard T, Foucaud J, Kerdelhué C et al. 2013. The effect of RAD allele dropout on the estimation of genetic variation within and between populations. Mol. Ecol. 22:113165–78
    [Google Scholar]
  40. Gelman A, Meng X-L, Stern H. 1996. Posterior predictive assessment of model fitness via realized discrepancies. Stat. Sin. 6:4733–60
    [Google Scholar]
  41. Gilbert KJ, Andrew RL, Bock DG, Franklin MT, Kane NC et al. 2012. Recommendations for utilizing and reporting population genetic analyses: the reproducibility of genetic clustering using the program STRUCTURE. Mol. Ecol. 21:204925–30
    [Google Scholar]
  42. Grimm DG, Azencott C-A, Aicheler F, Gieraths U, MacArthur DG et al. 2015. The evaluation of tools used to predict the impact of missense variants is hindered by two types of circularity. Hum. Mutat. 36:5513–23
    [Google Scholar]
  43. Guillera-Arroita G, Lahoz-Monfort JJ, Elith J, Gordon A, Kujala H et al. 2015. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24:3276–92
    [Google Scholar]
  44. Harismendy O, Ng PC, Strausberg RL, Wang X, Stockwell TB et al. 2009. Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biol 10:3R32
    [Google Scholar]
  45. Harris RB, Sackman A, Jensen JD. 2018. On the unfounded enthusiasm for soft selective sweeps II: examining recent evidence from humans, flies, and viruses. PLOS Genet 14:12e1007859
    [Google Scholar]
  46. Hendrycks D, Zhao K, Basart S, Steinhardt J, Song D. 2021. Natural adversarial examples. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)15257–66 Piscataway, NJ: IEEE
  47. Hoban S, Kelley JL, Lotterhos KE, Antolin MF, Bradburd G et al. 2016. Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am. Nat. 188:4379–97
    [Google Scholar]
  48. Höhna S, Coghill LM, Mount GG, Thomson RC, Brown JM. 2018. P3: phylogenetic posterior prediction in RevBayes. Mol. Biol. Evol. 35:41028–34Demonstrates the use of posterior predictive simulations to evaluate models and validate their use with specific data sets.
    [Google Scholar]
  49. Hölzer M, Marz M. 2019. De novo transcriptome assembly: a comprehensive cross-species comparison of short-read RNA-Seq assemblers. Gigascience 8:5giz039
    [Google Scholar]
  50. Inouye BD. 2001. Response surface experimental designs for investigating interspecific competition. Ecology 82:102696–706
    [Google Scholar]
  51. Jiménez-Valverde A. 2012. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecol. Biogeogr. 21:498–507
    [Google Scholar]
  52. Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34:3772–73
    [Google Scholar]
  53. Láruson ÁJ, Fitzpatrick MC, Keller SR, Haller BC, Lotterhos KE. 2022. Seeing the forest for the trees: assessing genetic offset predictions from gradient forest. Evolutionary Appl 15:3403–16
    [Google Scholar]
  54. LeCun Y, Cortes C, Burges CJC. 1998. The MNIST database of handwritten digits http://yann.lecun.com/exdb/mnist/
  55. Lee A. 2015. pyDOE: the experimental design package for Python. Softw. Package. https://pythonhosted.org/pyDOE/
    [Google Scholar]
  56. Lewis PO, Holder MT, Holsinger KE. 2005. Polytomies and Bayesian phylogenetic inference. Syst. Biol. 54:2241–53
    [Google Scholar]
  57. Lin CD, Bingham D, Sitter RR, Tang B. 2010. A new and flexible method for constructing designs for computer experiments. Ann. Stat. 38:31460–77
    [Google Scholar]
  58. Liu C, Newell G, White M. 2019. The effect of sample size on the accuracy of species distribution models: considering both presences and pseudo-absences or background sites. Ecography 42:3535–48
    [Google Scholar]
  59. Lobo JM, Tognelli MF. 2011. Exploring the effects of quantity and location of pseudo-absences and sampling biases on the performance of distribution models with limited point occurrence data. J. Nat. Conserv. 19:11–7
    [Google Scholar]
  60. Lotterhos KE. 2019. The effect of neutral recombination variation on genome scans for selection. G3 Genes Genomes Genet 9:61851–67
    [Google Scholar]
  61. Lotterhos KE, François O, Blum MGB. 2016. Not just methods: User expertise explains the variability of outcomes of genome-wide studies. bioRxiv 055046. https://doi.org/10.1101/055046
    [Crossref]
  62. Lotterhos KE, Moore JH, Stapleton AE. 2018. Analysis validation has been neglected in the Age of Reproducibility. PLOS Biol 16:12e3000070
    [Google Scholar]
  63. Lotterhos KE, Whitlock MC. 2014. Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol. Ecol. 23:92178–92
    [Google Scholar]
  64. Lotterhos KE, Whitlock MC. 2015. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol. Ecol. 24:51031–46
    [Google Scholar]
  65. Louca S, Pennell MW. 2020. Extant timetrees are consistent with a myriad of diversification histories. Nature 580:7804502–5
    [Google Scholar]
  66. Lucas TCD. 2020. A translucent box: interpretable machine learning in ecology. Ecol. Monogr. 90:4e01422
    [Google Scholar]
  67. Luu K, Bazin E, Blum MGB. 2017. pcadapt: an R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Resour. 17:167–77
    [Google Scholar]
  68. Maddison WP, FitzJohn RG. 2015. The unsolved challenge to phylogenetic correlation tests for categorical characters. Syst. Biol. 64:1127–36
    [Google Scholar]
  69. Maguire KC, Nieto-Lugilde D, Blois JL, Fitzpatrick MC, Williams JW et al. 2016. Controlled comparison of species- and community-level models across novel climates and communities. Proc. R Soc. B 283:182620152817
    [Google Scholar]
  70. Martínez-Abraín A. 2008. Statistical significance and biological relevance: a call for a more cautious interpretation of results in ecology. Acta Oecol 34:19–11
    [Google Scholar]
  71. McKay MD, Beckman RJ, Conover WJ. 1979. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:2239–45
    [Google Scholar]
  72. Mellin C, Lurgi M, Matthews S, MacNeil MA, Caley MJ et al. 2016. Forecasting marine invasions under climate change: Biotic interactions and demographic processes matter. Biol. Conserv. 204:459–67
    [Google Scholar]
  73. Meynard CN, Leroy B, Kaplan DM. 2019. Testing methods in species distribution modelling using virtual species: What have we learnt and what are we missing?. Ecography 42:122021–36Review of testing SDM methods and methodological decisions using virtual species.
    [Google Scholar]
  74. Meynard CN, Quinn JF. 2007. Predicting species distributions: a critical comparison of the most common statistical models using artificial species. J. Biogeogr. 34:81455–69
    [Google Scholar]
  75. Miettinen K. 2012. Nonlinear Multiobjective Optimization New York: Springer Sci. Bus. Media
  76. Molnar C. 2021. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable https://christophm.github.io/interpretable-ml-book/index.html
  77. Morton JT, Toran L, Edlund A, Metcalf JL, Lauber C, Knight R 2017. Uncovering the horseshoe effect in microbial analyses. mSystems 2:1e00166–16
    [Google Scholar]
  78. Narum SR, Hess JE. 2011. Comparison of FST outlier tests for SNP loci under selection. Mol. Ecol. Resour. 11:1184–94
    [Google Scholar]
  79. Natl. Res. Counc 2007. Models in Environmental Regulatory Decision Making Washington, DC: Natl. Acad. Press
  80. Natl. Res. Counc 2012. Assessing the Reliability of Complex Models: Mathematical and Statistical Foundations of Verification, Validation, and Uncertainty Quantification Washington, DC: Natl. Acad. PressReview of principles in model evaluation for physics and engineering.
  81. Ng J, Smith SD. 2014. How traits shape trees: new approaches for detecting character state-dependent lineage diversification. J. Evol. Biol. 27:102035–45
    [Google Scholar]
  82. Norberg A, Abrego N, Blanchet FG, Adler FR, Anderson BJ et al. 2019. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol. Monogr. 89:3e01370
    [Google Scholar]
  83. Nosek BA, Ebersole CR, DeHaven AC, Mellor DT. 2018. The preregistration revolution. PNAS 115:112600–6
    [Google Scholar]
  84. Oreskes N, Shrader-Frechette K, Belitz K. 1994. Verification, validation, and confirmation of numerical models in the Earth sciences. Science 263:5147641–46
    [Google Scholar]
  85. Otto SP, Day T. 2011. A Biologist's Guide to Mathematical Modeling in Ecology and Evolution Princeton, NJ: Princeton Univ. Press
  86. Ovaskainen O, Tikhonov G, Norberg A, Blanchet FG, Duan L et al. 2017. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 20:5561–76
    [Google Scholar]
  87. Pearce J, Ferrier S. 2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 133:225–45
    [Google Scholar]
  88. Pennell MW, FitzJohn RG, Cornwell WK, Harmon LJ. 2015. Model adequacy and the macroevolution of angiosperm functional traits. Am. Nat. 186:2E33–50Shows how different summary statistics can highlight different aspects of model performance.
    [Google Scholar]
  89. Pérez-Figueroa A, García-Pereira MJ, Saura M, Rolán-Alvarez E, Caballero A. 2010. Comparing three different methods to detect selective loci using dominant markers. J. Evol. Biol. 23:102267–76
    [Google Scholar]
  90. Peterson M. 2009. An Introduction to Decision Theory Cambridge, UK: Cambridge Univ. Press. , 1st ed..
  91. Phillips SJ, Dudík M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:2161–75
    [Google Scholar]
  92. Pratt J, Raiffa H, Schlaifer R. 2008. Introduction to Statistical Decision Theory Cambridge, MA: MIT Press
  93. Qiao H, Soberón J, Peterson AT. 2015. No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods Ecol. Evol. 6:101126–36
    [Google Scholar]
  94. Rabosky DL, Goldberg EE. 2015. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 64:2340–55Illustrates the process and advantages of simulating data in conjunction with real data.
    [Google Scholar]
  95. Ranjan P, Bingham D, Michailidis G. 2008. Sequential experiment design for contour estimation from complex computer codes. Technometrics 50:4527–41
    [Google Scholar]
  96. Rellstab C, Dauphin B, Exposito-Alonso M. 2021. Prospects and limitations of genomic offset in conservation management. Evol. Appl. 14:51202–12
    [Google Scholar]
  97. Revell LJ. 2014. Ancestral character estimation under the threshold model from quantitative genetics. Evolution 68:3743–59
    [Google Scholar]
  98. Rice A, Mayrose I. 2021. Model adequacy tests for probabilistic models of chromosome-number evolution. New Phytol 229:63602–13
    [Google Scholar]
  99. Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J et al. 2017. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40:8913–29
    [Google Scholar]
  100. Ruegg K, Bay RA, Anderson EC, Saracco JF, Harrigan RJ et al. 2018. Ecological genomics predicts climate vulnerability in an endangered southwestern songbird. Ecol. Lett. 21:71085–96
    [Google Scholar]
  101. Saito T, Rehmsmeier M. 2015. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLOS ONE 10:3e0118432
    [Google Scholar]
  102. Santini L, Benítez-López A, Maiorano L, Čengić M, Huijbregts MAJ. 2021. Assessing the reliability of species distribution projections in climate change research. Divers. Distrib. 27:61035–50
    [Google Scholar]
  103. Sarkar A, Yang Y, Vihinen M 2020. Variation benchmark datasets: update, criteria, quality and applications. Database 2020:baz117
    [Google Scholar]
  104. Schrider DR, Kern AD. 2016. S/HIC: robust identification of soft and hard sweeps using machine learning. PLOS Genet 12:3e1005928
    [Google Scholar]
  105. Schrider DR, Kern AD. 2018. Supervised machine learning for population genetics: a new paradigm. Trends Genet 34:4301–12
    [Google Scholar]
  106. Sofaer HR, Hoeting JA, Jarnevich CS. 2019. The area under the precision-recall curve as a performance metric for rare binary events. Methods Ecol. Evol. 10:4565–77
    [Google Scholar]
  107. Starfield AM. 1997. A pragmatic approach to modeling for wildlife management. J. Wildl. Manag. 61:2261–70
    [Google Scholar]
  108. Tang B. 1993. Orthogonal array-based Latin hypercubes. J. Am. Stat. Assoc. 88:4241392–97
    [Google Scholar]
  109. Thacker BH, Doebling SW, Hemez FM, Anderson MC, Pepin JE, Rodriguez EA. 2004. Concepts of model verification and validation LA-14167-MS Los Alamos Natl. Lab. Los Alamos, NM: https://www.osti.gov/servlets/purl/835920/ Review of concepts in model evaluation for physics and engineering.
  110. Thompson JD, Plewniak F, Poch O. 1999. BAliBASE: a benchmark alignment database for the evaluation of multiple alignment programs. Bioinformatics 15:187–88
    [Google Scholar]
  111. Weber LM, Saelens W, Cannoodt R, Soneson C, Hapfelmeier A et al. 2019. Essential guidelines for computational method benchmarking. Genome Biol 20:1125Review of approaches in model evaluation for genomics.
    [Google Scholar]
  112. Whitlock MC, Lotterhos KE. 2015. Reliable detection of loci responsible for local adaptation: inference of a null model through trimming the distribution of FST. Am. Nat. 186:S1S24–36
    [Google Scholar]
  113. Whitlock MC, Schluter D. 2020. The Analysis of Biological Data New York: W. H. Freeman. , 3rd ed..
  114. Zurell D, Berger U, Cabral JS, Jeltsch F, Meynard CN et al. 2010. The virtual ecologist approach: simulating data and observers. Oikos 119:4622–35Review of the use of simulated data to evaluate methods in ecology.
    [Google Scholar]
  115. Zurell D, Jeltsch F, Dormann CF, Schröder B. 2009. Static species distribution models in dynamically changing systems: How good can predictions really be?. Ecography 32:5733–44
    [Google Scholar]
  116. Zurell D, Pollock LJ, Thuiller W. 2018. Do joint species distribution models reliably detect interspecific interactions from co-occurrence data in homogeneous environments?. Ecography 41:111812–19
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102320-093722
Loading
/content/journals/10.1146/annurev-ecolsys-102320-093722
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error