1932

Abstract

Seed dispersal, or the movement of diaspores away from the parent location, is a multiscale, multipartner process that depends on the interaction of plant life history with vector movement and the environment. Seed dispersal underpins many important plant ecological and evolutionary processes such as gene flow, population dynamics, range expansion, and diversity. We review exciting new directions that the field of seed dispersal ecology and evolution has taken over the past 40 years. We provide an overview of the ultimate causes of dispersal and the consequences of this important process for plant population and community dynamics. We also discuss several emergent unifying frameworks that are being used to study dispersal and describe how they can be integrated to provide a more mechanistic understanding of dispersal.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102320-104739
2023-11-02
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/54/1/annurev-ecolsys-102320-104739.html?itemId=/content/journals/10.1146/annurev-ecolsys-102320-104739&mimeType=html&fmt=ahah

Literature Cited

  1. Allbee SA, Rogers HS, Sullivan LL. 2023. The effects of dispersal, herbivory, and competition on plant community assembly. Ecology 104:e3859
    [Google Scholar]
  2. Amico G, Aizen MA. 2000. Mistletoe seed dispersal by a marsupial. Nature 408:929–30
    [Google Scholar]
  3. Aslan CE, Beckman NG, Rogers HS, Bronstein JL, Zurell D et al. 2019. Employing plant functional groups to advance seed dispersal ecology and conservation. AoB Plants 11:plz006
    [Google Scholar]
  4. Auffret AG, Berg J, Cousins SAO. 2014. The geography of human-mediated dispersal. Divers. Distrib. 20:1450–56
    [Google Scholar]
  5. Augspurger CK. 1983. Offspring recruitment around tropical trees: changes in cohort distance with time. Oikos 40:189–96
    [Google Scholar]
  6. Beckman NG, Aslan CE, Rogers HR. 2020a. Introduction to the special issue. The role of seed dispersal in plant populations: perspectives and advances in a changing world. AoB Plants 12:plaa010
    [Google Scholar]
  7. Beckman NG, Aslan CE, Rogers HS, Kogan O, Bronstein JL et al. 2020b. Advancing an interdisciplinary framework to study seed dispersal ecology. AoB Plants 12:plz048
    [Google Scholar]
  8. Beckman NG, Bullock JM, Salguero-Gómez R. 2018. High dispersal ability is related to fast life history strategies. J. Ecol. 106:1349–62
    [Google Scholar]
  9. Beckman NG, Neuhauser C, Muller-Landau HC. 2012. The interacting effects of clumped seed dispersal and distance- and density-dependent mortality on seedling recruitment patterns. J. Ecol. 100:862–73
    [Google Scholar]
  10. Beckman NG, Rogers HS. 2013. Consequences of seed dispersal for plant recruitment in tropical forests: interactions within the seedscape. Biotropica 45:666–81
    [Google Scholar]
  11. Benítez M-S, Hersh MH, Vilgalys R, Clark JS. 2013. Pathogen regulation of plant diversity via effective specialization. Trends Ecol. Evol. 28:705–11
    [Google Scholar]
  12. Bolker BM, Pacala SW, Neuhauser C. 2003. Spatial dynamics in model plant communities: What do we really know?. Am. Nat. 162:135–48
    [Google Scholar]
  13. Borah B, Beckman NG. 2022. Studying seed dispersal through the lens of movement ecology. Oikos 2022:e08310
    [Google Scholar]
  14. Bullock JM, González LM, Tamme R, Götzenberger L, White SM et al. 2017. A synthesis of empirical plant dispersal kernels. J. Ecol. 105:6–19
    [Google Scholar]
  15. Carlo TA, Morales JM. 2016. Generalist birds promote tropical forest regeneration and increase plant diversity via rare-biased seed dispersal. Ecology 97:1819–31
    [Google Scholar]
  16. Caughlin TT, Ferguson JM, Lichstein JW, Zuidema PA, Bunyavejchewin S, Levey DJ. 2015. Loss of animal seed dispersal increases extinction risk in a tropical tree species due to pervasive negative density dependence across life stages. Proc. R. Soc. B 282:20142095
    [Google Scholar]
  17. Chen S-C, Pahlevani AH, Malíková L, Riina R, Thomson FJ, Giladi I. 2019. Trade-off or coordination? Correlations between ballochorous and myrmecochorous phases of diplochory. Funct. Ecol. 33:1469–79
    [Google Scholar]
  18. Chen S-C, Poschlod P, Antonelli A, Liu U, Dickie JB. 2020. Trade-off between seed dispersal in space and time. Ecol. Lett. 23:1635–42
    [Google Scholar]
  19. Cheng SJ, Gaynor KM, Moore AC, Darragh K, Estien CO et al. 2023. Championing inclusive terminology in ecology and evolution. Trends Ecol. Evol. 38:381–84
    [Google Scholar]
  20. Cheplick GP, Kane KH. 2004. Genetic relatedness and competition in Triplasis purpurea (Poaceae): resource partitioning or kin selection?. Int. J. Plant Sci. 165:623–30
    [Google Scholar]
  21. Cheptou P-O, Carrue O, Rouifed S, Cantarel A. 2008. Rapid evolution of seed dispersal in an urban environment in the weed Crepis sancta. PNAS 105:3796–99
    [Google Scholar]
  22. Childs DZ, Metcalf CJE, Rees M. 2010. Evolutionary bet-hedging in the real world: empirical evidence and challenges revealed by plants. Proc. R. Soc. B 277:3055–64
    [Google Scholar]
  23. Clark CJ, Poulsen JR, Levey DJ, Osenberg CW. 2007. Are plant populations seed limited? A critique and meta-analysis of seed addition experiments. Am. Nat. 170:128–42
    [Google Scholar]
  24. Clark JS. 1998. Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord. Am. Nat. 152:204–24
    [Google Scholar]
  25. Comita LS, Queenborough SA, Murphy SJ, Eck JL, Xu KY et al. 2014. Testing predictions of the Janzen–Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J. Ecol. 102:845–56
    [Google Scholar]
  26. Connell JH. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forests. Dynamics of Populations PJ den Boer, GR Gradwell 298–312. Wageningen, Neth: Cent. Agric. Publ. Doc.
    [Google Scholar]
  27. Correa DF, Stevenson PR, Umaña MN, de Souza Coelho L, Lima Filho DD et al. 2023. Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates. Glob. Ecol. Biogeogr. 32:49–69
    [Google Scholar]
  28. Cortes M, Uriarte M. 2012. Integrating frugivore behavior and animal movement: a review of the evidence and implication for scaling seed dispersal. Biol. Rev. 88:255–72
    [Google Scholar]
  29. Crawford KM, Bauer JT, Comita LS, Eppinga MB, Johnson DJ et al. 2019. When and where plant–soil feedback may promote plant coexistence: a meta-analysis. Ecol. Lett. 22:1274–84
    [Google Scholar]
  30. Damschen EI, Baker DV, Bohrer G, Nathan R, Orrock JL et al. 2014. How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats. PNAS 111:3484–89
    [Google Scholar]
  31. Damschen EI, Brudvig LA, Haddad NM, Levey DJ, Orrock JL, Tewksbury JJ. 2008. The movement ecology and dynamics of plant communities in fragmented landscapes. PNAS 105:19078–83
    [Google Scholar]
  32. Donohue K. 2003. The influence of neighbor relatedness on multilevel selection in the Great Lakes sea rocket. Am. Nat. 162:77–92
    [Google Scholar]
  33. Duputié A, Massol F. 2013. An empiricist's guide to theoretical predictions on the evolution of dispersal. Interface Focus 3:20130028
    [Google Scholar]
  34. Forget PM, Lambert JE, Hulme PE, Vander Wall SB, eds. 2005. Seed Fate: Predation, Dispersal and Seedling Establishment Wallingford, UK: CAB Int.
  35. Fukami T. 2015. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46:1–23
    [Google Scholar]
  36. Germain RM, Mayfield MM, Gilbert B. 2018. The ‘filtering’ metaphor revisited: competition and environment jointly structure invasibility and coexistence. Biol. Lett. 14:20180460
    [Google Scholar]
  37. Germain RM, Strauss SY, Gilbert B. 2017. Experimental dispersal reveals characteristic scales of biodiversity in a natural landscape. PNAS 114:4447–52
    [Google Scholar]
  38. Godínez-Alvarez H, Valiente-Banuet A, Rojas-Martínez A. 2002. The role of seed dispersers in the population dynamics of the columnar cactus Neobuxbaumia tetetzo. Ecology 83:2617–29
    [Google Scholar]
  39. Gómez JM, Schupp EW, Jordano P. 2019. Synzoochory: the ecological and evolutionary relevance of a dual interaction. Biol. Rev. 94:874–902
    [Google Scholar]
  40. González-Varo JP, Traveset A. 2016. The labile limits of forbidden interactions. Trends Ecol. Evol. 31:700–10
    [Google Scholar]
  41. Gripenberg S, Basset Y, Lewis OT, Terry JCD, Wright SJ et al. 2019. A highly resolved food web for insect seed predators in a species-rich tropical forest. Ecol. Lett. 22:1638–49
    [Google Scholar]
  42. Hämäläinen A, Broadley K, Droghini A, Haines JA, Lamb CT et al. 2017. The ecological significance of secondary seed dispersal by carnivores. Ecosphere 8:e01685
    [Google Scholar]
  43. Harsch MA, Phillips A, Zhou Y, Leung M-R, Rinnan DS, Kot M. 2017. Moving forward: insights and applications of moving-habitat models for climate change ecology. J. Ecol. 105:1169–81
    [Google Scholar]
  44. Herrera CM. 2017. The ecology of subindividual variability in plants: patterns, processes, and prospects. Web Ecol. 17:51–64
    [Google Scholar]
  45. Higgins SI, Nathan R, Cain ML. 2003. Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal?. Ecology 84:1945–56
    [Google Scholar]
  46. HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM. 2012. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43:227–48
    [Google Scholar]
  47. Howe HF. 2016. Making dispersal syndromes and networks useful in tropical conservation and restoration. Glob. Ecol. Conserv. 6:152–78
    [Google Scholar]
  48. Howe HF, Smallwood J. 1982. The ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13:201–28
    [Google Scholar]
  49. Hubbell SP. 2001. The Unified Neutral Theory of Biodiversity and Biogeography Princeton, NJ: Princeton Univ. Press
  50. Janzen DH. 1970. Herbivores and the number of tree species in tropical forests. Am. Nat. 104:501–27
    [Google Scholar]
  51. Janzen DH. 1984. Dispersal of small seeds by big herbivores: Foliage is the fruit. Am. Nat. 123:338–53
    [Google Scholar]
  52. Jongejans E, Skarpaas O, Ferrari MJ, Long ES, Dauer JT et al. 2015. A unifying gravity framework for dispersal. Theor. Ecol. 8:207–23
    [Google Scholar]
  53. Jongejans E, Skarpaas O, Shea K. 2008. Dispersal, demography and spatial population models for conservation and control management. Perspect. Plant Ecol. Evol. Syst. 9:153–70
    [Google Scholar]
  54. Jordano P. 2017. What is long-distance dispersal? And a taxonomy of dispersal events. J. Ecol. 105:75–84
    [Google Scholar]
  55. Jules ES. 1996. Yellow jackets (Vespula vulgaris) as a second seed disperser for the myrmecochorous plant, Trillium ovatum. Am. Midl. Nat. 135:367–69
    [Google Scholar]
  56. Kalisz S, Hanzawa FM, Tonsor SJ, Thiede DA, Voigt S. 1999. Ant-mediated seed dispersal alters pattern of relatedness in a population of Trillium grandiflorum. Ecology 80:2620–34
    [Google Scholar]
  57. Kolb A, Ehrlen J, Eriksson O. 2007. Ecological and evolutionary consequences of spatial and temporal variation in pre-dispersal seed predation. Perspect. Plant Ecol. Evol. Syst. 9:79–100
    [Google Scholar]
  58. Laine A-L, Burdon JJ, Dodds PN, Thrall PH. 2011. Spatial variation in disease resistance: from molecules to metapopulations. J. Ecol. 99:96–112
    [Google Scholar]
  59. Larson BM. 2005. The war of the roses: demilitarizing invasion biology. Front. Ecol. Environ. 3:495–500
    [Google Scholar]
  60. Leiser-Miller LB, Kaliszewska ZA, Lauterbur ME, Mann B, Riffell JA, Santana SE. 2020. A fruitful endeavor: scent cues and echolocation behavior used by Carollia castanea to find fruit. Integr. Org. Biol. 2:obaa007
    [Google Scholar]
  61. Lengyel S, Gove AD, Latimer AM, Majer JD, Dunn RR. 2010. Convergent evolution of seed dispersal by ants, and phylogeny and biogeography in flowering plants: a global survey. Perspect. Plant. Ecol. Evol. Syst. 12:43–55
    [Google Scholar]
  62. Levin SA, Muller-Landau HC, Nathan R, Chave J. 2003. The ecology and evolution of seed dispersal: a theoretical perspective. Annu. Rev. Ecol. Evol. Syst. 34:575–604
    [Google Scholar]
  63. Levine J, Murrell D. 2003. The community-level consequences of seed dispersal patterns. Annu. Rev. Ecol. Evol. Syst. 34:549–74
    [Google Scholar]
  64. Logue JB, Mouquet N, Peter H, Hillebrand H. 2011. Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol. Evol. 26:482–91
    [Google Scholar]
  65. Lorts CM, Briggeman T, Sang T. 2008. Evolution of fruit types and seed dispersal: a phylogenetic and ecological snapshot. J. Syst. Evol. 46:396–404
    [Google Scholar]
  66. Lowe WH, McPeek MA. 2014. Is dispersal neutral?. Trends Ecol. Evol. 29:444–50
    [Google Scholar]
  67. Mason DS, Baruzzi C, Lashley MA. 2022. Passive directed dispersal of plants by animals. Biol. Rev. 97:1908–29
    [Google Scholar]
  68. Miller TEX, Angert AL, Brown CD, Lee-Yaw JA, Lewis M et al. 2020. Eco-evolutionary dynamics of range expansion. Ecology 101:e03139
    [Google Scholar]
  69. Moles AT, Falster DS, Leishman MR, Westoby M. 2004. Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. J. Ecol. 92:384–96
    [Google Scholar]
  70. Muller-Landau HC, Hardesty BD 2005. Seed dispersal of woody plants in tropical forests: concepts, examples, and future directions. Biotic Interactions in the Tropics D Burslem, M Pinard, S Hartley 267–309. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  71. Muller-Landau HC, Levin SA, Keymer JE. 2003. Theoretical perspectives on evolution of long-distance dispersal and the example of specialized pests. Ecology 84:1957–67
    [Google Scholar]
  72. Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R et al. 2008. A movement ecology paradigm for unifying oragnismal movement research. PNAS 105:19052–59
    [Google Scholar]
  73. Nathan R, Katul GG, Bohrer G, Kuparinen A, Soons M et al. 2011. Mechanistic models of seed dispersal by wind. Theor. Ecol. 4:113–32
    [Google Scholar]
  74. Nathan R, Klein E, Robledo-Arnuncio JJ, Revilla E 2012. Dispersal kernels: a review. Dispersal Ecology and Evolution J Clobert, M Baguette, TG Benton, JM Bullock 187–210. Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  75. Nelson AS, Whitehead SR. 2021. Fruit secondary metabolites shape seed dispersal effectiveness. Trends Ecol. Evol. 36:1113–23
    [Google Scholar]
  76. Neubert MG, Caswell H. 2000. Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populations. Ecology 81:1613–28
    [Google Scholar]
  77. Nevo O, Razafimandimby D, Jeffrey JAJ, Schulz S, Ayasse M. 2018. Fruit scent as an evolved signal to primate seed dispersal. Sci. Adv. 4:eaat4871
    [Google Scholar]
  78. Paine CET, Harms KE, Schnitzer SA, Carson WP. 2008. Weak competition among tropical tree seedlings: implications for species coexistence. Biotropica 40:432–40
    [Google Scholar]
  79. Platt WJ. 1975. The colonization and formation of equilibrium plant species associations on badger disturbances in a tall-grass prairie. Ecol. Monogr. 45:285–305
    [Google Scholar]
  80. Rehling F, Jongejans E, Schlautmann J, Albrecht J, Fassbender H et al. 2023. Common seed dispersers contribute most to the persistence of a fleshy-fruited tree. Commun. Biol. 6:330
    [Google Scholar]
  81. Reid N. 1989. Dispersal of mistletoes by honeyeaters and flowerpeckers: components of seed dispersal quality. Ecology 70:137–45
    [Google Scholar]
  82. Rogers HS, Beckman NG, Hartig F, Johnson JS, Pufal G et al. 2019. The total dispersal kernel: a review and future directions. AoB Plants 11:plz042
    [Google Scholar]
  83. Rogers HS, Cavazos BR, Gawel AM, Karnish A, Ray CA et al. 2021a. Frugivore gut passage increases seed germination: an updated meta-analysis. bioRxiv 2021.10.12.462022. https://doi.org/10.1101/2021.10.12.462022
    [Crossref]
  84. Rogers HS, Donoso I, Traveset A, Fricke EC. 2021b. Cascading impacts of seed disperser loss on plant communities and ecosystems. Annu. Rev. Ecol. Evol. Syst. 52:641–66
    [Google Scholar]
  85. Ronce O. 2007. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Trends Ecol. Evol. 38:231–53
    [Google Scholar]
  86. Schupp EW. 1993. Quantity, quality, and the effectiveness of seed dispersal by animals. Vegetatio 107/108:15–29
    [Google Scholar]
  87. Schupp EW, Fuentes M. 1995. Spatial patterns of seed dispersal and the unification of plant-population ecology. Ecoscience 2:267–75
    [Google Scholar]
  88. Schupp EW, Jordano P, Gómez JM. 2010. Seed dispersal effectiveness revisited: a conceptual review. New Phytol. 188:333–53
    [Google Scholar]
  89. Schupp EW, Jordano P, Gómez JM. 2017. A general framework for effectiveness concepts in mutualisms. Ecol. Lett. 20:577–90
    [Google Scholar]
  90. Schupp EW, Milleron T, Russo SE 2002. Dissemination limitation and the origin and maintenance of species-rich tropical forests. Seed Dispersal and Frugivory: Ecology, Evolution and Conservation DJ Levey, WR Silva, M Galetti 19–33. Wallingford, UK: CAB Int.
    [Google Scholar]
  91. Schupp EW, Zwolak R, Jones LR, Snell RS, Beckman NG et al. 2019. Intrinsic and extrinsic drivers of intraspecific variation in seed dispersal are diverse and pervasive. AoB Plants 11:plz067
    [Google Scholar]
  92. Seale M, Nakayama N. 2020. From passive to informed: mechanical mechanisms of seed dispersal. New Phytol. 225:653–58
    [Google Scholar]
  93. Seale M, Zhdanov O, Soons MB, Cummins C, Kroll E et al. 2022. Environmental morphing enables informed dispersal of the dandelion diaspore. eLife 11:e81962
    [Google Scholar]
  94. Shoemaker LG, Sullivan LL, Donohue I, Cabral JS, Williams RJ et al. 2020. Integrating the underlying structure of stochasticity into community ecology. Ecology 101:e02922
    [Google Scholar]
  95. Siepielski AM, Benkman CW. 2008. A seed predator drives the evolution of a seed dispersal mutualism. Proc. R. Soc. B 275:1917–25
    [Google Scholar]
  96. Simons AM. 2011. Modes of response to environmental change and the elusive empirical evidence for bet hedging. Proc. R. Soc. B 278:1601–9
    [Google Scholar]
  97. Sinnott-Armstrong MA, Donoghue MJ, Jetz W. 2021. Dispersers and environment drive global variation in fruit colour syndromes. Ecol. Lett. 24:1387–99
    [Google Scholar]
  98. Sinnott-Armstrong MA, Lee C, Clement WL, Donoghue MJ. 2020. Fruit syndromes in Viburnum: correlated evolution of color, nutritional content, and morphology in bird-dispersed fleshy fruits. BMC Evol. Biol. 20:7
    [Google Scholar]
  99. Snell RS, Beckman NG, Fricke E, Loiselle BA, Carvalho CS et al. 2019. Consequences of intraspecific variation in seed dispersal for plant demography, communities, evolution, and global change. AoB Plants 11:plz016
    [Google Scholar]
  100. Snyder RE. 2011. Leaving home ain't easy: Non-local seed dispersal is only evolutionarily stable in highly unpredictable environments. Proc. R. Soc. B 278:739–44
    [Google Scholar]
  101. Soons MB, de Groot GA, Cuesta Ramirez MT, Fraaije RGA, Verhoeven JTA, de Jager M 2017. Directed dispersal by an abiotic vector: wetland plants disperse their seeds selectively to suitable sites along the hydrological gradient via water. Funct. Ecol. 31:499–508
    [Google Scholar]
  102. Spiegel O, Nathan R. 2010. Incorporating density dependence into the directed-dispersal hypothesis. Ecology 91:1538–48
    [Google Scholar]
  103. Sullivan LL, Shaw AK. 2023. Take me for a ride: Herbivores can facilitate plant re-invasions. Ecology https://doi.org/10.1002/ecy.4132
    [Crossref] [Google Scholar]
  104. Tamme R, Götzenberger L, Zobel M, Bullock JM, Hooftman DAP et al. 2014. Predicting species’ maximum dispersal distances from simple plant traits. Ecology 95:505–13
    [Google Scholar]
  105. Thompson JN, Willson MF. 1978. Disturbance and the dispersal of fleshy fruits. Science 200:1161–63
    [Google Scholar]
  106. Thomson FJ, Moles AT, Auld TD, Kingsford RT. 2011. Seed dispersal distance is more strongly correlated with plant height than with seed mass. J. Ecol. 99:1299–307
    [Google Scholar]
  107. Valenta K, Nevo O. 2020. The dispersal syndrome hypothesis: how animals shaped fruit traits, and how they did not. Funct. Ecol. 34:1158–69
    [Google Scholar]
  108. van der Pijl L. 1982. Principles of Dispersal in Higher Plants Berlin: Springer
  109. Vander Wall SB, Barga SC, Seaman AE 2017. The geographic distribution of seed-dispersal mutualisms in North America. Evol. Ecol. 31:725–40
    [Google Scholar]
  110. Vander Wall SB, Longland WS. 2004. Diplochory: Are two seed dispersers better than one?. Trends Ecol. Evol. 19:155–61
    [Google Scholar]
  111. Wallace HM, Howell MG, Lee DJ. 2008. Standard yet unusual mechanisms of long-distance dispersal: seed dispersal of Corymbia torelliana by bees. Divers. Distrib. 14:87–94
    [Google Scholar]
  112. Wenny DG. 2001. Advantages of seed dispersal: a re-evaluation of directed dispersal. Evol. Ecol. Res. 3:51–74
    [Google Scholar]
  113. Willson MF, Rice BL, Westoby M. 1990. Seed dispersal spectra: a comparison of temperate plant communities. J. Veg. Sci. 1:547–62
    [Google Scholar]
  114. Wright SJ, Calderón O, Hernandéz A, Detto M, Jansen PA. 2016. Interspecific associations in seed arrival and seedling recruitment in a Neotropical forest. Ecology 97:2780–90
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102320-104739
Loading
/content/journals/10.1146/annurev-ecolsys-102320-104739
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error