1932

Abstract

Epistasis occurs when the effect of a mutation depends on its carrier's genetic background. Despite increasing evidence that epistasis for fitness is common, its role during evolution is contentious. Fitness landscapes, which are mappings of genotype or phenotype to fitness, capture the full extent and complexity of epistasis. Fitness landscape theory has shown how epistasis affects the course and the outcome of evolution. Moreover, by measuring the competitive fitness of sets of tens to thousands of connected genotypes, empirical fitness landscapes have shown that epistasis is frequent and depends on the fitness measure, the choice of mutations for the landscape, and the environment in which it was measured. In this article, I review fitness landscape theory and experiments and their implications for the role of epistasis in adaptation. I discuss theoretical expectations in the light of empirical fitness landscapes and highlight open challenges and future directions toward integrating theory and data and incorporating ecological factors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102320-112153
2022-11-02
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/53/1/annurev-ecolsys-102320-112153.html?itemId=/content/journals/10.1146/annurev-ecolsys-102320-112153&mimeType=html&fmt=ahah

Literature Cited

  1. Adams RM, Kinney JB, Walczak AM, Mora T. 2019. Epistasis in a fitness landscape defined by antibody-antigen binding free energy. Cell Syst. 8:186–93.e3
    [Google Scholar]
  2. Agarwala A, Fisher DS. 2019. Adaptive walks on high-dimensional fitness landscapes and seascapes with distance-dependent statistics. Theor. Popul. Biol. 130:13–49
    [Google Scholar]
  3. Aguilar-Rodríguez J, Payne JL, Wagner A. 2017. A thousand empirical adaptive landscapes and their navigability. Nat. Ecol. Evol. 1:245
    [Google Scholar]
  4. Aita T, Iwakura M, Husimi Y. 2001. A cross-section of the fitness landscape of dihydrofolate reductase. Protein Eng. 14:9633–38
    [Google Scholar]
  5. Aita T, Uchiyama H, Inaoka T, Nakajima M, Kokubo T, Husimi Y. 2000. Analysis of a local fitness landscape with a model of the rough Mt. Fuji–type landscape: application to prolyl endopeptidase and thermolysin. Biopolymers 54:164–79
    [Google Scholar]
  6. Arnegard ME, McGee MD, Matthews B, Marchinko KB, Conte GL et al. 2014. Genetics of ecological divergence during speciation. Nature 511:7509307–11
    [Google Scholar]
  7. Athavale SS, Spicer B, Chen IA. 2014. Experimental fitness landscapes to understand the molecular evolution of RNA-based life. Curr. Opin. Chem. Biol. 22:35–39
    [Google Scholar]
  8. Bakerlee CW, Nguyen Ba AN, Shulgina Y, Rojas Echenique JI, Desai MM 2022. Idiosyncratic epistasis leads to global fitness-correlated trends. Science 376:6593630–35
    [Google Scholar]
  9. Bank C, Bürger R, Hermisson J. 2012. The limits to parapatric speciation: Dobzhansky–Muller incompatibilities in a continent–island model. Genetics 191:3845–63
    [Google Scholar]
  10. Bank C, Hietpas RT, Jensen JD, Bolon DNA. 2015. A systematic survey of an intragenic epistatic landscape. Mol. Biol. Evol. 32:1229–38
    [Google Scholar]
  11. Bank C, Hietpas RT, Wong A, Bolon DN, Jensen JD. 2014. A Bayesian MCMC approach to assess the complete distribution of fitness effects of new mutations: uncovering the potential for adaptive walks in challenging environments. Genetics 196:3841–52
    [Google Scholar]
  12. Bank C, Matuszewski S, Hietpas RT, Jensen JD. 2016. On the (un)predictability of a large intragenic fitness landscape. PNAS 113:4914085–90
    [Google Scholar]
  13. Barton N, Bengtsson BO. 1986. The barrier to genetic exchange between hybridising populations. Heredity 57:3357–76
    [Google Scholar]
  14. Bendixsen DP, Pollock TB, Peri G, Hayden EJ 2021. Experimental resurrection of ancestral mammalian CPEB3 ribozymes reveals deep functional conservation. Mol. Biol. Evol. 38:72843–53
    [Google Scholar]
  15. Blanckaert A, Bank C. 2018. In search of the Goldilocks zone for hybrid speciation. PLOS Genet. 14:9e1007613
    [Google Scholar]
  16. Blanckaert A, Bank C, Hermisson J. 2020. The limits to parapatric speciation. 3: Evolution of strong reproductive isolation in presence of gene flow despite limited ecological differentiation. Philos. Trans. R. Soc. B 375:180620190532
    [Google Scholar]
  17. Blanquart F, Achaz G, Bataillon T, Tenaillon O. 2014. Properties of selected mutations and genotypic landscapes under Fisher's geometric model. Evolution 68:123537–54
    [Google Scholar]
  18. Bordbar A, Monk JM, King ZA, Palsson BO. 2014. Constraint-based models predict metabolic and associated cellular functions. Nat. Rev. Genet. 15:2107–20
    [Google Scholar]
  19. Buskirk SW, Rokes AB, Lang GI. 2020. Adaptive evolution of nontransitive fitness in yeast. eLife 9:e62238
    [Google Scholar]
  20. Chevin LM. 2011. On measuring selection in experimental evolution. Biol. Lett. 7:2210–13
    [Google Scholar]
  21. Concepción-Acevedo J, Weiss HN, Chaudhry WN, Levin BR. 2015. Malthusian parameters as estimators of the fitness of microbes: a cautionary tale about the low side of high throughput. PLOS ONE 10:6e0126915
    [Google Scholar]
  22. Corbett-Detig RB, Zhou J, Clark AG, Hartl DL, Ayroles JF. 2013. Genetic incompatibilities are widespread within species. Nature 504:7478135–37
    [Google Scholar]
  23. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED et al. 2010. The genetic landscape of a cell. Science 327:5964425–31
    [Google Scholar]
  24. Costanzo M, Kuzmin E, van Leeuwen J, Mair B, Moffat J et al. 2019. Global genetic networks and the genotype-to-phenotype relationship. Cell 177:185–100
    [Google Scholar]
  25. Cote-Hammarlof PA, Fragata I, Flynn J, Mavor D, Zeldovich KB et al. 2021. The adaptive potential of the middle domain of yeast hsp90. Mol. Biol. Evol. 38:2368–79
    [Google Scholar]
  26. Coughlan JM, Matute DR. 2020. The importance of intrinsic postzygotic barriers throughout the speciation process. Philos. Trans. R. Soc. B 375:180620190533
    [Google Scholar]
  27. Das SG, Direito SO, Waclaw B, Allen RJ, Krug J. 2020. Predictable properties of fitness landscapes induced by adaptational tradeoffs. eLife 9:e55155
    [Google Scholar]
  28. Das SG, Krug J, Mungan M. 2021. A driven disordered systems approach to biological evolution in changing environments. bioRxiv 2108.06170. https://doi.org/10.1101/2021.08.13.456229
    [Crossref]
  29. de Visser JAGM, Krug J. 2014. Empirical fitness landscapes and the predictability of evolution. Nat. Rev. Genet. 15:7480–90
    [Google Scholar]
  30. Domingo J, Baeza-Centurion P, Lehner B. 2019. The causes and consequences of genetic interactions (epistasis). Annu. Rev. Genom. Hum. Genet. 20:433–60
    [Google Scholar]
  31. Draghi JA, Plotkin JB. 2013. Selection biases the prevalence and type of epistasis along adaptive trajectories. Evolution 67:113120–31
    [Google Scholar]
  32. Ferretti L, Schmiegelt B, Weinreich D, Yamauchi A, Kobayashi Y et al. 2016. Measuring epistasis in fitness landscapes: the correlation of fitness effects of mutations. J. Theor. Biol. 396:132–43
    [Google Scholar]
  33. Fisher RA. 1930. The Genetical Theory of Natural Selection Oxford, UK: Clarendon
    [Google Scholar]
  34. Flynn JM, Rossouw A, Cote-Hammarlof P, Fragata I, Mavor D et al. 2020. Comprehensive fitness maps of hsp90 show widespread environmental dependence. eLife 9:e53810
    [Google Scholar]
  35. Flynn KM, Cooper TF, Moore FBG, Cooper VS. 2013. The environment affects epistatic interactions to alter the topology of an empirical fitness landscape. PLOS Genet. 9:4e1003426
    [Google Scholar]
  36. Fowler DM, Fields S. 2014. Deep mutational scanning: a new style of protein science. Nat. Methods 11:8801–7
    [Google Scholar]
  37. Fragata I, Blanckaert A, Dias Louro MA, Liberles DA, Bank C. 2019. Evolution in the light of fitness landscape theory. Trends Ecol. Evol. 34:169–82
    [Google Scholar]
  38. Fraïsse C, Gunnarsson PA, Roze D, Bierne N, Welch JJ 2016. The genetics of speciation: insights from Fisher's geometric model. Evolution 70:71450–64
    [Google Scholar]
  39. Gavrilets S. 1997. Hybrid zones with Dobzhansky-type epistatic selection. Evolution 51:41027–35
    [Google Scholar]
  40. Gavrilets S. 2004. Fitness Landscapes and the Origin of Species Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  41. Gillespie JH. 1984. Molecular evolution over the mutational landscape. Evolution 38:51116–29
    [Google Scholar]
  42. Gong LI, Bloom JD. 2014. Epistatically interacting substitutions are enriched during adaptive protein evolution. PLOS Genet. 10:5e1004328
    [Google Scholar]
  43. Gong LI, Suchard MA, Bloom JD. 2013. Stability-mediated epistasis constrains the evolution of an influenza protein. eLife 2:e00631
    [Google Scholar]
  44. Gorter FA, Aarts MGM, Zwaan BJ, de Visser JAGM. 2018. Local fitness landscapes predict yeast evolutionary dynamics in directionally changing environments. Genetics 208:1307–22
    [Google Scholar]
  45. Goutelle S, Maurin M, Rougier F, Barbaut X, Bourguignon L et al. 2008. The Hill equation: a review of its capabilities in pharmacological modelling. Fundam. Clin. Pharmacol. 22:6633–48
    [Google Scholar]
  46. Greene D, Crona K. 2014. The changing geometry of a fitness landscape along an adaptive walk. PLOS Comput. Biol. 10:5e1003520
    [Google Scholar]
  47. Gros PA, Le Nagard H, Tenaillon O 2009. The evolution of epistasis and its links with genetic robustness, complexity and drift in a phenotypic model of adaptation. Genetics 182:1277–93
    [Google Scholar]
  48. Hall AE, Karkare K, Cooper VS, Bank C, Cooper TF, Moore FBG. 2019. Environment changes epistasis to alter trade-offs along alternative evolutionary paths. Evolution 73:102094–105
    [Google Scholar]
  49. Hansen TF, Pélabon C. 2021. Evolvability: a quantitative-genetics perspective. Annu. Rev. Ecol. Evol. Syst. 52:153–75
    [Google Scholar]
  50. Harmand N, Gallet R, Jabbour-Zahab R, Martin G, Lenormand T. 2017. Fisher's geometrical model and the mutational patterns of antibiotic resistance across dose gradients. Evolution 71:123–37
    [Google Scholar]
  51. Hietpas R, Roscoe B, Jiang L, Bolon DNA. 2012. Fitness analyses of all possible point mutations for regions of genes in yeast. Nat. Protoc. 7:71382–96
    [Google Scholar]
  52. Hurst LD, Pál C, Lercher MJ. 2004. The evolutionary dynamics of eukaryotic gene order. Nat. Rev. Genet. 5:4299–310
    [Google Scholar]
  53. Hwang S, Park SC, Krug J. 2017. Genotypic complexity of Fisher's geometric model. Genetics 206:21049–79
    [Google Scholar]
  54. Hwang S, Schmiegelt B, Ferretti L, Krug J. 2018. Universality classes of interaction structures for NK fitness landscapes. J. Stat. Phys. 172:1226–78
    [Google Scholar]
  55. Johnson MS, Martsul A, Kryazhimskiy S, Desai MM. 2019. Higher-fitness yeast genotypes are less robust to deleterious mutations. Science 366:6464490–93
    [Google Scholar]
  56. Karageorgi M, Groen SC, Sumbul F, Pelaez JN, Verster KI et al. 2019. Genome editing retraces the evolution of toxin resistance in the monarch butterfly. Nature 574:7778409–12
    [Google Scholar]
  57. Kauffman S, Levin S 1987. Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128:111–45
    [Google Scholar]
  58. Kauffman SA, Weinberger ED. 1989. The NK model of rugged fitness landscapes and its application to maturation of the immune response. J. Theor. Biol. 141:2211–45
    [Google Scholar]
  59. Kemble H, Eisenhauer C, Couce A, Chapron A, Magnan M et al. 2020. Flux, toxicity, and expression costs generate complex genetic interactions in a metabolic pathway. Sci. Adv. 6:23eabb2236
    [Google Scholar]
  60. Khan AI, Dinh DM, Schneider D, Lenski RE, Cooper TF. 2011. Negative epistasis between beneficial mutations in an evolving bacterial population. Science 332:60341193–96
    [Google Scholar]
  61. King ZA, Lu J, Dräger A, Miller P, Federowicz S et al. 2016. BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 44:1D515–22
    [Google Scholar]
  62. Kinsler G, Geiler-Samerotte K, Petrov DA. 2020. Fitness variation across subtle environmental perturbations reveals local modularity and global pleiotropy of adaptation. eLife 9:e61271
    [Google Scholar]
  63. Krug J 2021. Accessibility percolation in random fitness landscapes. Probabilistic Structures in Evolution E Wa Baake 1–22 Berlin: EMS
    [Google Scholar]
  64. Kryazhimskiy S. 2021. Emergence and propagation of epistasis in metabolic networks. eLife 10:e60200
    [Google Scholar]
  65. Kryazhimskiy S, Rice DP, Jerison ER, Desai MM. 2014. Global epistasis makes adaptation predictable despite sequence-level stochasticity. Science 344:61911519–22
    [Google Scholar]
  66. Kvitek DJ, Sherlock G. 2013. Whole genome, whole population sequencing reveals that loss of signaling networks is the major adaptive strategy in a constant environment. PLOS Genet. 9:11e1003972
    [Google Scholar]
  67. Lässig M, Mustonen V, Walczak AM. 2017. Predicting evolution. Nat. Ecol. Evol. 1:377
    [Google Scholar]
  68. Li C, Zhang J. 2018. Multi-environment fitness landscapes of a tRNA gene. Nat. Ecol. Evol. 2:61025–32
    [Google Scholar]
  69. Lindsey HA, Gallie J, Taylor S, Kerr B. 2013. Evolutionary rescue from extinction is contingent on a lower rate of environmental change. Nature 494:7438463–67
    [Google Scholar]
  70. Lyons DM, Zou Z, Xu H, Zhang J. 2020. Idiosyncratic epistasis creates universals in mutational effects and evolutionary trajectories. Nat. Ecol. Evol. 4:121685–93
    [Google Scholar]
  71. Mackay TFC. 2013. Epistasis and quantitative traits: using model organisms to study gene–gene interactions. Nat. Rev. Genet. 15:122–33
    [Google Scholar]
  72. Marcusson LL, Frimodt-Møller N, Hughes D. 2009. Interplay in the selection of fluoroquinolone resistance and bacterial fitness. PLOS Pathog. 5:8e1000541
    [Google Scholar]
  73. Marmier G, Weigt M, Bitbol AF. 2019. Phylogenetic correlations can suffice to infer protein partners from sequences. PLOS Comput. Biol. 15:10e1007179
    [Google Scholar]
  74. Martin CH. 2016. Context dependence in complex adaptive landscapes: frequency and trait-dependent selection surfaces within an adaptive radiation of Caribbean pupfishes. Evolution 70:61265–82
    [Google Scholar]
  75. Martin CH, Gould KJ. 2020. Surprising spatiotemporal stability of a multi-peak fitness landscape revealed by independent field experiments measuring hybrid fitness. Evol. Lett. 4:6530–44
    [Google Scholar]
  76. Martin CH, Wainwright PC. 2013. Multiple fitness peaks on the adaptive landscape drive adaptive radiation in the wild. Science 339:6116208–11
    [Google Scholar]
  77. Martin G, Elena SF, Lenormand T. 2007. Distributions of epistasis in microbes fit predictions from a fitness landscape model. Nat. Genet. 39:4555–60
    [Google Scholar]
  78. Martin G, Lenormand T. 2006. The fitness effect of mutations across environments: a survey in light of fitness landscape models. Evolution 60:122413–27
    [Google Scholar]
  79. Martin G, Lenormand T. 2015. The fitness effect of mutations across environments: Fisher's geometrical model with multiple optima. Evolution 69:61433–47
    [Google Scholar]
  80. Matuszewski S, Hermisson J, Kopp M. 2014. Fisher's geometric model with a moving optimum. Evolution 68:92571–88
    [Google Scholar]
  81. McCandlish DM. 2011. Visualizing fitness landscapes. Evolution 65:61544–58
    [Google Scholar]
  82. Moradigaravand D, Engelstädter J. 2012. The effect of bacterial recombination on adaptation on fitness landscapes with limited peak accessibility. PLOS Comput. Biol. 8:10e1002735
    [Google Scholar]
  83. Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS et al. 2011. Direct-coupling analysis of residue coevolution captures native contacts across many protein families. PNAS 108:49E1293–301
    [Google Scholar]
  84. Mustonen V, Lässig M. 2009. From fitness landscapes to seascapes: non-equilibrium dynamics of selection and adaptation. Trends Genet. 25:3111–19
    [Google Scholar]
  85. Neidhart J, Szendro IG, Krug J. 2014. Adaptation in tunably rugged fitness landscapes: the rough Mount Fuji model. Genetics 198:2699–721
    [Google Scholar]
  86. Nosil P, Villoutreix R, de Carvalho CF, Feder JL, Parchman TL, Gompert Z. 2020. Ecology shapes epistasis in a genotype-phenotype-fitness map for stick insect colour. Nat. Ecol. Evol. 4:121673–84
    [Google Scholar]
  87. Nowak S, Neidhart J, Szendro IG, Krug J. 2014. Multidimensional epistasis and the transitory advantage of sex. PLOS Comput. Biol. 10:9e1003836
    [Google Scholar]
  88. Ono J, Gerstein AC, Otto SP. 2017. Widespread genetic incompatibilities between first-step mutations during parallel adaptation of Saccharomyces cerevisiae to a common environment. PLOS Biol. 15:1e1002591
    [Google Scholar]
  89. Paixão T, Bassler KE, Azevedo RBR. 2015. Emergent speciation by multiple Dobzhansky–Muller incompatibilities. bioRxiv 008268. https://doi.org/10.1101/008268
    [Crossref]
  90. Park SC, Hwang S, Krug J. 2020. Distribution of the number of fitness maxima in Fisher's geometric model. J. Phys. A 53:38385601
    [Google Scholar]
  91. Patton AH, Richards EJ, Gould KJ, Buie LK, Martin CH. 2021. Hybridization alters the shape of the genotypic fitness landscape, increasing access to novel fitness peaks during adaptive radiation. bioRxiv 450666. https://doi.org/10.1101/2021.07.01.450666
    [Crossref] [Google Scholar]
  92. Phillips PC. 2008. Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat. Rev. Genet. 9:11855–67
    [Google Scholar]
  93. Pinheiro F, Warsi O, Andersson DI, Lässig M. 2021. Metabolic fitness landscapes predict the evolution of antibiotic resistance. Nat. Ecol. Evol. 5:5677–87
    [Google Scholar]
  94. Pokusaeva VO, Usmanova DR, Putintseva EV, Espinar L, Sarkisyan KS et al. 2019. An experimental assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape. PLOS Genet. 15:4e1008079
    [Google Scholar]
  95. Presgraves DC. 2003. A fine-scale genetic analysis of hybrid incompatibilities in Drosophila. Genetics 163:3955–72
    [Google Scholar]
  96. Reddy G, Desai MM. 2021. Global epistasis emerges from a generic model of a complex trait. eLife 10:e64740
    [Google Scholar]
  97. Sachdeva V, Husain K, Sheng J, Wang S, Murugan A 2020. Tuning environmental timescales to evolve and maintain generalists. PNAS 117:2312693–699
    [Google Scholar]
  98. Sarkisyan KS, Bolotin DA, Meer MV, Usmanova DR, Mishin AS et al. 2016. Local fitness landscape of the green fluorescent protein. Nature 533:7603397–401
    [Google Scholar]
  99. Schenk MF, Szendro IG, Salverda MLM, Krug J, de Visser JAGM. 2013. Patterns of epistasis between beneficial mutations in an antibiotic resistance gene. Mol. Biol. Evol. 30:81779–87
    [Google Scholar]
  100. Schneemann H, De Sanctis B, Roze D, Bierne N, Welch JJ 2020. The geometry and genetics of hybridization. Evolution 74:122575–90
    [Google Scholar]
  101. Schumer M, Cui R, Powell DL, Dresner R, Rosenthal GG, Andolfatto P. 2014. High-resolution mapping reveals hundreds of genetic incompatibilities in hybridizing fish species. eLife 3:e02535
    [Google Scholar]
  102. Seehausen O, Butlin RK, Keller I, Wagner CE, Boughman JW et al. 2014. Genomics and the origin of species. Nat. Rev. Genet. 15:3176–92
    [Google Scholar]
  103. Simon A, Bierne N, Welch JJ. 2018. Coadapted genomes and selection on hybrids: Fisher's geometric model explains a variety of empirical patterns. Evol. Lett. 2:5472–98
    [Google Scholar]
  104. Sørensen MES, Wood AJ, Cameron DD, Brockhurst MA. 2021. Rapid compensatory evolution can rescue low fitness symbioses following partner switching. Curr. Biol. 31:173721–28.e4
    [Google Scholar]
  105. Srivastava M, Payne JL. 2022. On the incongruence of genotype-phenotype and fitness landscapes. bioRxiv 478629. https://doi.org/10.1101/2022.02.01.478629
    [Crossref]
  106. Storz JF. 2018. Compensatory mutations and epistasis for protein function. Curr. Opin. Struct. Biol. 50:18–25
    [Google Scholar]
  107. Szendro IG, Schenk MF, Franke J, Krug J, de Visser JAGM. 2013. Quantitative analyses of empirical fitness landscapes. J. Stat. Mech. 2013:1P01005
    [Google Scholar]
  108. Tataru P, Bataillon T. 2020. polyDFE: Inferring the distribution of fitness effects and properties of beneficial mutations from polymorphism data. Methods Mol. Biol. 2090:125–46
    [Google Scholar]
  109. Tenaillon O. 2014. The utility of Fisher's geometric model in evolutionary genetics. Annu. Rev. Ecol. Evol. Syst. 45:179–201
    [Google Scholar]
  110. Trubenová B, Krejca MS, Lehre PK, Kötzing T. 2019. Surfing on the seascape: adaptation in a changing environment. Evolution 73:71356–74
    [Google Scholar]
  111. Turelli M, Orr HA. 2000. Dominance, epistasis and the genetics of postzygotic isolation. Genetics 154:41663–79
    [Google Scholar]
  112. Walsh B, Lynch M. 2018. Evolution and Selection of Quantitative Traits Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  113. Wang S, Dai L. 2019. Evolving generalists in switching rugged landscapes. PLOS Comput. Biol. 15:10e1007320
    [Google Scholar]
  114. Weinreich DM, Delaney NF, Depristo MA, Hartl DL. 2006. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312:5770111–14
    [Google Scholar]
  115. Whitlock MC, Phillips PC, Moore FBG, Tonsor SJ. 1995. Multiple fitness peaks and epistasis. Annu. Rev. Ecol. Syst. 26:601–29
    [Google Scholar]
  116. Wiser MJ, Ribeck N, Lenski RE. 2013. Long-term dynamics of adaptation in asexual populations. Science 342:61641364–67
    [Google Scholar]
  117. Wortel MT, Agashe D, Bailey SF, Bank C, Bisschop K et al. 2021. The why, what and how of predicting evolution across biology: from disease to biotechnology to biodiversity. EcoEvoRxiv 4u3mg. https://doi.org/10.32942/osf.io/4u3mg
    [Crossref]
  118. Wright S. 1931. Evolution in Mendelian populations. Genetics 16:297–159
    [Google Scholar]
  119. Wright S. 1932. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proceedings of the 6th International Congress on Genetics356–66 Menasha, WI: Brooklyn Bot. Gard.
    [Google Scholar]
  120. Zhang XS. 2012. Fisher's geometrical model of fitness landscape and variance in fitness within a changing environment. Evolution 66:82350–68
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102320-112153
Loading
/content/journals/10.1146/annurev-ecolsys-102320-112153
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error