1932

Abstract

Myriad branches in the tree of life are intertwined through ecological relationships. Biologists have long hypothesized that intimate symbioses between lineages can influence diversification patterns to the extent that it leaves a topological imprint on the phylogenetic trees of interacting clades. Over the past few decades, cophylogenetic methods development has provided a toolkit for identifying such histories of codiversification, yet it is often difficult to determine which tools best suit the task at hand. In this review, we organize currently available cophylogenetic methods into three categories—pattern-based statistics, event-scoring methods, and more recently developed generative model–based methods—and discuss their assumptions and appropriateness for different types of cophylogenetic questions. We classify cophylogenetic systems based on their biological properties to provide a framework for empiricists investigating the macroevolution of symbioses. In addition, we provide recommendations for the next generation of cophylogenetic models that we hope will facilitate further methods development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102320-112823
2022-11-02
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/53/1/annurev-ecolsys-102320-112823.html?itemId=/content/journals/10.1146/annurev-ecolsys-102320-112823&mimeType=html&fmt=ahah

Literature Cited

  1. Althoff DM, Segraves KA, Smith CI, Leebens-Mack J, Pellmyr O. 2012. Geographic isolation trumps coevolution as a driver of yucca and yucca moth diversification. Mol. Phylogenet. Evol. 62:3898–906
    [Google Scholar]
  2. Anthony SJ, Johnson CK, Greig DJ, Kramer S, Che X et al. 2017. Global patterns in coronavirus diversity. Virus Evol 3:1vex012
    [Google Scholar]
  3. Avino M, Ng GT, He Y, Renaud MS, Jones BR, Poon AF. 2019. Tree shape-based approaches for the comparative study of cophylogeny. Ecol. Evol. 9:126756–71
    [Google Scholar]
  4. Balbuena JA, Míguez-Lozano R, Blasco-Costa I. 2013. PACo: a novel Procrustes application to cophylogenetic analysis. PLOS ONE 8:4e61048
    [Google Scholar]
  5. Balbuena JA, Pérez-Escobar ÓA, Llopis-Belenguer C, Blasco-Costa I. 2020. Random tanglegram partitions (Random TaPas): an Alexandrian approach to the cophylogenetic Gordian knot. Syst. Biol. 69:61212–30
    [Google Scholar]
  6. Bascompte J, Jordano P. 2013. Mutualistic Networks Princeton, NJ: Princeton Univ. Press
  7. Baudet C, Donati B, Sinaimeri B, Crescenzi P, Gautier C et al. 2015. Cophylogeny reconstruction via an approximate Bayesian computation. Syst. Biol. 64:3416–31
    [Google Scholar]
  8. Blasco-Costa I, Hayward A, Poulin R, Balbuena JA. 2021. Next-generation cophylogeny: unravelling eco-evolutionary processes. Trends Ecol. Evol. 36:10907–18
    [Google Scholar]
  9. Braga MP, Janz N, Nylin S, Ronquist F, Landis MJ. 2021. Phylogenetic reconstruction of ancestral ecological networks through time for pierid butterflies and their host plants. Ecol. Lett. 24:102134–45
    [Google Scholar]
  10. Braga MP, Landis MJ, Nylin S, Janz N, Ronquist F. 2020. Bayesian inference of ancestral host–parasite interactions under a phylogenetic model of host repertoire evolution. Syst. Biol. 69:61149–62
    [Google Scholar]
  11. Brooks DR. 1981. Hennig's parasitological method: a proposed solution. Syst. Biol. 30:3229–49
    [Google Scholar]
  12. Brooks DR. 1985. Historical ecology: a new approach to studying the evolution of ecological associations. Ann. Mo. Bot. Garden 72:4660–80
    [Google Scholar]
  13. Brooks DR. 1990. Parsimony analysis in historical biogeography and coevolution: methodological and theoretical update. Syst. Zool. 39:114–30
    [Google Scholar]
  14. Brooks DR, Dowling AP, Van Veller MG, Hoberg EP. 2004. Ending a decade of deception: a valiant failure, a not-so-valiant failure, and a success story. Cladistics 20:132–46
    [Google Scholar]
  15. Brooks DR, Hoberg EP, Boeger WA. 2015. In the eye of the cyclops: the classic case of cospeciation and why paradigms are important. Comp. Parasitol. 82:11–8
    [Google Scholar]
  16. Cai L, Arnold BJ, Xi Z, Khost DE, Patel N et al. 2021. Deeply altered genome architecture in the endoparasitic flowering plant Sapria himalayana Griff. (Rafflesiaceae). Curr. Biol. 31:51002–11
    [Google Scholar]
  17. Charleston M. 1998. Jungles: a new solution to the host/parasite phylogeny reconciliation problem. Math. Biosci. 149:2191–223
    [Google Scholar]
  18. Charleston M, Page R. 2002. TreeMap v. 2.0.2. Software package. https://sites.google.com/site/cophylogeny/treemap
    [Google Scholar]
  19. Charleston MA, Perkins L. 2003. Lizards, malaria, and jungles in the Caribbean. See Page 2003 65–92
  20. Clayton DH, Bush SE, Johnson KP. 2015. Coevolution of Life on Hosts Chicago: Univ. Chicago Press
  21. Compton SG, Ball AD, Collinson ME, Hayes P, Rasnitsyn AP, Ross AJ. 2010. Ancient fig wasps indicate at least 34 Myr of stasis in their mutualism with fig trees. Biol. Lett. 6:6838–42
    [Google Scholar]
  22. Conow C, Fielder D, Ovadia Y, Libeskind-Hadas R. 2010. Jane: a new tool for the cophylogeny reconstruction problem. Algorithms Mol. Biol. 5:116
    [Google Scholar]
  23. Cruaud A, Rønsted N, Chantarasuwan B, Chou LS, Clement WL et al. 2012. An extreme case of plant–insect codiversification: figs and fig-pollinating wasps. Syst. Biol. 61:61029–47
    [Google Scholar]
  24. de Baets K, Huntley JW, Klompmaker AA, Schiffbauer JD, Muscente A 2021. The fossil record of parasitism: its extent and taphonomic constraints. The Evolution and Fossil Record of Parasitism K de Baets, JW Huntley 1–50 Cham, Switz.: Springer
    [Google Scholar]
  25. De Vienne D, Refrégier G, López-Villavicencio M, Tellier A, Hood M, Giraud T 2013. Cospeciation versus host-shift speciation: methods for testing, evidence from natural associations and relation to coevolution. New Phytol 198:2347–85
    [Google Scholar]
  26. Dismukes W, Heath TA. 2021. treeducken: An R package for simulating cophylogenetic systems. Methods Ecol. Evol. 12:81358–64
    [Google Scholar]
  27. Dobson A, Lafferty KD, Kuris AM, Hechinger RF, Jetz W. 2008. Homage to Linnaeus: how many parasites? How many hosts?. PNAS105Suppl. 111482–89
    [Google Scholar]
  28. Doña J, Sweet AD, Johnson KP, Serrano D, Mironov S, Jovani R. 2017. Cophylogenetic analyses reveal extensive host-shift speciation in a highly specialized and host-specific symbiont system. Mol. Phylogenet. Evol. 115:190–96
    [Google Scholar]
  29. Donoghue MJ, Sanderson MJ. 2015. Confluence, synnovation, and depauperons in plant diversification. New Phytol 207:2260–74
    [Google Scholar]
  30. Drinkwater B, Charleston MA. 2014. Introducing TreeCollapse: a novel greedy algorithm to solve the cophylogeny reconstruction problem. BMC Bioinform. 15:16S14
    [Google Scholar]
  31. Drinkwater B, Qiao A, Charleston MA. 2016. WiSPA: a new approach for dealing with widespread parasitism. arXiv:1603.09415 [q-bio.PE]
  32. Fahrenholz H. 1913. Ectoparasiten und Abstammungslehre. Zool. Anz. 41:371–74
    [Google Scholar]
  33. Felsenstein J. 1978. The number of evolutionary trees. Syst. Zool. 27:127–33
    [Google Scholar]
  34. Flynn PJ, Moreau CS. 2019. Assessing the diversity of endogenous viruses throughout ant genomes. Front. Microbiol. 10:1139
    [Google Scholar]
  35. Goldberg EE, Foo J. 2020. Memory in trait macroevolution. Am. Nat. 195:2300–14
    [Google Scholar]
  36. Groussin M, Mazel F, Sanders JG, Smillie CS, Lavergne S et al. 2017. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat. Commun. 8:114319
    [Google Scholar]
  37. Guimarães PR, Rico-Gray V, Oliveira P, Izzo TJ, dos Reis SF, Thompson JN. 2007. Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Curr. Biol. 17:201797–803
    [Google Scholar]
  38. Hafner MS, Nadler SA. 1990. Cospeciation in host–parasite assemblages: comparative analysis of rates of evolution and timing of cospeciation events. Syst. Zool. 39:3192–204
    [Google Scholar]
  39. Hafner MS, Sudman PD, Villablanca FX, Spradling TA, Demastes JW, Nadler SA. 1994. Disparate rates of molecular evolution in cospeciating hosts and parasites. Science 265:51751087–90
    [Google Scholar]
  40. Harmon LJ, Andreazzi CS, Débarre F, Drury J, Goldberg EE et al. 2019. Detecting the macroevolutionary signal of species interactions. J. Evol. Biol. 32:8769–82
    [Google Scholar]
  41. Harmon LJ, Glor RE. 2010. Poor statistical performance of the Mantel test in phylogenetic comparative analyses. Evolution 64:72173–78
    [Google Scholar]
  42. Hayward A, Poulin R, Nakagawa S. 2021. A broadscale analysis of host-symbiont cophylogeny reveals the drivers of phylogenetic congruence. Ecol. Lett. 24:81681–96
    [Google Scholar]
  43. Hembry DH, Kawakita A, Gurr NE, Schmaedick MA, Baldwin BG, Gillespie RG. 2013. Non-congruent colonizations and diversification in a coevolving pollination mutualism on oceanic islands. Proc. R. Soc. B 280:176120130361
    [Google Scholar]
  44. Hembry DH, Okamoto T, Gillespie RG. 2012. Repeated colonization of remote islands by specialized mutualists. Biol. Lett. 8:2258–61
    [Google Scholar]
  45. Hembry DH, Weber MG. 2020. Ecological interactions and macroevolution: a new field with old roots. Annu. Rev. Ecol. Evol. Syst. 51:215–43
    [Google Scholar]
  46. Hommola K, Smith JE, Qiu Y, Gilks WR. 2009. A permutation test of host–parasite cospeciation. Mol. Biol. Evol. 26:71457–68
    [Google Scholar]
  47. Huelsenbeck JP, Rannala B, Larget B. 2000. A Bayesian framework for the analysis of cospeciation. Evolution 54:2352–64
    [Google Scholar]
  48. Huelsenbeck JP, Rannala B, Yang Z 1997. Statistical tests of host-parasite cospeciation. Evolution 51:2410–19
    [Google Scholar]
  49. Hutchinson MC, Cagua EF, Stouffer DB. 2017. Cophylogenetic signal is detectable in pollination interactions across ecological scales. Ecology 98:102640–52
    [Google Scholar]
  50. Hypša V. 2006. Parasite histories and novel phylogenetic tools: alternative approaches to inferring parasite evolution from molecular markers. Int. J. Parasitol. 36:2141–55
    [Google Scholar]
  51. Jablonski D. 2008. Biotic interactions and macroevolution: extensions and mismatches across scales and levels. Evolution 62:4715–39
    [Google Scholar]
  52. Janz N, Nyblom K, Nylin S. 2001. Evolutionary dynamics of host-plant specialization: a case study of the tribe Nymphalini. Evolution 55:4783–96
    [Google Scholar]
  53. Janzen DH. 1980. When is it coevolution?. Evolution 34:3611–12
    [Google Scholar]
  54. Labandeira CC, Dilcher DL, Davis DR, Wagner DL. 1994. Ninety-seven million years of angiosperm-insect association: paleobiological insights into the meaning of coevolution. PNAS 91:2512278–82
    [Google Scholar]
  55. Landis MJ, Matzke NJ, Moore BR, Huelsenbeck JP. 2013. Bayesian analysis of biogeography when the number of areas is large. Syst. Biol. 62:789–804
    [Google Scholar]
  56. Legendre P, Desdevises Y, Bazin E. 2002. A statistical test for host–parasite coevolution. Syst. Biol. 51:2217–34
    [Google Scholar]
  57. Legendre P, Galzin R, Harmelin-Vivien ML. 1997. Relating behavior to habitat: solutions to the fourth-corner problem. Ecology 78:2547–62
    [Google Scholar]
  58. Losos JB. 2011. Seeing the forest for the trees: the limitations of phylogenies in comparative biology (American Society of Naturalists Address). Am. Nat. 177:6709–27
    [Google Scholar]
  59. Luo SX, Yao G, Wang Z, Zhang D, Hembry DH. 2017. A novel, enigmatic basal leafflower moth lineage pollinating a derived leafflower host illustrates the dynamics of host shifts, partner replacement, and apparent coadaptation in intimate mutualisms. Am. Nat. 189:4422–35
    [Google Scholar]
  60. Maliet O, Loeuille N, Morlon H. 2020. An individual-based model for the eco-evolutionary emergence of bipartite interaction networks. Ecol. Lett. 23:111623–34
    [Google Scholar]
  61. McKinney FK. 1995. One hundred million years of competitive interactions between bryozoan clades: asymmetrical but not escalating. Biol. J. Linnean Soc. 56:3465–81
    [Google Scholar]
  62. Merkle D, Middendorf M. 2005. Reconstruction of the cophylogenetic history of related phylogenetic trees with divergence timing information. Theory Biosci 123:4277–99
    [Google Scholar]
  63. Merkle D, Middendorf M, Wieseke N. 2010. A parameter-adaptive dynamic programming approach for inferring cophylogenies. BMC Bioinform. 11:1S60
    [Google Scholar]
  64. Mramba LK, Barber S, Hommola K, Dyer LA, Wilson JS et al. 2013. Permutation tests for analyzing cospeciation in multiple phylogenies: applications in tri-trophic ecology. Stat. Appl. Genet. Mol. Biol. 12:6679–701
    [Google Scholar]
  65. Muchhala N, Thomson JD. 2009. Going to great lengths: selection for long corolla tubes in an extremely specialized bat–flower mutualism. Proc. R. Soc. B 276:16652147–52
    [Google Scholar]
  66. Natl. Res. Counc 2007. Status of Pollinators in North America Washington, DC: Natl. Acad. Press
  67. Nooney C, Barber S, Gusnanto A, Gilks WR. 2017. A statistical method for analysing cospeciation in tritrophic ecology using electrical circuit theory. Stat. Appl. Genet. Mol. Biol. 16:5–6349–65
    [Google Scholar]
  68. Nuismer SL, Harmon LJ. 2015. Predicting rates of interspecific interaction from phylogenetic trees. Ecol. Lett. 18:117–27
    [Google Scholar]
  69. Ollerton J. 2006.. “ Biological barter”: patterns of specialization compared across different mutualisms. Plant–Pollinator Interactions: From Specialization to Generalization NM Waser, J Ollerton 411–35 Chicago: Univ. Chicago Press
    [Google Scholar]
  70. Page RDM. 1989. Comments on component-compatibility in historical biogeography. Cladistics 5:167–82
    [Google Scholar]
  71. Page RDM 1994. Parallel phylogenies: reconstructing the history of host-parasite assemblages. Cladistics 10:215573
    [Google Scholar]
  72. Page RDM. 2003. Tangled Trees: Phylogeny, Cospeciation, and Coevolution. Chicago: Univ Chicago Press
    [Google Scholar]
  73. Paterson AM, Gray RD 1997. Host–parasite co-speciation, host switching, and missing the boat. Host–Parasite Evolution: General Principles and Avian Models DH Clayton, J Moore 236–50 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  74. Pérez-Escobar OA, Balbuena JA, Gottschling M. 2015. Rumbling orchids: how to assess divergent evolution between chloroplast endosymbionts and the nuclear host. Syst. Biol. 65:151–65
    [Google Scholar]
  75. Poisot T 2015. When is co-phylogeny evidence of coevolution?. Parasite Diversity and Diversification: Evolutionary Ecology Meets Phylogenetics S Morand, BR Krasnov, DTJ Littlewood 420–33 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  76. Price PW. 1980. Evolutionary Biology of Parasites Princeton, NJ: Princeton Univ. Press
  77. Quintero I, Landis MJ. 2020. Interdependent phenotypic and biogeographic evolution driven by biotic interactions. Syst. Biol. 69:4739–55
    [Google Scholar]
  78. Ree RH, Moore BR, Webb CO, Donoghue MJ. 2005. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59:112299–311
    [Google Scholar]
  79. Revell LJ, Harmon LJ, Collar DC. 2008. Phylogenetic signal, evolutionary process, and rate. Syst. Biol. 57:4591–601
    [Google Scholar]
  80. Rezende EL, Lavabre JE, Guimarães PR, Jordano P, Bascompte J. 2007. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448:7156925–28
    [Google Scholar]
  81. Robinson D, Foulds L. 1979. Comparison of weighted labelled trees. Combinatorial Mathematics VI: Proceedings of the Sixth Australian Conference on Combinatorial Mathematics, Armidale, Australia, August 1978 AF Horadam, WD Wallis 119–26 Lect. Notes Math. 748 Berlin: Springer-Verlag
    [Google Scholar]
  82. Ronquist F. 1995. Reconstructing the history of host-parasite associations using generalised parsimony. Cladistics 11:173–89
    [Google Scholar]
  83. Ronquist F. 2003. Parsimony analysis of coevolving species associations. See Page 2003 22–64
  84. Santichaivekin S, Yang Q, Liu J, Mawhorter R, Jiang J et al. 2021. eMPRess: a systematic cophylogeny reconciliation tool. Bioinformatics 37:162481–82
    [Google Scholar]
  85. Satler JD, Herre EA, Jandér KC, Eaton DA, Machado CA et al. 2019. Inferring processes of coevolutionary diversification in a community of Panamanian strangler figs and associated pollinating wasps. Evolution 73:112295–311
    [Google Scholar]
  86. Schardl CL, Craven KD, Speakman S, Stromberg A, Lindstrom A, Yoshida R. 2008. A novel test for host–symbiont codivergence indicates ancient origin of fungal endophytes in grasses. Syst. Biol. 57:3483–98
    [Google Scholar]
  87. Shoemaker DD, Katju V, Jaenike J. 1999. Wolbachia and the evolution of reproductive isolation between Drosophila recens and Drosophila subquinaria. Evolution 53:41157–64
    [Google Scholar]
  88. Siddall ME, Perkins SL. 2003. Brooks parsimony analysis: a valiant failure. Cladistics 19:6554–64
    [Google Scholar]
  89. Smith CI, Godsoe WK, Tank S, Yoder JB, Pellmyr O. 2008. Distinguishing coevolution from covicariance in an obligate pollination mutualism: asynchronous divergence in Joshua tree and its pollinators. Evolution 62:102676–87
    [Google Scholar]
  90. Stevens J. 2004. Computational aspects of host–parasite phylogenies. Briefings Bioinform. 5:4339–49
    [Google Scholar]
  91. Szöllősi GJ, Boussau B, Abby SS, Tannier E, Daubin V. 2012. Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations. PNAS 109:4317513–18
    [Google Scholar]
  92. Szöllősi GJ, Davn AA, Tannier E, Daubin V, Boussau B. 2015. Genome-scale phylogenetic analysis finds extensive gene transfer among fungi. Philos. Trans. R. Soc. B 370:167820140335
    [Google Scholar]
  93. Szöllősi GJ, Tannier E, Lartillot N, Daubin V. 2013. Lateral gene transfer from the dead. Syst. Biol. 62:3386–97
    [Google Scholar]
  94. Thompson JN. 1994. The Coevolutionary Process Chicago: Univ. Chicago Press
  95. Thompson JN. 2005. The Geographic Mosaic of Coevolution Chicago: Univ. Chicago Press
  96. Wang AY, Peng YQ, Harder LD, Huang JF, Yang DR et al. 2019. The nature of interspecific interactions and co-diversification patterns, as illustrated by the fig microcosm. New Phytol 224:31304–15
    [Google Scholar]
  97. Wang B, Qiu YL. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:5299–363
    [Google Scholar]
  98. Weber MG, Agrawal AA. 2014. Defense mutualisms enhance plant diversification. PNAS 111:4616442–47
    [Google Scholar]
  99. Weber MG, Wagner CE, Best RJ, Harmon LJ, Matthews B. 2017. Evolution in a community context: on integrating ecological interactions and macroevolution. Trends Ecol. Evol. 32:4291–304
    [Google Scholar]
  100. Wilcoxon F 1992. Individual comparisons by ranking methods. Breakthroughs in Statistics S Kotz, NL Johnson 196–202 Berlin: Springer
    [Google Scholar]
  101. Zeng Y, Wiens JJ. 2021. Do mutualistic interactions last longer than antagonistic interactions?. Proc. R. Soc. B 2881958:20211457
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102320-112823
Loading
/content/journals/10.1146/annurev-ecolsys-102320-112823
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error