1932

Abstract

Evolutionary biology is multivariate, and advances in phylogenetic comparative methods for multivariate phenotypes have surged to accommodate this fact. Evolutionary trends in multivariate phenotypes are derived from distances and directions between species in a multivariate phenotype space. For these patterns to be interpretable, phenotypes should be characterized by traits in commensurate units and scale. Visualizing such trends, as is achieved with phylomorphospaces, should continue to play a prominent role in macroevolutionary analyses. Evaluating phylogenetic generalized least squares (PGLS) models (e.g., phylogenetic analysis of variance and regression) is valuable, but using parametric procedures is limited to only a few phenotypic variables. In contrast, nonparametric, permutation-based PGLS methods provide a flexible alternative and are thus preferred for high-dimensional multivariate phenotypes. Permutation-based methods for evaluating covariation within multivariate phenotypes are also well established and can test evolutionary trends in phenotypic integration. However, comparing evolutionary rates and modes in multivariate phenotypes remains an important area of future development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110218-024555
2019-11-02
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/50/1/annurev-ecolsys-110218-024555.html?itemId=/content/journals/10.1146/annurev-ecolsys-110218-024555&mimeType=html&fmt=ahah

Literature Cited

  1. Adams DC. 2010. Parallel evolution of character displacement driven by competitive selection in terrestrial salamanders. BMC Evol. Biol. 10:72
    [Google Scholar]
  2. Adams DC. 2013. Comparing evolutionary rates for different phenotypic traits on a phylogeny using likelihood. Syst. Biol. 62:181–92
    [Google Scholar]
  3. Adams DC. 2014a. A generalized Κ statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst. Biol. 63:685–97
    [Google Scholar]
  4. Adams DC. 2014b. A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data. Evolution 68:2675–88
    [Google Scholar]
  5. Adams DC. 2014c. Quantifying and comparing phylogenetic evolutionary rates for shape and other high-dimensional phenotypic data. Syst. Biol. 63:166–77
    [Google Scholar]
  6. Adams DC, Collyer ML. 2015. Permutation tests for phylogenetic comparative analyses of high-dimensional shape data: What you shuffle matters. Evolution 69:823–29
    [Google Scholar]
  7. Adams DC, Collyer ML. 2016. On the comparison of the strength of morphological integration across morphometric datasets. Evolution 70:2623–31
    [Google Scholar]
  8. Adams DC, Collyer ML. 2018a. Multivariate phylogenetic comparative methods: evaluations, comparisons, and recommendations. Syst. Biol. 67:14–31
    [Google Scholar]
  9. Adams DC, Collyer ML. 2018b. Phylogenetic ANOVA: group-clade aggregation, biological challenges, and a refined permutation procedure. Evolution 72:1204–15
    [Google Scholar]
  10. Adams DC, Felice RN. 2014. Assessing trait covariation and morphological integration on phylogenies using evolutionary covariance matrices. PLOS ONE 9:e94335
    [Google Scholar]
  11. Adams DC, Rohlf FJ, Slice DE 2013. A field comes of age: geometric morphometrics in the 21st century. Hystrix 24:7–14
    [Google Scholar]
  12. Aristide L, Bastide P, dos Reis SF, Pires dos Santos TM, Lopes RT et al. 2018. Multiple factors behind early diversification of skull morphology in the continental radiation of New World monkeys. Evolution 72:2697–711
    [Google Scholar]
  13. Arnold SJ. 2005. The ultimate causes of phenotypic integration: lost in translation. Evolution 59:2059–61
    [Google Scholar]
  14. Baab KL, Perry JMG, Rohlf FJ, Jungers WL 2014. Phylogenetic, ecological, and allometric correlates of cranial shape in Malagasy lemuriforms. Evolution 68:1450–68
    [Google Scholar]
  15. Bartoszek K, Pienaar J, Mostad P, Andersson S, Hansen TF 2012. A phylogenetic comparative method for studying multivariate adaptation. J. Theor. Biol. 314:204–15
    [Google Scholar]
  16. Bastide P, Ané C, Robin S, Mariadassou M 2018. Inference of adaptive shifts for multivariate correlated traits. Syst. Biol. 67:662–80
    [Google Scholar]
  17. Beaulieu JM, Jhwueng DC, Boettiger C, O'Meara BC 2012. Modeling stabilizing selection: expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evolution 66:2369–83
    [Google Scholar]
  18. Blackith RE, Reyment RA. 1971. Multivariate Morphometrics London: Academic
    [Google Scholar]
  19. Blomberg SP, Garland T Jr., Ives AR 2003. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57:717–45
    [Google Scholar]
  20. Blomberg SP, Lefevre JG, Wells JA, Waterhouse M 2012. Independent contrasts and PGLS regression estimators are equivalent. Syst. Biol. 61:382–91
    [Google Scholar]
  21. Blows MW. 2007. A tale of two matrices: multivariate approaches in evolutionary biology. J. Evol. Biol. 20:1–8
    [Google Scholar]
  22. Bookstein FL. 2013. Random walk as a null model for high-dimensional morphometrics of fossil series: geometrical considerations. Paleobiology 39:52–74
    [Google Scholar]
  23. Bookstein FL. 2015. Integration, disintegration, and self-similarity: characterizing the scales of shape variation in landmark data. Evol. Biol. 42:395–426
    [Google Scholar]
  24. Butler MA, King AA. 2004. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am. Nat. 164:683–95
    [Google Scholar]
  25. Caetano DS, Harmon LJ. 2019. Estimating correlated rates of trait evolution with uncertainty. Syst. Biol. 68:412–29
    [Google Scholar]
  26. Carroll AM, Wainwright PC, Huskey SH, Collar DC, Turingan RG 2004. Morphology predicts suction feeding performance in centrarchid fishes. J. Exp. Biol. 207:3873–81
    [Google Scholar]
  27. Catlett KK, Schwartz GT, Godfrey LR, Jungers WL 2010. “Life history space”: a multivariate analysis of life history variation in extant and extinct Malagasy lemurs. Am. J. Phys. Anthropol. 142:391–404
    [Google Scholar]
  28. Chazot N, Panara S, Zilbermann N, Blandin P, Le Poul Y et al. 2015. Morpho morphometrics: Shared ancestry and selection drive the evolution of wing size and shape in Morpho butterflies. Evolution 70:181–94
    [Google Scholar]
  29. Cheverud JM. 1996. Developmental integration and the evolution of pleiotropy. Am. Zool. 36:44–50
    [Google Scholar]
  30. Chira AM, Cooney CR, Bright JA, Capp EJR, Hughes EC et al. 2018. Correlates of rate heterogeneity in avian ecomorphological traits. Ecol. Lett. 21:1505–14
    [Google Scholar]
  31. Clavel J, Escarguel G, Merceron G 2015. mvMORPH: an R package for fitting multivariate evolutionary models to morphometric data. Methods Ecol. Evol. 6:1311–19
    [Google Scholar]
  32. Collar DC, Wainwright PC, Alfaro ME, Revell LJ, Mehta RS 2014. Biting disrupts integration to spur skull evolution in eels. Nat. Comm. 5:5505
    [Google Scholar]
  33. Collyer ML, Adams DC. 2007. Analysis of two-state multivariate phenotypic change in ecological studies. Ecology 88:683–92
    [Google Scholar]
  34. Collyer ML, Adams DC. 2018. RRPP: an R package for fitting linear models to high-dimensional data using residual randomization. Methods Ecol. Evol. 9:1772–79
    [Google Scholar]
  35. Collyer ML, Sekora DJ, Adams DC 2015. A method for analysis of phenotypic change for phenotypes described by high-dimensional data. Heredity 115:357–65
    [Google Scholar]
  36. Davis AM, Betancur-R R. 2017. Widespread ecomorphological convergence in multiple fish families spanning the marine–freshwater interface. Proc. R. Soc. B 284:20170565
    [Google Scholar]
  37. Denton JSS, Adams DC. 2015. A new phylogenetic test for comparing multiple high-dimensional evolutionary rates suggests interplay of evolutionary rates and modularity in lanternfishes (Myctophiformes; Myctophidae). Evolution 69:2425–40
    [Google Scholar]
  38. Du TY, Tissandier SC, Larsson HCE 2019. Integration and modularity of teleostean pectoral fin shape and its role in the diversification of acanthomorph fishes. Evolution 73:401–11
    [Google Scholar]
  39. Evans KM, Waltz BT, Tagliacollo VA, Sidlauskas BL, Albert JS 2017. Fluctuations in evolutionary integration allow for big brains and disparate faces. Sci. Rep. 7:40431
    [Google Scholar]
  40. Felice RN, Goswami A. 2018. Developmental origins of mosaic evolution in the avian cranium. PNAS 115:555–60
    [Google Scholar]
  41. Felsenstein J. 1973. Maximum-likelihood estimation of evolutionary trees from continuous characters. Am. J. Hum. Gen. 25:471–92
    [Google Scholar]
  42. Felsenstein J. 1981. Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution 35:1229–42
    [Google Scholar]
  43. Felsenstein J. 1985. Phylogenies and the comparative method. Am. Nat. 125:1–15
    [Google Scholar]
  44. Figueirido B, Serrano-Alarcón FJ, Slater GJ, Palmqvist P 2010. Shape at the cross-roads: homoplasy and history in the evolution of the carnivoran skull towards herbivory. J. Evol. Biol. 23:2579–94
    [Google Scholar]
  45. Figueirido B, Tseng ZJ, Serrano-Alarcón FJ, Martín-Serra A, Pastor JF 2014. A three-dimensional computer simulation of feeding behaviour in red and giant pandas relates skull biomechanics with dietary niche partitioning. Biol. Lett. 10:20140196
    [Google Scholar]
  46. Foster KL, Piller KR. 2018. Disentangling the drivers of diversification in an imperiled group of freshwater fishes (Cyprinodontiformes: Goodeidae). BMC Evol. Biol. 18:116
    [Google Scholar]
  47. Friedman ST, Price SA, Hoey AS, Wainwright PC 2016. Ecomorphological convergence in planktivorous surgeonfishes. J. Evol. Biol. 29:965–78
    [Google Scholar]
  48. Garland T Jr 1992. Rate tests for phenotypic evolution using phylogenetically independent contrasts. Am. Nat. 140:2104–11
    [Google Scholar]
  49. Garland T Jr, Dickerman AW, Janis CM, Jones JA. 1993. Phylogenetic analysis of covariance by computer simulation. Syst. Biol. 43:265–92
    [Google Scholar]
  50. Garland T Jr., Ives AR 2000. Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am. Nat. 155:346–64
    [Google Scholar]
  51. Goolsby EW. 2015. Phylogenetic comparative methods for evaluating the evolutionary history of function-valued traits. Syst. Biol. 64:568–78
    [Google Scholar]
  52. Goolsby EW. 2016. Likelihood-based parameter estimation for high-dimensional phylogenetic comparative models: overcoming the limitations of “distance-based” methods. Syst. Biol. 65:852–70
    [Google Scholar]
  53. Grafen A. 1989. The phylogenetic regression. Philos. Trans. R. Soc. B 326:119–57
    [Google Scholar]
  54. Grunstra NDS, Mitteroecker P, Foley RA 2018. A multivariate ecogeographic analysis of macaque craniodental variation. Am. J. Phys. Anthropol. 166:386–400
    [Google Scholar]
  55. Gunz P, Mitteroecker P. 2013. Semilandmarks: a method for quantifying curves and surfaces. Hystrix 24:103–9
    [Google Scholar]
  56. Hansen TF. 1997. Stabilizing selection and the comparative analysis of adaptation. Evolution 51:1341–51
    [Google Scholar]
  57. Harmon LJ. 2018. Phylogenetic Comparative Methods: Learning from Trees Minneapolis, MN: Open Text. Libr.
    [Google Scholar]
  58. Harmon LJ, Melville J, Larson A, Losos JB 2008. The role of geography and ecological opportunity in the diversification of day geckos (Phelsuma). Syst. Biol. 57:562–73
    [Google Scholar]
  59. Harvey PH, Pagel MD. 1991. The Comparative Method in Evolutionary Biology Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  60. Hipsley CA, Muller J. 2017. Developmental dynamics of ecomorphological convergence in a transcontinental lizard radiation. Evolution 71:936–48
    [Google Scholar]
  61. Huey RB, Garland T Jr, Turelli M 2019. Revisiting a key innovation in evolutionary biology: Felsenstein's “Phylogenies and the Comparative Method. Am. Nat. 193:655–72
    [Google Scholar]
  62. Huttegger SM, Mitteroecker P. 2011. Invariance and meaningfulness in phenotype spaces. Evol. Biol. 38:335–51
    [Google Scholar]
  63. Ingram T, Mahler DL. 2013. SURFACE: detecting convergent evolution from comparative data by fitting Ornstein-Uhlenbeck models with stepwise Akaike Information Criterion. Methods Ecol. Evol. 4:416–25
    [Google Scholar]
  64. Khabbazian M, Kriebel R, Rohe K, Ané C 2016. Fast and accurate detection of evolutionary shifts in Ornstein-Uhlenbeck models. Methods Ecol. Evol. 7:811–24
    [Google Scholar]
  65. Kingsolver JG, Gomulkiewicz R, Carter PA 2001. Variation, selection and evolution of function-valued traits. Genetica 112:87–104
    [Google Scholar]
  66. Kirkpatrick M, Meyer K. 2004. Direct estimation of genetic principal components: simplified analysis of complex phenotypes. Genetics 168:2295–306
    [Google Scholar]
  67. Klingenberg CP. 2014. Studying morphological integration and modularity at multiple levels: concepts and analysis. Philos. Trans. R. Soc. B 369:20130249
    [Google Scholar]
  68. Klingenberg CP, Ekau W. 1996. A combined morphometric and phylogenetic analysis of an ecomorphological trend: pelagization in Antarctic fishes (Perciformes: Nototheniidae). Biol. J. Linn. Soc. 59:143–77
    [Google Scholar]
  69. Klingenberg CP, Gidaszewski NA. 2010. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Syst. Biol. 59:245–61
    [Google Scholar]
  70. Klingenberg CP, Marugán-Lobón J. 2013. Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context. Syst. Biol. 62:591–610
    [Google Scholar]
  71. Lande R. 1979. Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution 33:402–16
    [Google Scholar]
  72. Lande R, Arnold SJ. 1983. The measurement of selection on correlated characters. Evolution 37:1210–26
    [Google Scholar]
  73. Larouche O, Zelditch ML, Cloutier R 2018. Modularity promotes morphological divergence in ray-finned fishes. Sci. Rep. 8:7278
    [Google Scholar]
  74. Legendre P, Legendre L. 2012. Numerical Ecology Amsterdam: Elsevier
    [Google Scholar]
  75. Losos JB. 1992. The evolution of convergent structure in Caribbean Anolis communities. Syst. Biol. 41:403–20
    [Google Scholar]
  76. Mahler DL, Revell LJ, Glor RE, Losos JB 2010. Ecological opportunity and the rate of morphological evolution in the diversification of Greater Antillean Anoles. Evolution 64:2731–45
    [Google Scholar]
  77. Martin CH, Wainwright PC. 2011. Trophic novelty is linked to exceptional rates of morphological diversification in two adaptive radiations of Cyprinodon pupfish. Evolution 65:2197–212
    [Google Scholar]
  78. Martinez CM, McGee MD, Bornstein SR, Wainwright PC 2018. Feeding ecology underlies the evolution of cichlid jaw mobility. Evolution 72:1645–55
    [Google Scholar]
  79. Martins EP, Hansen TF. 1997. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am. Nat. 149:646–67
    [Google Scholar]
  80. McPeek MA, Shen L, Torrey JZ, Farid H 2008. The tempo and mode of three-dimensional morphological evolution in male reproductive structures. Am. Nat. 171:E158–78
    [Google Scholar]
  81. Mitteroecker P, Bookstein FL. 2007. The conceptual and statistical relationship between modularity and morphological integration. Syst. Biol. 56:818–36
    [Google Scholar]
  82. Mitteroecker P, Gunz P. 2009. Advances in geometric morphometrics. Evol. Biol. 36:235–47
    [Google Scholar]
  83. Mitteroecker P, Huttegger SM. 2009. The concept of morphospaces in evolutionary and developmental biology: mathematics and metaphors. Biol. Theory 4:54–67
    [Google Scholar]
  84. Moen DS, Irschick DJ, Wiens JJ 2013. Evolutionary conservation and convergence both lead to striking similarity in ecology, morphology and performance across continents in frogs. Proc. R. Soc. B 280:20132156
    [Google Scholar]
  85. Munkemuller T, Lavergne S, Bzeznik B, Dray S, Jombart T et al. 2012. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3:743–56
    [Google Scholar]
  86. Neaux D, Sansalone G, Ledogar JA, Ledogar SH, Luk THY et al. 2018. Basicranium and face: assessing the impact of morphological integration in primate evolution. J. Hum. Evol. 118:43–55
    [Google Scholar]
  87. Olson EC, Miller RL. 1958. Morphological Integration Chicago: Univ. Chicago Press
    [Google Scholar]
  88. O'Meara BC, Ané C, Sanderson MJ, Wainwright PC 2006. Testing for different rates of continuous trait evolution using likelihood. Evolution 60:922–33
    [Google Scholar]
  89. Pagel MD. 1999. Inferring the historical patterns of biological evolution. Nature 401:877–84
    [Google Scholar]
  90. Paluh DJ, Bauer AM. 2018. Phylogenetic history, allometry and disparate functional pressures influence the morphological diversification of the gekkotan quadrate, a keystone cranial element. Biol. J. Linn. Soc. 125:693–708
    [Google Scholar]
  91. Pavlicev M, Cheverud JM, Wagner GP 2009. Measuring morphological integration using eigenvalue variance. Evol. Biol. 36:157–70
    [Google Scholar]
  92. Pie MR, Campos LLF, Meyer ALS, Duran A 2017. The evolution of climatic niches in squamate reptiles. Proc. R. Soc. B 284:20170268
    [Google Scholar]
  93. Polly DP, Lawing AM, Fabre A, Goswami A 2013. Phylogenetic principal components analysis and geometric morphometrics. Hystrix 24:33–41
    [Google Scholar]
  94. Price SA, Wainwright PC, Bellwood DR, Kazancioglu E, Collar DC et al. 2010. Functional innovations and morphological diversification in parrotfish. Evolution 64:3057–68
    [Google Scholar]
  95. Revell LJ. 2009. Size-correction and principal components for interspecific comparative studies. Evolution 63:3258–68
    [Google Scholar]
  96. Revell LJ, Collar DC. 2009. Phylogenetic analysis of the evolutionary correlation using likelihood. Evolution 63:1090–100
    [Google Scholar]
  97. Revell LJ, Harmon LJ. 2008. Testing quantitative genetic hypotheses about the evolutionary rate matrix for continuous characters. Evol. Ecol. Res. 10:311–31
    [Google Scholar]
  98. Rohlf FJ. 2001. Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution 55:2143–60
    [Google Scholar]
  99. Rohlf FJ. 2002. Geometric morphometrics and phylogeny. Morphology, Shape and Phylogeny N MacLeod, PL Forey 175–93 London: Taylor & Francis
    [Google Scholar]
  100. Royer-Carenzi M, Didier G. 2016. A comparison of ancestral state reconstruction methods for quantitative characters. J. Theor. Biol. 404:126–42
    [Google Scholar]
  101. Serb JM, Sherratt E, Alejandrino A, Adams DC 2017. Phylogenetic convergence and multiple shell shape optima for gliding scallops (Bivalvia: Pectinidae). J. Evol. Biol. 30:1736–47
    [Google Scholar]
  102. Sherratt E, Alejandrino A, Kraemer AC, Serb JM, Adams DC 2016. Trends in the sand: directional evolution in the shell shape of recessing scallops (Bivalvia: Pectinidae). Evolution 70:2061–73
    [Google Scholar]
  103. Sherratt E, Serb JM, Adams DC 2017. Rates of morphological evolution, asymmetry and morphological integration of shell shape in scallops. BMC Evol. Biol. 17:248
    [Google Scholar]
  104. Sidlauskas B. 2008. Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution 62:3135–56
    [Google Scholar]
  105. Stayton CT. 2015. The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evolution 69:2140–53
    [Google Scholar]
  106. Thomas GH, Freckleton RP, Székely T 2006. Comparative analyses of the influence of developmental mode on phenotypic diversification rates in shorebirds. Proc. R. Soc. B 273:1619–24
    [Google Scholar]
  107. Uyeda JC, Caetano DS, Pennell MW 2015. Comparative analysis of principal components can be misleading. Syst. Biol. 64:677–89
    [Google Scholar]
  108. Valenzuela N. 2010. Multivariate expression analysis of the gene network underlying sexual development in turtle embryos with temperature-dependent and genotypic sex determination. Sex. Dev. 4:39–49
    [Google Scholar]
  109. Yuan ML, Wake MH, Wang IJ 2019. Phenotypic integration between claw and toepad traits promotes microhabitat specialization in the Anolis adaptive radiation. Evolution 73:231–44
    [Google Scholar]
  110. Zelditch ML, Li J, Tran LAP, Swiderski DL 2015. Relationships of diversity, disparity, and their evolutionary rates in squirrels (Sciuridae). Evolution 69:1284–300
    [Google Scholar]
  111. Zelditch ML, Ye J, Mitchell JS, Swiderski DL 2017. Rare ecomorphological convergence on a complex adaptive landscape: body size and diet mediate evolution of jaw shape in squirrels (Sciuridae). Evolution 71:633–49
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110218-024555
Loading
/content/journals/10.1146/annurev-ecolsys-110218-024555
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error