1932

Abstract

While the importance of mutualisms across the tree of life is recognized, it is not understood why some organisms evolve high levels of dependence on mutualistic partnerships, while other species remain autonomous or retain or regain minimal dependence on partners. We identify four main pathways leading to the evolution of mutualistic dependence. Then, we evaluate current evidence for three predictions: () Mutualisms with different levels of dependence have distinct stabilizing mechanisms against exploitation and cheating, () less dependent mutualists will return to autonomy more often than those that are highly dependent, and () obligate mutualisms should be less context dependent than facultative ones. Although we find evidence supporting all three predictions, we stress that mutualistic partners follow diverse paths toward—and away from—dependence. We also highlight the need to better examine asymmetry in partner dependence. Recognizing how variation in dependence influences the stability, breakdown, and context dependence of mutualisms generates new hypotheses regarding how and why the benefits of mutualistic partnerships differ over time and space.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110218-024629
2020-11-02
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/51/1/annurev-ecolsys-110218-024629.html?itemId=/content/journals/10.1146/annurev-ecolsys-110218-024629&mimeType=html&fmt=ahah

Literature Cited

  1. Aanen DK, Henrik H, Debets AJ, Kerstes NA, Hoekstra RF, Boomsma JJ 2009. High symbiont relatedness stabilizes mutualistic cooperation in fungus-growing termites. Science 326:1103–6
    [Google Scholar]
  2. Abrahamczyk S, Souto-Vilarós D, Renner SS 2014. Escape from extreme specialization: passionflowers, bats and the sword-billed hummingbird. Proc. R. Soc. B 281:20140888
    [Google Scholar]
  3. Akçay E. 2015. Evolutionary models of mutualism. See Bronstein 2015 57–76
  4. Allen MF. 1991. The Ecology of Mycorrhizae Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  5. Als TD, Vila R, Kandul NP, Nash DR, Yen SH et al. 2004. The evolution of alternative parasitic life histories in large blue butterflies. Nature 432:386–90
    [Google Scholar]
  6. Andrews M, Andrews ME. 2017. Specificity in legume-rhizobia symbioses. Int. J. Mol. Sci. 18:705
    [Google Scholar]
  7. Ansorge R, Romano S, Sayavedra L, Porras MÁG, Kupczok A et al. 2019. Functional diversity enables multiple symbiont strains to coexist in deep-sea mussels. Nat. Microbiol. 4:2487–97
    [Google Scholar]
  8. Axelrod R, Hamilton WD. 1981. The evolution of cooperation. Science 211:1390–96
    [Google Scholar]
  9. Bascompte J, Jordano P, Melián CJ, Olesen JM 2003. The nested assembly of plant–animal mutualistic networks. PNAS 100:9383–87
    [Google Scholar]
  10. Bastolla U, Fortuna MA, Pascual-García A, Ferrera A, Luque B, Bascompte J 2009. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458:1018–20
    [Google Scholar]
  11. Batstone RT, Carscadden KA, Afkhami ME, Frederickson ME 2018. Using niche breadth theory to explain generalization in mutualisms. Ecology 99:1039–50
    [Google Scholar]
  12. Bennett GM, Moran NA. 2015. Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. PNAS 112:10169–76
    [Google Scholar]
  13. Bidartondo MI, Bruns TD. 2001. Extreme specificity in epiparasitic Monotropoideae (Ericaceae): widespread phylogenetic and geographical structure. Mol. Ecol. 10:2285–95
    [Google Scholar]
  14. Boscaro V, Fokin SI, Petroni G, Verni F, Keeling PJ, Vannini C 2018. Symbiont replacement between bacteria of different classes reveals additional layers of complexity in the evolution of symbiosis in the ciliate Euplotes. . Protist 169:43–52
    [Google Scholar]
  15. Bright M, Bulgheresi S. 2010. A complex journey: transmission of microbial symbionts. Nat. Rev. Microbiol. 8:218–30
    [Google Scholar]
  16. Bronstein JL. 1994. Conditional outcomes in mutualistic interactions. Trends Ecol. Evol. 9:214–17
    [Google Scholar]
  17. Bronstein JL. 2001a. The exploitation of mutualisms. Ecol. Lett. 4:277–87
    [Google Scholar]
  18. Bronstein JL. 2001b. The costs of mutualism. Am. Zool. 41:825–39
    [Google Scholar]
  19. Bronstein JL 2015. Mutualism Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  20. Bshary R. 2002. Biting cleaner fish use altruism to deceive image-scoring client reef fish. Proc. R. Soc. B 269:2087–93
    [Google Scholar]
  21. Bublitz DC, Chadwick GL, Magyar JS, Sandoz KM, Brooks DM et al. 2019. Peptidoglycan production by an insect-bacterial mosaic. Cell 179:703–12
    [Google Scholar]
  22. Bull JJ, Rice WR. 1991. Distinguishing mechanisms for the evolution of co-operation. J. Theor. Biol. 149:63–74
    [Google Scholar]
  23. Chamberlain SA, Bronstein JL, Rudgers JA 2014. How context dependent are species interactions. ? Ecol. Lett. 17:881–90
    [Google Scholar]
  24. Chomicki G, Janda M, Renner SS 2017. The assembly of ant-farmed gardens: mutualism specialization following host broadening. Proc. R. Soc. B 284:20161759
    [Google Scholar]
  25. Chomicki G, Kadereit G, Renner SS, Kiers ET 2020a. Tradeoffs in the evolution of plant farming by ants. PNAS 117:2535–43
    [Google Scholar]
  26. Chomicki G, Renner SS. 2015. Phylogenetics and molecular clocks reveal the repeated evolution of ant-plants after the late Miocene in Africa and the early Miocene in Australasia and the Neotropics. New Phytol 207:411–24
    [Google Scholar]
  27. Chomicki G, Renner SS. 2016. Obligate plant farming by a specialized ant. Nat. Plants 2:16181
    [Google Scholar]
  28. Chomicki G, Renner SS. 2017. Partner abundance controls mutualism stability and the pace of morphological change over geologic time. PNAS 114:3951–56
    [Google Scholar]
  29. Chomicki G, Renner SS. 2019. Farming by ants remodels nutrient uptake in epiphytes. New Phytol 223:2011–23
    [Google Scholar]
  30. Chomicki G, Staedler YM, Schönenberger J, Renner SS 2016. Partner choice through concealed floral sugar rewards evolved with the specialization of ant–plant mutualisms. New Phytol 211:1358–70
    [Google Scholar]
  31. Chomicki G, Ward PS, Renner SS 2015. Macroevolutionary assembly of ant/plant symbioses: Pseudomyrmex ants and their ant-housing plants in the Neotropics. Proc. R. Soc. B 282:20152200
    [Google Scholar]
  32. Chomicki G, Weber M, Antonelli A, Bascompte J, Kiers ET 2019. The impact of mutualisms on species richness. Trends Ecol. Evol. 34:698–711
    [Google Scholar]
  33. Chomicki G, Werner G, West SA, Kiers ET 2020b. Compartmentalization drives the evolution of symbiotic cooperation. Philos. Trans. R. Soc. B 375:20190602
    [Google Scholar]
  34. Colwell RK, Dunn RR, Harris NC 2012. Coextinction and persistence of dependent species in a changing world. Annu. Rev. Ecol. Evol. Syst. 43:183–203
    [Google Scholar]
  35. Connor RC. 1986. Pseudo-reciprocity: investing in mutualism. Anim. Behav. 34:1562–66
    [Google Scholar]
  36. Connor RC. 1995. The benefits of mutualism: a conceptual framework. Biol. Rev. 70:427–57
    [Google Scholar]
  37. Couret J, Huynh‐Griffin L, Antolic‐Soban I, Acevedo‐Gonzalez TS, Gerardo NM 2019. Even obligate symbioses show signs of ecological contingency: Impacts of symbiosis for an invasive stinkbug are mediated by host plant context. Ecol. Evol. 9:9087–99
    [Google Scholar]
  38. Culley TM, Weller SG, Sakai AK 2002. The evolution of wind pollination in angiosperms. Trends Ecol. Evol. 17:361–69
    [Google Scholar]
  39. De Mazancourt C, Loreau M, Dieckmann ULF 2005. Understanding mutualism when there is adaptation to the partner. J. Ecol. 93:305–14
    [Google Scholar]
  40. Denison RF, Kiers ET. 2004. Lifestyle alternatives for rhizobia: mutualism, parasitism, and forgoing symbiosis. FEMS Microbiol. Lett. 237:187–93
    [Google Scholar]
  41. Douglas AE, Smith DC. 1989. Are endosymbioses mutualistic. ? Trends Ecol. Evol. 4:350–52
    [Google Scholar]
  42. Drescher K, Nadell CD, Stone HA, Wingreen NS, Bassler BL 2014. Solutions to the public goods dilemma in bacterial biofilms. Curr. Biol. 24:50–55
    [Google Scholar]
  43. Dunn RR, Harris NC, Colwell RK, Koh LP, Sodhi NS 2009. The sixth mass coextinction: Are most endangered species parasites and mutualists. ? Proc. R. Soc. B 276:3037–45
    [Google Scholar]
  44. Ehinger M, Mohr TJ, Starcevich JB, Sachs JL, Porter SS, Simms EL 2014. Specialization-generalization trade-off in a Bradyrhizobium symbiosis with wild legume hosts. BMC Ecol 14:8
    [Google Scholar]
  45. Ellers J, Kiers ET, Currie CR, McDonald BR, Visser B 2012. Ecological interactions drive evolutionary loss of traits. Ecol. Lett. 15:1071–82
    [Google Scholar]
  46. Estrada A, Fleming TH 2012. Frugivores and Seed Dispersal Dordrecht, Neth: Springer Neth.
    [Google Scholar]
  47. Federle W, Maschwitz U, Fiala B, Riederer M, Hölldobler B 1997. Slippery ant-plants and skillful climbers: selection and protection of specific ant partners by epicuticular wax blooms in Macaranga (Euphorbiaceae). Oecologia 112:217–24
    [Google Scholar]
  48. Federle W, Rheindt FE. 2005. Macaranga ant-plants hide food from intruders: correlation of food presentation and presence of wax barriers analysed using phylogenetically independent contrasts. Biol. J. Linn. Soc. 84:177–93
    [Google Scholar]
  49. Ferguson BJ, Mens C, Hastwell AH, Zhang M, Su H et al. 2019. Legume nodulation: The host controls the party. Plant Cell Environ 42:41–51
    [Google Scholar]
  50. Fisher RM, Henry LM, Cornwallis CK, Kiers ET, West SA 2017. The evolution of host-symbiont dependence. Nat. Commun. 8:15973
    [Google Scholar]
  51. Foster KR, Wenseleers T. 2006. A general model for the evolution of mutualisms. J. Evol. Biol. 19:1283–93
    [Google Scholar]
  52. Frederickson ME. 2013. Rethinking mutualism stability: cheaters and the evolution of sanctions. Q. Rev. Biol. 88:269–95
    [Google Scholar]
  53. Frederickson ME. 2017. Mutualisms are not on the verge of breakdown. Trends Ecol. Evol. 32:727–34
    [Google Scholar]
  54. Friesen ML. 2012. Widespread fitness alignment in the legume–rhizobium symbiosis. New Phytol 194:1096–111
    [Google Scholar]
  55. Gano‐Cohen KA, Wendlandt CE, Stokes PJ, Blanton MA, Quides KW et al. 2019. Interspecific conflict and the evolution of ineffective rhizobia. Ecol. Lett. 22:914–24
    [Google Scholar]
  56. Garcia JR, Gerardo NM. 2014. The symbiont side of symbiosis: Do microbes really benefit. ? Front. Microbiol. 5:510
    [Google Scholar]
  57. Ghoul M, Griffin AS, West SA 2014. Toward an evolutionary definition of cheating. Evolution 68:318–31
    [Google Scholar]
  58. Gilarranz LJ, Sabatino M, Aizen MA, Bascompte J 2015. Hot spots of mutualistic networks. J. Anim. Ecol. 84:407–13
    [Google Scholar]
  59. Gomes SI, van Bodegom PM, Merckx VS, Soudzilovskaia N 2019. Environmental drivers for cheaters of arbuscular mycorrhizal symbiosis in tropical rainforests. New Phytol 223:1575–83
    [Google Scholar]
  60. Gruber-Vodicka HR, Dirks U, Leisch N, Baranyi C, Stoecker K et al. 2011. Paracatenula, an ancient symbiosis between thiotrophic Alphaproteobacteria and catenulid flatworms. PNAS 108:12078–83
    [Google Scholar]
  61. Guimarães PR Jr, Pires MM, Jordano P, Bascompte J, Thompson JN. 2017. Indirect effects drive coevolution in mutualistic networks. Nature 550:511–14
    [Google Scholar]
  62. Gutiérrez-Valencia J, Chomicki G, Renner SS 2017. Recurrent breakdowns of mutualisms with ants in the neotropical ant-plant genus Cecropia (Urticaceae). Mol. Phylogenet. Evol. 11:196–205
    [Google Scholar]
  63. Hamada M, Schröder K, Bathia J, Kürn U, Fraune S et al. 2018. Metabolic co-dependence drives the evolutionarily ancient Hydra–Chlorella symbiosis. eLife 7:e35122
    [Google Scholar]
  64. Hamilton WD. 1971. Geometry of the selfish herd. J. Theor. Biol. 31:295–311
    [Google Scholar]
  65. Harcombe W. 2010. Novel cooperation experimentally evolved between species. Evolution 64:2166–72
    [Google Scholar]
  66. Harcombe WR, Chacón JM, Adamowicz EM, Chubiz LM, Marx CJ 2018. Evolution of bidirectional costly mutualism from byproduct consumption. PNAS 115:12000–4
    [Google Scholar]
  67. Harrison TL, Simonsen AK, Stinchcombe JR, Frederickson ME 2018. More partners, more ranges: generalist legumes spread more easily around the globe. Biol. Lett. 14:20180616
    [Google Scholar]
  68. Heath KD, Stinchcombe JR. 2014. Explaining mutualism variation: a new evolutionary paradox. ? Evolution 68:309–17
    [Google Scholar]
  69. Heil M, Barajas-Barron A, Orona-Tamayo D, Wielsch N, Svatos A 2014. Partner manipulation stabilises a horizontally transmitted mutualism. Ecol. Lett. 17:185–92
    [Google Scholar]
  70. Heil M, González-Teuber M, Clement LW, Kautz S, Verhaagh M, Bueno JCS 2009. Divergent investment strategies of Acacia myrmecophytes and the coexistence of mutualists and exploiters. PNAS 106:18091–96
    [Google Scholar]
  71. Heil M, Greiner S, Meimberg H, Krüger R, Noyer JL et al. 2004. Evolutionary change from induced to constitutive expression of an indirect plant resistance. Nature 430:205–8
    [Google Scholar]
  72. Hoeksema JD, Bruna EM. 2015. Context-dependent outcomes of mutualistic interactions. See Bronstein 2015 181–202
  73. Hojo MK, Pierce NE, Tsuji K 2015. Lycaenid caterpillar secretions manipulate attendant ant behavior. Curr. Biol. 25:2260–64
    [Google Scholar]
  74. Hosokawa T, Ishii Y, Nikoh N, Fujie M, Satoh N, Fukatsu T 2016. Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations. Nat. Microbiol. 1:15011
    [Google Scholar]
  75. Inouye DW. 1980. The terminology of floral larceny. Ecology 61:1251–53
    [Google Scholar]
  76. Jandér KC, Herre EA. 2010. Host sanctions and pollinator cheating in the fig tree–fig wasp mutualism. Proc. R. Soc. B 277:1481–88
    [Google Scholar]
  77. Johnson CA, Bronstein JL. 2019. Coexistence and competitive exclusion in mutualism. Ecology 100:e02708
    [Google Scholar]
  78. Jones EI, Afkhami ME, Akçay E, Bronstein JL, Bshary R et al. 2015. Cheaters must prosper: reconciling theoretical and empirical perspectives on cheating in mutualism. Ecol. Lett. 18:1270–84
    [Google Scholar]
  79. Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R et al. 2016. A eukaryote without a mitochondrial organelle. Curr. Biol. 26:1274–84
    [Google Scholar]
  80. Keeling PJ, McCutcheon JP. 2017. Endosymbiosis: The feeling is not mutual. J. Theor. Biol. 434:75–79
    [Google Scholar]
  81. Keeling PJ, McCutcheon JP, Doolittle WF 2015. Symbiosis becoming permanent: survival of the luckiest. PNAS 112:10101–3
    [Google Scholar]
  82. Kiers ET, Denison RF. 2008. Sanctions, cooperation, and the stability of plant-rhizosphere mutualisms. Annu. Rev. Ecol. Evol. Syst. 39:215–36
    [Google Scholar]
  83. Kiers ET, Denison RF, Kawakita A, Herre EA 2011. The biological reality of host sanctions and partner fidelity. PNAS 108:E7
    [Google Scholar]
  84. Kiers ET, Palmer TM, Ives AR, Bruno JF, Bronstein JL 2010. Mutualisms in a changing world: an evolutionary perspective. Ecol. Lett. 13:1459–74
    [Google Scholar]
  85. Kiers ET, Ratcliff WC, Denison RF 2013. Single-strain inoculation may create spurious correlations between legume fitness and rhizobial fitness. New Phytol 198:4–6
    [Google Scholar]
  86. Kiers ET, Rousseau RA, West SA, Denison RF 2003. Host sanctions and the legume–rhizobium mutualism. Nature 425:78–81
    [Google Scholar]
  87. Kiers ET, West SA. 2015. Evolving new organisms via symbiosis. Science 348:392–94
    [Google Scholar]
  88. Kiers ET, West SA. 2016. Evolution: Welcome to symbiont prison. Curr. Biol. 26:R66–68
    [Google Scholar]
  89. Kiessling W, Baron-Szabo RC. 2004. Extinction and recovery patterns of scleractinian corals at the Cretaceous-Tertiary boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 214:195–223
    [Google Scholar]
  90. Klein RW, Kovac D, Schellerich A, Maschwitz U 1992. Mealybug-carrying by swarming queens of a Southeast Asian bamboo-inhabiting ant. Naturwissenschaften 79:422–23
    [Google Scholar]
  91. Lahti DC, Johnson NA, Ajie BC, Otto SP, Hendry AP et al. 2009. Relaxed selection in the wild. Trends Ecol. Evol. 24:487–96
    [Google Scholar]
  92. Leeks A, dos Santos M, West SA 2019. Transmission, relatedness, and the evolution of cooperative symbionts. J. Evol. Biol. 32:1036–45
    [Google Scholar]
  93. Letourneau DK. 1990. Code of ant-plant mutualism broken by parasite. Science 248:215–17
    [Google Scholar]
  94. Li H, Sosa-Calvo J, Horn HA, Pupo MT, Clardy J et al. 2018. Convergent evolution of complex structures for ant–bacterial defensive symbiosis in fungus-farming ants. PNAS 115:10720–25
    [Google Scholar]
  95. Luo S-X, Liu T-T, Cui F, Yang Z-Y, Hu X-Y, Renner SS 2017. Coevolution with pollinating resin midges led to resin-filled nurseries in the androecia, gynoecia, and tepals of Kadsura (Schisandraceae). Ann. Bot. 120:653–64
    [Google Scholar]
  96. Luo S-X, Zhang L-J, Yuan S, Ma Z-H, Zhang D-X, Renner SS 2018. The largest early-diverging angiosperm family is mostly pollinated by ovipositing insects and so are most surviving lineages of early angiosperms. Proc. R. Soc. B 285:20172365
    [Google Scholar]
  97. Machado CA, Jousselin E, Kjellberg F, Compton SG, Herre EA 2001. Phylogenetic relationships, historical biogeography and character evolution of fig-pollinating wasps. Proc. R. Soc. B 268:1468685–94
    [Google Scholar]
  98. Maherali H, Oberle B, Stevens PF, Cornwell WK, McGlinn DJ 2016. Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. Am. Nat. 188:E113–25
    [Google Scholar]
  99. Maloof JE, Inouye DW. 2000. Are nectar robbers cheaters or mutualists. ? Ecology 81:102651–61
    [Google Scholar]
  100. Matsuura Y, Moriyama M, Łukasik P, Vanderpool D, Tanahashi M et al. 2018. Recurrent symbiont recruitment from fungal parasites in cicadas. PNAS 115:E5970–79
    [Google Scholar]
  101. McCutcheon JP, Boyd BM, Dale C 2019. The life of an insect endosymbiont from the cradle to the grave. Curr. Biol. 29:R485–95
    [Google Scholar]
  102. Meehan CJ, Olson EJ, Reudink MW, Kyser TK, Curry RL 2009. Herbivory in a spider through exploitation of an ant–plant mutualism. Curr. Biol. 19:R892–93
    [Google Scholar]
  103. Merckx V, Freudenstein JV. 2010. Evolution of mycoheterotrophy in plants: a phylogenetic perspective. New Phytol 185:605–9
    [Google Scholar]
  104. Monnin D, Jackson R, Kiers ET, Bunker M, Ellers J, Henry LM 2020. Parallel evolution in the integration of a co-obligate aphid symbiosis. Curr. Biol. 30:1949–57
    [Google Scholar]
  105. Morris JJ, Lenski RE, Zinser ER 2012. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. mBio 3:e00036–12
    [Google Scholar]
  106. Mueller UG, Mikheyev AS, Hong E, Sen R, Warren DL et al. 2011. Evolution of cold-tolerant fungal symbionts permits winter fungiculture by leafcutter ants at the northern frontier of a tropical ant–fungus symbiosis. PNAS 108:4053–56
    [Google Scholar]
  107. Mueller UG, Poulin J, Adams RM 2004. Symbiont choice in a fungus-growing ant (Attini, Formicidae). Behav. Ecol. 15:357–64
    [Google Scholar]
  108. Nassar JM, Ramírez N, Linares O 1997. Comparative pollination biology of Venezuelan columnar cacti and the role of nectar-feeding bats in their sexual reproduction. Am. J. Bot. 84:918–27
    [Google Scholar]
  109. Netz C, Renner SS. 2017. Long-spurred Angraecum orchids and long-tongued sphingid moths on Madagascar: a time frame for Darwin's predicted Xanthopan/Angraecum coevolution. Biol. J. Linn. Soc. 122:469–78
    [Google Scholar]
  110. Noë R. 2001. Biological markets: partner choice as the driving force behind the evolution of mutualisms. Economics in Nature: Social Dilemmas, Mate Choice and Biological Markets R Noë, JARAM Van Hooff, P Hammerstein 93–118 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  111. Noë R, Hammerstein P. 1994. Biological markets: Supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behav. Ecol. Sociobiol. 35:1–11
    [Google Scholar]
  112. Noë R, Kiers ET. 2018. Mycorrhizal markets, firms, and co-ops. Trends Ecol. Evol. 33:777–89
    [Google Scholar]
  113. Nussbaumer AD, Fisher CR, Bright M 2006. Horizontal endosymbiont transmission in hydrothermal vent tubeworms. Nature 441:345–48
    [Google Scholar]
  114. Oliver KM, Russell JA, Moran NA, Hunter MS 2003. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. PNAS 100:1803–7
    [Google Scholar]
  115. Oono R, Denison RF, Kiers ET 2009. Controlling the reproductive fate of rhizobia: How universal are legume sanctions. ? New Phytol 183:967–79
    [Google Scholar]
  116. Orona‐Tamayo D, Wielsch N, Blanco‐Labra A, Svatos A, Farías‐Rodríguez R, Heil M 2013. Exclusive rewards in mutualisms: Ant proteases and plant protease inhibitors create a lock–key system to protect Acacia food bodies from exploitation. Mol. Ecol. 22:4087–100
    [Google Scholar]
  117. Palmer TM, Doak DF, Stanton ML, Bronstein JL, Kiers ET et al. 2010. Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism. PNAS 107:17234–39
    [Google Scholar]
  118. Palmer TM, Stanton ML, Young TP, Goheen JR, Pringle RM, Karban R 2008. Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna. Science 319:192–95
    [Google Scholar]
  119. Parkinson JE, Banaszak AT, Altman NS, LaJeunesse TC, Baums IB 2015. Intraspecific diversity among partners drives functional variation in coral symbioses. Sci. Rep. 5:15667
    [Google Scholar]
  120. Peay KG. 2016. The mutualistic niche: mycorrhizal symbiosis and community dynamics. Annu. Rev. Ecol. Evol. Syst. 47:143–64
    [Google Scholar]
  121. Pellmyr O, Huth CJ. 1994. Evolutionary stability of mutualism between yuccas and yucca moths. Nature 372:257–60
    [Google Scholar]
  122. Pellmyr O, Leebens-Mack J, Huth CJ 1996. Non-mutualistic yucca moths and their evolutionary consequences. Nature 380:155–56
    [Google Scholar]
  123. Pernice M, Hughes DJ. 2019. Forecasting global coral bleaching. Nat. Clim. Change 9:803–4
    [Google Scholar]
  124. Poisot T, Bever JD, Nemri A, Thrall PH, Hochberg ME 2011. A conceptual framework for the evolution of ecological specialisation. Ecol. Lett. 14:841–51
    [Google Scholar]
  125. Ponnudurai R, Kleiner M, Sayavedra L, Petersen JM, Moche M et al. 2017. Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis. ISME J 11:463–77
    [Google Scholar]
  126. Porter SS, Faber-Hammond J, Montoya AP, Friesen ML, Sackos C 2019. Dynamic genomic architecture of mutualistic cooperation in a wild population of Mesorhizobium. . ISME J 13:301–15
    [Google Scholar]
  127. Purvis A, Gittleman JL, Cowlishaw G, Mace GM 2000. Predicting extinction risk in declining species. Proc. R. Soc. B 267:1947–52
    [Google Scholar]
  128. Queller DC. 1985. Kinship, reciprocity and synergism in the evolution of social behavior. Nature 318:366–67
    [Google Scholar]
  129. Ranger CM, Biedermann PH, Phuntumart V, Beligala GU, Ghosh S et al. 2018. Symbiont selection via alcohol benefits fungus farming by ambrosia beetles. PNAS 115:4447–52
    [Google Scholar]
  130. Razo‐Belman R, Molina‐Torres J, Martínez O, Heil M 2018. Plant‐ants use resistance‐related plant odours to assess host quality before colony founding. J. Ecol. 106:379–90
    [Google Scholar]
  131. Regus JU, Quides KW, O'Neill MR, Suzuki R, Savory EA et al. 2017. Cell autonomous sanctions in legumes target ineffective rhizobia in nodules with mixed infections. Am. J. Bot. 104:1299–312
    [Google Scholar]
  132. Renner SS. 1983. The widespread occurrence of anther destruction by Trigona bees in Melastomataceae. Biotropica 15:257–67
    [Google Scholar]
  133. Renner SS. 1998. Effects of habitat fragmentation on plant pollinator interactions in the tropics. Dynamics of Tropical Communities DM Newbery, HHT Prins, ND Brown 339–60 Oxford, UK: Blackwell Sci. Publ.
    [Google Scholar]
  134. Rodriguez LJ, Bain A, Chou LS, Conchou L, Cruaud A et al. 2017. Diversification and spatial structuring in the mutualism between Ficus septica and its pollinating wasps in insular South East Asia. BMC Evol. Biol. 17:207
    [Google Scholar]
  135. Rojas-Nossa SV, Sánchez JM, Navarro L 2016. Nectar robbing: a common phenomenon mainly determined by accessibility constraints, nectar volume and density of energy rewards. Oikos 125:1044–55
    [Google Scholar]
  136. Russell SL. 2019. Transmission mode is associated with environment type and taxa across bacteria-eukaryote symbioses: a systematic review and meta-analysis. FEMS Microbiol. Lett. 366:fnz013
    [Google Scholar]
  137. Sachs JL. 2015. The exploitation of mutualisms. See Bronstein 2015 93–104
  138. Sachs JL, Mueller UG, Wilcox TP, Bull JJ 2004. The evolution of cooperation. Q. Rev. Biol. 79:135–60
    [Google Scholar]
  139. Sachs JL, Simms EL. 2006. Pathways to mutualism breakdown. Trends Ecol. Evol. 21:585–92
    [Google Scholar]
  140. Sachs JL, Skophammer RG, Regus JU 2011. Evolutionary transitions in bacterial symbiosis. PNAS 108:10800–7
    [Google Scholar]
  141. Sachs JL, Wilcox TP. 2005. A shift to parasitism in the jellyfish symbiont Symbiodinium microadriaticum. Proc. R. Soc. B 273:425–29
    [Google Scholar]
  142. Schemske DW, Horvitz CC. 1984. Variation among floral visitors in pollination ability: a precondition for mutualism specialization. Science 225:519–21
    [Google Scholar]
  143. Schleucher E. 1999. Energy metabolism in an obligate frugivore, the superb fruit-dove (Ptilinopus superbus). Aust. J. Zool. 47:169–79
    [Google Scholar]
  144. Schultz TR, Brady SG. 2008. Major evolutionary transitions in ant agriculture. PNAS 105:5435–40
    [Google Scholar]
  145. Shapira M. 2016. Gut microbiotas and host evolution: scaling up symbiosis. Trends Ecol. Evol. 31:539–49
    [Google Scholar]
  146. Sicard A, Lenhard M. 2011. The selfing syndrome: a model for studying the genetic and evolutionary basis of morphological adaptation in plants. Ann. Bot. 107:1433–43
    [Google Scholar]
  147. Simonsen AK, Stinchcombe JR. 2014. Standing genetic variation in host preference for mutualist microbial symbionts. Proc. R. Soc. B 281:20142036
    [Google Scholar]
  148. Sørensen ME, Lowe CD, Minter EJ, Wood AJ, Cameron DD, Brockhurst MA 2019. The role of exploitation in the establishment of mutualistic microbial symbioses. FEMS Microbiol. Lett. 366:fnz148
    [Google Scholar]
  149. Sprent JI. 2001. Nodulation in Legumes London: R. Bot. Gard., Kew
    [Google Scholar]
  150. Sudakaran S, Kost C, Kaltenpoth M 2017. Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol 25:375–90
    [Google Scholar]
  151. Trivers RL. 1971. The evolution of reciprocal altruism. Q. Rev. Biol. 46:35–57
    [Google Scholar]
  152. Visser B, Le Lann C, den Blanken FJ, Harvey JA, van Alphen JJ, Ellers J 2010. Loss of lipid synthesis as an evolutionary consequence of a parasitic lifestyle. PNAS 107:8677–82
    [Google Scholar]
  153. Weber MG, Agrawal AA. 2014. Defense mutualisms enhance plant diversification. PNAS 111:16442–47
    [Google Scholar]
  154. Weber MG, Keeler KH. 2013. The phylogenetic distribution of extrafloral nectaries in plants. Ann. Bot 111:1251–61
    [Google Scholar]
  155. Werner GD, Cornelissen JH, Cornwell WK, Soudzilovskaia NA, Kattge J et al. 2018. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. PNAS5229–34
    [Google Scholar]
  156. West SA, Diggle SP, Buckling A, Gardner A, Griffin AS 2007a. The social lives of microbes. Annu. Rev. Ecol. Evol. Syst. 38:53–77
    [Google Scholar]
  157. West SA, Fisher RM, Gardner A, Kiers ET 2015. Major evolutionary transitions in individuality. PNAS 112:10112–19
    [Google Scholar]
  158. West SA, Griffin AS, Gardner A 2007b. Evolutionary explanations for cooperation. Curr. Biol. 17:R661–72
    [Google Scholar]
  159. West SA, Kiers ET, Pen I, Denison RF 2002. Sanctions and mutualism stability: When should less beneficial mutualists be tolerated. ? J. Evol. Biol. 15:830–37
    [Google Scholar]
  160. Wright GA, Baker DD, Palmer MJ, Stabler D, Mustard JA et al. 2013. Caffeine in floral nectar enhances a pollinator's memory of reward. Science 339:1202–4
    [Google Scholar]
  161. Wyatt GA, Kiers ET, Gardner A, West SA 2014. A biological market analysis of the plant-mycorrhizal symbiosis. Evolution 68:2603–18
    [Google Scholar]
  162. Wyatt GA, Kiers ET, Gardner A, West SA 2016. Restricting mutualistic partners to enforce trade reliance. Nat. Commun. 7:10322
    [Google Scholar]
  163. Yanni D, Márquez-Zacarías P, Yunker PJ, Ratcliff WC 2019. Drivers of spatial structure in social microbial communities. Curr. Biol. 29:R545–50
    [Google Scholar]
  164. Yu DW. 2001. Parasites of mutualisms. Biol. J. Linn. Soc. 72:529–46
    [Google Scholar]
  165. Zhang B, Leonard SP, Li Y, Moran NA 2019. Obligate bacterial endosymbionts limit thermal tolerance of insect host species. PNAS 116:24712–18
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110218-024629
Loading
/content/journals/10.1146/annurev-ecolsys-110218-024629
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error