1932

Abstract

Environmental disasters offer the unique opportunity for landscape-scale ecological and evolutionary studies that are not possible in the laboratory or small experimental plots. The nuclear accident at Chernobyl (1986) allows for rigorous analyses of radiation effects on individuals and populations at an ecosystem scale. Here, the current state of knowledge related to populations within the Chernobyl region of Ukraine and Belarus following the largest civil nuclear accident in history is reviewed. There is now a significant literature that provides contrasting and occasionally conflicting views of the state of animals and how they are affected by this mutagenic stressor. Studies of genetic and physiological effects have largely suggested significant injuries to individuals inhabiting the more radioactive areas of the Chernobyl region. Most population censuses for most species suggest that abundances are reduced in the more radioactive areas.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110218-024827
2021-11-03
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/52/1/annurev-ecolsys-110218-024827.html?itemId=/content/journals/10.1146/annurev-ecolsys-110218-024827&mimeType=html&fmt=ahah

Literature Cited

  1. Amiard JC. 2018. Military Nuclear Accidents: Environmental, Ecological, Health and Socio-economic Consequences Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  2. Baker RJ, Dickins B, Wickliffe JK, Khan FA, Gaschak S et al. 2017. Elevated mitochondrial genome variation after 50 generations of radiation exposure in a wild rodent. Evol. Appl. 10:784–91
    [Google Scholar]
  3. Baker RJ, Hamilton MJ, Van Den Bussche RA, Wiggins LE, Sugg DWet al 1996a. Small mammals from the most radioactive sites near the Chornobyl nuclear power plant. J. Mammal 77:15570
    [Google Scholar]
  4. Baker RJ, Van Den Bussche RA, Wright AJ, Wiggins LE, Hamilton MJ et al. 1996b. High levels of genetic change in rodents of Chernobyl. Nature 380:707–8
    [Google Scholar]
  5. Baker RJ, Van Den Bussche RA, Wright AJ, Wiggins LE, Hamilton MJ et al. 1997. Retraction note to: High levels of genetic change in rodents of Chernobyl. Nature 390:100
    [Google Scholar]
  6. Beaugelin-Seiller K, Garnier-Laplace J, Della-Vedova C, Métivier JM, Lepage H et al. 2020. Dose reconstruction supports the interpretation of decreased abundance of mammals in the Chernobyl Exclusion Zone. Sci. Rep. 10:14083
    [Google Scholar]
  7. Bonisoli-Alquati A, Koyama K, Tedeschi DJ, Kitamura W, Sukuzi H et al. 2015. Abundance and genetic damage of barn swallows from Fukushima. Sci. Rep. 5:9432
    [Google Scholar]
  8. Bonisoli-Alquati A, Møller AP, Rudolfsen G, Saino N, Caprioli M et al. 2011. The effects of radiation on sperm swimming behavior depend on plasma oxidative status in the barn swallow (Hirundo rustica). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 159:105–12
    [Google Scholar]
  9. Boratyński Z, Arias JM, Garcia C, Mappes T, Mousseau TA et al. 2016. Ionizing radiation from Chernobyl affects development of wild carrot plants. Sci. Rep. 6:39282
    [Google Scholar]
  10. Boratyński Z, Lehmann P, Mappes T, Mousseau TA, Møller AP. 2014. Increased radiation from Chernobyl decreases the expression of red colouration in natural populations of bank voles (Myodes glareolus). Sci. Rep. 4:7141
    [Google Scholar]
  11. Braithwaite R. 2019. Chernobyl: A ‘normal’ accident?. Survival 61:149–58
    [Google Scholar]
  12. Brown K. 2019. Manual for Survival: A Chernobyl Guide to the Future London: Penguin UK:
    [Google Scholar]
  13. Camplani A, Saino N, Møller AP. 1999. Carotenoids, sexual signals and immune function in barn swallows from Chernobyl. Proc. R. Soc. B 266:1111–16
    [Google Scholar]
  14. Charlesworth B. 1990. Mutation-selection balance and the evolutionary advantage of sex and recombination. Genet. Res. 55:199–221
    [Google Scholar]
  15. Clark C. 1997. Radium Girls: Women and Industrial Health Reform, 19101935 Chapel Hill, NC: Univ. N. C. Press
    [Google Scholar]
  16. Cowan R. 1990. Nuclear power reactors: a study in technological lock-in. J. Econ. Hist. 50:541–67
    [Google Scholar]
  17. Cristaldi M, Ieradi LA, Mascanzoni D, Mattei T. 1991. Environmental impact of the Chernobyl accident: mutagenesis in bank voles from Sweden. Int. J. Radiat. Biol. 59:31–40
    [Google Scholar]
  18. Crowley KD, Ahearne JF. 2002. Managing the environmental legacy of US nuclear-weapons production. Am. Sci. 90:514–23
    [Google Scholar]
  19. Czirják , Møller AP, Mousseau TA, Heeb P. 2010. Microorganisms associated with feathers of barn swallows in radioactively contaminated areas around Chernobyl. Microb. Ecol. 60:373–80
    [Google Scholar]
  20. Dadachova E, Casadevall A. 2008. Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr. Opin. Microbiol. 11:525–31
    [Google Scholar]
  21. Davis J. 2018. Radioactive Effluents from Nuclear Power Plants, Annual Report 2013 NUREG/CR-2907 , Vol. 19 Washington, DC: US Nucl. Regul. Comm.
    [Google Scholar]
  22. De Cort M, Dubois G, Fridman SD, Germenchuk MG, Izrael YA et al. 1998. Atlas of caesium deposition on Europe after the Chernobyl accident EUR Rep. 16733 Off. Off. Publ. Eur. Communities Luxembourg:
    [Google Scholar]
  23. Deryabina TG, Kuchmel SV, Nagorskaya LL, Hinton TG, Beasley JC et al. 2015. Long-term census data reveal abundant wildlife populations at Chernobyl. Curr. Biol. 25:R824–26
    [Google Scholar]
  24. DiCarlo AL, Maher C, Hick JL, Hanfling D, Dainiak N et al. 2011. Radiation injury after a nuclear detonation: medical consequences and the need for scarce resources allocation. Disaster Med. Public Health Prep. 5:S1S32–44
    [Google Scholar]
  25. Dubrova YE. 1998. Radiation-induced germline instability at minisatellite loci. Int. J. Radiat. Biol. 74:689–96
    [Google Scholar]
  26. Dubrova YE, Nesterov VN, Krouchinsky NG, Ostapenko VA, Neumann R et al. 1996. Human minisatellite mutation rate after the Chernobyl accident. Nature 380:683–86
    [Google Scholar]
  27. Einor D, Bonisoli-Alquati A, Costantini D, Mousseau TA, Møller AP. 2016. Ionizing radiation, antioxidant response and oxidative damage: a meta-analysis. Sci. Total Environ. 548:463–71
    [Google Scholar]
  28. Ellegren H, Lindgren G, Primmer CR, Møller AP. 1997. Fitness loss and germline mutations in barn swallows breeding in Chernobyl. Nature 389:593–96
    [Google Scholar]
  29. Evangeliou N, Hamburger T, Talerko N, Zibtsev S, Bondar Y et al. 2016. Reconstructing the Chernobyl Nuclear Power Plant (CNPP) accident 30 years after. A unique database of air concentration and deposition measurements over Europe. Environ. Pollut. 216:408–18
    [Google Scholar]
  30. Fairlie I. 2014. A hypothesis to explain childhood cancers near nuclear power plants. J. Environ. Radioact. 133:10–17
    [Google Scholar]
  31. Fischbein A, Zabludovsky N, Eltes F, Grischenko V, Bartoov B. 1997. Ultramorphological sperm characteristics in the risk assessment of health effects after radiation exposure among salvage workers in Chernobyl. Environ. Health Perspect. 105:1445–49
    [Google Scholar]
  32. Galván I, Bonisoli-Alquati A, Jenkinson S, Ghanem G, Wakamatsu K et al. 2014. Chronic exposure to low-dose radiation at Chernobyl favours adaptation to oxidative stress in birds. Funct. Ecol. 28:1387–403
    [Google Scholar]
  33. Garnier-Laplace J, Beaugelin-Seiller K, Della-Vedova C, Métivier JM, Ritz C et al. 2015. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships. Sci. Rep. 5:16594
    [Google Scholar]
  34. Garnier-Laplace J, Geras'kin S, Della-Vedova C, Beaugelin-Seiller K, Hinton TG et al. 2013. Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates. J. Environ. Radioact. 121:12–21
    [Google Scholar]
  35. Geras'kin SA, Fesenko SV, Alexakhin RM 2008. Effects of non-human species irradiation after the Chernobyl NPP accident. Environ. Int. 34:880–97
    [Google Scholar]
  36. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. 2018. Current understanding of the human microbiome. Nat. Med. 24:392–400
    [Google Scholar]
  37. Goncharova RI, Ryabokon NI. 1995. Dynamics of cytogenetic injuries in natural populations of bank vole in the Republic of Belarus. Radiat. Prot. Dosim. 62:37–40
    [Google Scholar]
  38. Grant EJ, Brenner A, Sugiyama H, Sakata R, Sadakane A et al. 2017. Solid cancer incidence among the life span study of atomic bomb survivors: 1958–2009. Radiat. Res. 187:513–37
    [Google Scholar]
  39. Gsponer A, Hurni JP. 2009. The Physical Principles of Thermonuclear Explosives, Inertial Confinement Fusion, and the Quest for Fourth Generation Nuclear Weapons INESAP Tech. Rep. 1 Darmstadt, Ger.: INESAP, 7th ed..
    [Google Scholar]
  40. Hermosell IG, Laskemoen T, Rowe M, Møller AP, Mousseau TA et al. 2013. Patterns of sperm damage in Chernobyl passerine birds suggest a trade-off between sperm length and integrity. Biol. Lett. 9:20130530
    [Google Scholar]
  41. Higginbotham A. 2019. Midnight in Chernobyl: The Untold Story of the World's Greatest Nuclear Disaster New York: Random House
    [Google Scholar]
  42. Higgins K, Lynch M. 2001. Metapopulation extinction caused by mutation accumulation. PNAS 98:2928–33
    [Google Scholar]
  43. Howell SJ, Shalet SM. 2005. Spermatogenesis after cancer treatment: damage and recovery. J. Natl. Cancer Inst. Monogr. 2005:12–17
    [Google Scholar]
  44. Int. At. Energy Agency 2006. Environmental consequences of the Chernobyl accident and their remediation: twenty years of experience. Radiol. Assess. Rep. Ser. 8, Int. At. Energy Agency, Vienna
    [Google Scholar]
  45. Jernfors T, Kesäniemi J, Lavrinienko A, Mappes T, Milinevsky G et al. 2018. Transcriptional upregulation of DNA damage response genes in bank voles (Myodes glareolus) inhabiting the Chernobyl Exclusion Zone. Front. Environ. Sci. 5:95
    [Google Scholar]
  46. Johnson RL. 2014. Chernobyl's Wild Kingdom: Life in the Dead Zone Minneapolis, MN: Twenty-First Century Books
    [Google Scholar]
  47. Kesäniemi J, Lavrinienko A, Tukalenko E, Boratyński Z, Kivisaari K et al. 2019. Exposure to environmental radionuclides associates with tissue-specific impacts on telomerase expression and telomere length. Sci. Rep. 9:850
    [Google Scholar]
  48. Kesäniemi J, Lavrinienko A, Tukalenko E, Moutinho AF, Mappes T et al. 2020. Exposure to environmental radionuclides alters mitochondrial DNA maintenance in a wild rodent. Evol. Ecol. 34:163–74
    [Google Scholar]
  49. Kivisaari K. 2019. The effects of ionizing radiation on bank vole in Chernobyl Exclusion Zone. PhD Diss. Univ. Jyväskylä Jyväskylä, Finland:
    [Google Scholar]
  50. Kivisaari K, Boratyński Z, Lavrinienko A, Kesäniemi J, Lehmann P, Mappes T. 2020. The effect of chronic low-dose environmental radiation on organ mass of bank voles in the Chernobyl exclusion zone. Int. J. Radiat. Biol. 96:1254–62
    [Google Scholar]
  51. Kolbert E. 2014. The Sixth Extinction: An Unnatural History New York: Henry Holt & Co.
    [Google Scholar]
  52. Körblein A, Hesse-Honegger C. 2018. Morphological abnormalities in true bugs (Heteroptera) near Swiss nuclear power stations. Chem. Biodivers. 15:e1800099
    [Google Scholar]
  53. Kovalchuk I, Abramov V, Pogribny I, Kovalchuk O. 2004. Molecular aspects of plant adaptation to life in the Chernobyl zone. Plant Physiol 135:357–63
    [Google Scholar]
  54. Kovalchuk O, Dubrova YE, Arkhipov A, Hohn B, Kovalchuk I. 2000. Wheat mutation rate after Chernobyl. Nature 407:583–84
    [Google Scholar]
  55. Kuzio T. 2015. Ukraine: Democratization, Corruption, and the New Russian Imperialism Westport, CT: Praeger
    [Google Scholar]
  56. Lavrinienko A, Hämäläinen A, Hindström R, Tukalenko E, Boratyński Z et al. 2021. Comparable response of wild rodent gut microbiome to anthropogenic habitat contamination. Mol. Ecol. 30:348599
    [Google Scholar]
  57. Lavrinienko A, Mappes T, Tukalenko E, Mousseau TA, Møller AP et al. 2018a. Environmental radiation alters the gut microbiome of the bank vole Myodes glareolus. ISME J 12:2801–6
    [Google Scholar]
  58. Lavrinienko A, Tukalenko E, Kesäniemi J, Kivisaari K, Masiuk S et al. 2020a. Applying the Anna Karenina principle for wild animal gut microbiota: temporal stability of the bank vole gut microbiota in a disturbed environment. J. Anim. Ecol. 89:2617–30
    [Google Scholar]
  59. Lavrinienko A, Tukalenko E, Mappes T, Watts PC. 2018b. Skin and gut microbiomes of a wild mammal respond to different environmental cues. Microbiome 6:209
    [Google Scholar]
  60. Lavrinienko A, Tukalenko E, Mousseau TA, Thompson LR, Knight R et al. 2020b. Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota. Sci. Data 7:312
    [Google Scholar]
  61. Lazard 2020. Lazard's levelized cost of energy analysis—version 14.0. Rep., Lazard, Hamilton, Bermud. https://www.lazard.com/media/451419/lazards-levelized-cost-of-energy-version-140.pdf
  62. Lehmann P, Boratyński Z, Mappes T, Mousseau TA, Møller AP. 2016. Fitness costs of increased cataract frequency and cumulative radiation dose in natural mammalian populations from Chernobyl. Sci. Rep. 6:19974
    [Google Scholar]
  63. Lochbaum D, Lyman E, Stranahan SQ 2014. Fukushima: The Story of a Nuclear Disaster New York: The New Press
    [Google Scholar]
  64. Lynch M, Conery J, Burger R. 1995. Mutation accumulation and the extinction of small populations. Am. Nat. 146:489–518
    [Google Scholar]
  65. Mappes T, Boratyński Z, Kivisaari K, Lavrinienko A, Milinevsky G et al. 2019. Ecological mechanisms can modify radiation effects in a key forest mammal of Chernobyl. Ecosphere 10:e02667
    [Google Scholar]
  66. Medvedev ZA. 1986. Ecological aspects of the Chernobyl nuclear plant disaster. Trends Ecol. Evol. 1:23–25
    [Google Scholar]
  67. Møller AP. 1993. Morphology and sexual selection in the barn swallow Hirundo rustica in Chernobyl, Ukraine. Proc. R. Soc. B 252:51–57
    [Google Scholar]
  68. Møller AP, Bonisoli-Alquati A, Mousseau TA. 2013a. High frequency of albinism and tumours in free-living birds around Chernobyl. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 757:52–59
    [Google Scholar]
  69. Møller AP, Bonisoli-Alquati A, Mousseau TA, Rudolfsen G. 2014. Aspermy, sperm quality and radiation in Chernobyl birds. PLOS ONE 9:e100296
    [Google Scholar]
  70. Møller AP, Bonisoli-Alquati A, Rudolfsen G, Mousseau TA. 2011. Chernobyl birds have smaller brains. PLOS ONE 6:e16862
    [Google Scholar]
  71. Møller AP, Bonisoli-Alquati A, Rudolfsen G, Mousseau TA. 2012a. Elevated mortality among birds in Chernobyl as judged from skewed age and sex ratios. PLOS ONE 7:e35223
    [Google Scholar]
  72. Møller AP, Hagiwara A, Matsui S, Kasahara S, Kawatsu K et al. 2012b. Abundance of birds in Fukushima as judged from Chernobyl. Environ. Pollut. 164:36–39
    [Google Scholar]
  73. Møller AP, Hobson KA, Mousseau TA, Peklo AM. 2006. Chernobyl as a population sink for barn swallows: tracking dispersal using stable-isotope profiles. Ecol. Appl. 16:1696–705
    [Google Scholar]
  74. Møller AP, Morelli F, Mousseau TA, Tryjanowski P. 2016a. The number of syllables in Chernobyl cuckoo calls reliably indicate habitat, soil and radiation levels. Ecol. Indicators 66:592–97
    [Google Scholar]
  75. Møller AP, Mousseau TA. 2001. Albinism and phenotype of barn swallows (Hirundo rustica) from Chernobyl. Evolution 55:2097–104
    [Google Scholar]
  76. Møller AP, Mousseau TA. 2006. Biological consequences of Chernobyl: 20 years on. Trends Ecol. Evol. 21:200–7
    [Google Scholar]
  77. Møller AP, Mousseau TA. 2007a. Species richness and abundance of forest birds in relation to radiation at Chernobyl. Biol. Lett. 3:483–86
    [Google Scholar]
  78. Møller AP, Mousseau TA. 2007b. Determinants of interspecific variation in population declines of birds after exposure to radiation at Chernobyl. J. Appl. Ecol. 44:909–19
    [Google Scholar]
  79. Møller AP, Mousseau TA. 2009. Reduced abundance of insects and spiders linked to radiation at Chernobyl 20 years after the accident. Biol. Lett. 5:356–59
    [Google Scholar]
  80. Møller AP, Mousseau TA. 2011a. Efficiency of bio-indicators for low-level radiation under field conditions. Ecol. Indicators 11:424–30
    [Google Scholar]
  81. Møller AP, Mousseau TA. 2011b. Conservation consequences of Chernobyl and other nuclear accidents. Biol. Conserv. 144:2787–98
    [Google Scholar]
  82. Møller AP, Mousseau TA. 2013a. The effects of natural variation in background radioactivity on humans, animals and other organisms. Biol. Rev. 88:226–54
    [Google Scholar]
  83. Møller AP, Mousseau TA. 2013b. Assessing effects of radiation on abundance of mammals and predator–prey interactions in Chernobyl using tracks in the snow. Ecol. Indicators 26:112–16
    [Google Scholar]
  84. Møller AP, Mousseau TA. 2015. Strong effects of ionizing radiation from Chernobyl on mutation rates. Sci. Rep. 5:8363
    [Google Scholar]
  85. Møller AP, Mousseau TA. 2016. Are organisms adapting to ionizing radiation at Chernobyl?. Trends Ecol. Evol. 31:281–89
    [Google Scholar]
  86. Møller AP, Mousseau TA. 2017. Radiation levels affect pollen viability and germination among sites and species at Chernobyl. Int. J. Plant Sci. 178:537–45
    [Google Scholar]
  87. Møller AP, Mousseau TA. 2019. Radioecology. Oxf. Bibliogr. Ecol. 2019: https://www.oxfordbibliographies.com/view/document/obo-9780199830060/obo-9780199830060-0229.xml
    [Google Scholar]
  88. Møller AP, Mousseau TA, Lynn C, Ostermiller S, Rudolfsen G. 2008. Impaired swimming behaviour and morphology of sperm from barn swallows Hirundo rustica in Chernobyl. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 650:210–16
    [Google Scholar]
  89. Møller AP, Mousseau TA, Milinevsky G, Peklo A, Pysanets E, Szép T 2005a. Condition, reproduction and survival of barn swallows from Chernobyl. J. Anim. Ecol 74:110211
    [Google Scholar]
  90. Møller AP, Mousseau TA, Nishiumi I, Ueda K. 2015. Ecological differences in response of bird species to radioactivity from Chernobyl and Fukushima. J. Ornithol. 156:287–96
    [Google Scholar]
  91. Møller AP, Nishiumi I, Suzuki H, Ueda K, Mousseau TA. 2013b. Differences in effects of radiation on abundance of animals in Fukushima and Chernobyl. Ecol. Indicators 24:75–81
    [Google Scholar]
  92. Møller AP, Shyu JC, Mousseau TA. 2016b. Ionizing radiation from Chernobyl and the fraction of viable pollen. Int. J. Plant Sci. 177:727–35
    [Google Scholar]
  93. Møller AP, Surai P, Mousseau TA. 2005b. Antioxidants, radiation and mutation as revealed by sperm abnormality in barn swallows from Chernobyl. Proc. R. Soc. B 272:247–53
    [Google Scholar]
  94. Morelli F, Benedetti Y, Mousseau TA, Møller AP. 2018. Ionizing radiation and taxonomic, functional and evolutionary diversity of bird communities. J. Environ. Manag. 220:183–90
    [Google Scholar]
  95. Morgan MG, Abdulla A, Ford MJ, Rath M. 2018. US nuclear power: the vanishing low-carbon wedge. PNAS 115:7184–89
    [Google Scholar]
  96. Mousseau T, Møller AP. 2013a. Perspectives on Chernobyl and Fukushima health effects: What can be learned from Eastern European research?. J. Health Pollut. 3:2–6
    [Google Scholar]
  97. Mousseau TA, Møller AP. 2013b. Elevated frequency of cataracts in birds from Chernobyl. PLOS ONE 8:e66939
    [Google Scholar]
  98. Mousseau TA, Møller AP. 2014. Genetic and ecological studies of animals in Chernobyl and Fukushima. J. Hered. 105:704–9
    [Google Scholar]
  99. Mousseau TA, Welch SM, Chizhevsky I, Bondarenko O, Milinevsky G et al. 2013. Tree rings reveal extent of exposure to ionizing radiation in Scots pine Pinus sylvestris. Trees 27:1443–53
    [Google Scholar]
  100. Muller HJ. 1927. Artificial transmutation of the gene. Science 66:84–87
    [Google Scholar]
  101. Mustonen V, Kesäniemi J, Lavrinienko A, Tukalenko E, Mappes T et al. 2018. Fibroblasts from bank voles inhabiting Chernobyl have increased resistance against oxidative and DNA stresses. BMC Cell Biol 19:17
    [Google Scholar]
  102. Natl. Res. Counc. 2012. Analysis of Cancer Risks in Populations Near Nuclear Facilities: Phase I Rep Washington, DC: Natl. Acad. Press
    [Google Scholar]
  103. Neel JV. 1998. Genetic studies at the Atomic Bomb Casualty Commission—Radiation Effects Research Foundation: 1946–1997. PNAS 95:5432–36
    [Google Scholar]
  104. New York Times 1954. Abundant power from atom seen. New York Times Sept. 17 5 https://www.nytimes.com/1954/09/17/archives/abundant-power-from-atom-seen-it-will-be-too-cheap-for-our-children.html
    [Google Scholar]
  105. Nucl. Energy Inst 2020. Used fuel storage and nuclear waste fund payments by state. Nucl. Energy Inst. https://www.nei.org/resources/statistics/used-fuel-storage-and-nuclear-waste-fund-payments
    [Google Scholar]
  106. Omar-Nazir L, Shi X, Moller A, Mousseau T, Byun S et al. 2018. Long-term effects of ionizing radiation after the Chernobyl accident: possible contribution of historic dose. Environ. Res. 165:55–62
    [Google Scholar]
  107. Petersen RC Jr., Landner L, Blanck H. 1986. Assessment of the impact of the Chernobyl reactor accident on the biota of Swedish streams and lakes. Ambio 15:327–31
    [Google Scholar]
  108. Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N et al. 2007. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat. Res. 168:1–64
    [Google Scholar]
  109. Ramana MV. 2018. Technical and social problems of nuclear waste. WIREs Energy Environ. 7:e289
    [Google Scholar]
  110. Ruiz-González MX, Czirják , Genevaux P, Møller AP, Mousseau TA, Heeb P. 2016. Resistance of feather-associated bacteria to intermediate levels of ionizing radiation near Chernobyl. Sci. Rep. 6:22969
    [Google Scholar]
  111. Ryabokon NI, Goncharova RI. 2006. Transgenerational accumulation of radiation damage in small mammals chronically exposed to Chernobyl fallout. Radiat. Environ. Biophys. 45:167–77
    [Google Scholar]
  112. Scherb H, Voigt K. 2011. The human sex odds at birth after the atmospheric atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities. Environ. Sci. Pollut. Res. 18:697–707
    [Google Scholar]
  113. Shestopalov VM. 1996. Atlas of Chernobyl Exclusion Zone Kiev, Ukr: Ukr. Acad. Sci.
    [Google Scholar]
  114. Simon SL, Bouville A, Land CE. 2006. Fallout from nuclear weapons tests and cancer risks: exposures 50 years ago still have health implications today that will continue into the future. Am. Sci. 94:48–57
    [Google Scholar]
  115. Stadler LJ. 1928. Mutations in barley induced by X-rays and radium. Science 68:186–87
    [Google Scholar]
  116. Steinhauser G, Brandl A, Johnson TE. 2014. Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci. Total Environ. 470:800–17
    [Google Scholar]
  117. Subramanian M. 2019. Anthropocene now: influential panel votes to recognize Earth's new epoch. Nature May 21. https://doi.org/10.1038/d41586-019-01641-5
    [Crossref] [Google Scholar]
  118. Turelli M. 1984. Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle. Theor. Popul. Biol. 25:138–93
    [Google Scholar]
  119. UN Sci. Comm. Eff. At. Radiat 2000. Sources and effects of ionizing radiation. UNSCEAR 2000 Rep., Gen. Assem. Vol. I, U. N., New York
  120. US Dep. Energy (DOE) 2019. Hanford lifecycle scope, schedule, and cost report. DOE/RL-2018-45 Rev. 0, DOE Richland, WA:
    [Google Scholar]
  121. von Hippel FN, Schoeppner M. 2017. Economic losses from a fire in a dense-packed US spent fuel pool. Sci. Glob. Secur. 25:80–92
    [Google Scholar]
  122. Webster SC, Byrne ME, Lance SL, Love CN, Hinton TG et al. 2016. Where the wild things are: influence of radiation on the distribution of four mammalian species within the Chernobyl Exclusion Zone. Front. Ecol. Environ. 14:185–90
    [Google Scholar]
  123. Wheatley S, Sovacool B, Sornette D. 2017. Of disasters and dragon kings: a statistical analysis of nuclear power incidents and accidents. Risk Anal 37:99–115
    [Google Scholar]
  124. Wickliffe JK, Rodgers BE, Chesser RK, Phillips CJ, Gaschak SP, Baker RJ. 2003. Mitochondrial DNA heteroplasmy in laboratory mice experimentally enclosed in the radioactive Chernobyl environment. Radiat. Res. 159:458–64
    [Google Scholar]
  125. World Nucl. Assoc 2020. World nuclear performance report 2020. Rep., World Nuclear Association, London. https://www.world-nuclear.org/getmedia/3418bf4a-5891-4ba1-b6c2-d83d8907264d/performance-report-2020-v1.pdf.aspx
  126. Yablokov A. 2013. A review and critical analysis of the “effective dose of radiation” concept. J. Health Pollut. 3:13–28
    [Google Scholar]
  127. Yablokov AV, Nesterenko VB, Nesterenko AV. 2009. Chernobyl: consequences of the catastrophe for people and the environment. Ann. N. Y. Acad. Sci. 1181:1–327
    [Google Scholar]
  128. Zhang A, Steen TY. 2018. Gut microbiomics—a solution to unloose the gordian knot of biological effects of ionizing radiation. J. Hered. 109:212–21
    [Google Scholar]
  129. Zhdanova NN, Zakharchenko VA, Vember VV, Nakonechnaya LT. 2000. Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycological Res 104:1421–26
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110218-024827
Loading
/content/journals/10.1146/annurev-ecolsys-110218-024827
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error