1932

Abstract

Climate change is affecting every ecosystem on Earth. Though climate change is global in scope, literature reviews on the biotic impacts of climate change have focused on temperate and polar regions. Tropical species have distinct life histories and physiologies, and ecological communities are assembled differently across latitude. Thus, tropical species and communities may exhibit different responses to climate change compared with those in temperate and polar regions. What are the fingerprints of climate change in the tropics? This review summarizes the current state of knowledge on impacts of climate change in tropical regions and discusses research priorities to better understand the ways in which species and ecological communities are responding to climate change in the most biodiverse places on Earth.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110218-025005
2019-11-02
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/50/1/annurev-ecolsys-110218-025005.html?itemId=/content/journals/10.1146/annurev-ecolsys-110218-025005&mimeType=html&fmt=ahah

Literature Cited

  1. Abernethy K, Bush ER, Forget P-M, Mendoza I, Morellato LPC 2018. Current issues in tropical phenology: a synthesis. Biotropica 50:477–82
    [Google Scholar]
  2. Adamescu GS, Plumptre AJ, Abernethy KA, Polansky L, Bush ER et al. 2018. Annual cycles are the most common reproductive strategy in African tropical tree communities. Biotropica 50:418–30
    [Google Scholar]
  3. Amandolare S. 2018. Puerto Rico's catastrophic hurricane gave scientists a rare chance to study how tropical forests will fare in a stormier future. Science Sept. 11. https://www.sciencemag.org/news/2018/09/puerto-rico-s-catastrophic-hurricane-gave-scientists-rare-chance-study-how-tropical
    [Google Scholar]
  4. Anchukaitis KJ, Evans MN. 2010. Tropical cloud forest climate variability and the demise of the Monteverde golden toad. PNAS 107:5036–40
    [Google Scholar]
  5. Anderson‐Teixeira KJ, Davies SJ, Bennett AC, Gonzalez‐Akre EB, Muller‐Landau HC et al. 2015. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21:528–49
    [Google Scholar]
  6. Andrews RM. 1991. Population stability of a tropical lizard. Ecology 72:1204–17
    [Google Scholar]
  7. Baccini A, Walker W, Carvalho L, Farina M, Sulla-Menashe D, Houghton RA 2017. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358:230–34
    [Google Scholar]
  8. Beaumont LJ, Pitman A, Perkins S, Zimmermann NE, Yoccoz NG, Thuiller W 2011. Impacts of climate change on the world's most exceptional ecoregions. PNAS 108:2306–11
    [Google Scholar]
  9. Berger L, Speare R, Hines H, Marantelli G, Hyatt A et al. 2004. Effect of season and temperature on mortality in amphibians due to chytridiomycosis. Aust. Vet. J. 82:434–39
    [Google Scholar]
  10. Blake JG, Loiselle BA. 2015. Enigmatic declines in bird numbers in lowland forest of eastern Ecuador may be a consequence of climate change. PeerJ 3:e1177
    [Google Scholar]
  11. Booth BBB, Jones CD, Collins M, Totterdell IJ, Cox PM et al. 2012. High sensitivity of future global warming to land carbon cycle processes. Environ. Res. Lett. 7:024002
    [Google Scholar]
  12. Bouskill NJ, Lim HC, Borglin S, Salve R, Wood TE et al. 2013. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J 7:384–94
    [Google Scholar]
  13. Bouskill NJ, Wood TE, Baran R, Ye Z, Bowen BP et al. 2016. Belowground response to drought in a tropical forest soil. I. Changes in microbial functional potential and metabolism. Front. Microbiol. 7:525
    [Google Scholar]
  14. Brawn JD, Benson TJ, Stager M, Sly ND, Tarwater CE 2017. Impacts of changing rainfall regime on the demography of tropical birds. Nat. Clim. Change 7:133–36
    [Google Scholar]
  15. Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR et al. 2015. Long-term decline of the Amazon carbon sink. Nature 519:344–48
    [Google Scholar]
  16. Burrowes PA, Joglar RL, Green DE 2004. Potential causes for amphibian declines in Puerto Rico. Herpetologica 60:14
    [Google Scholar]
  17. Bustamante MR, Ron SR, Coloma LA 2005. Cambios en la diversidad en siete comunidades de anuros en los Andes de Ecuador. Biotropica 37:180–89
    [Google Scholar]
  18. Callendar GS. 1938. The artificial production of carbon dioxide and its influence on temperature. Q. J. R. Meteorol. Soc. 64:223–40
    [Google Scholar]
  19. Campos‐Cerqueira M, Arendt WJ, Wunderle JM, Aide TM 2017. Have bird distributions shifted along an elevational gradient on a tropical mountain?. Ecol. Evol. 7:9914–24
    [Google Scholar]
  20. Cernusak LA, Winter K, Dalling JW, Holtum JAM, Jaramillo C et al. 2013. Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research. Funct. Plant Biol. 40:531–51
    [Google Scholar]
  21. Chapman CA, Chapman LJ, Struhsaker TT, Zanne AE, Clark CJ, Poulsen JR 2005. A long-term evaluation of fruiting phenology: importance of climate change. J. Trop. Ecol. 21:31–45
    [Google Scholar]
  22. Chapman CA, Valenta K, Bonnell TR, Brown KA, Chapman LJ 2018. Solar radiation and ENSO predict fruiting phenology patterns in a 15-year record from Kibale National Park, Uganda. Biotropica 50:384–95
    [Google Scholar]
  23. Cheesman AW, Winter K. 2013. Growth response and acclimation of CO2 exchange characteristics to elevated temperatures in tropical tree seedlings. J. Exp. Bot. 64:3817–28
    [Google Scholar]
  24. Chen I-C, Shiu H-J, Benedick S, Holloway JD, Chey VK et al. 2009. Elevation increases in moth assemblages over 42 years on a tropical mountain. PNAS 106:1479–83
    [Google Scholar]
  25. Clark DA, Piper SC, Keeling CD, Clark DB 2003. Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. PNAS 100:5852–57
    [Google Scholar]
  26. Cleveland CC, Wieder WR, Reed SC, Townsend AR 2010. Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere. Ecology 91:2313–23
    [Google Scholar]
  27. Cohen JM, Civitello DJ, Venesky MD, McMahon TA, Rohr JR 2019. An interaction between climate change and infectious disease drove widespread amphibian declines. Glob. Change Biol. 25:927–37
    [Google Scholar]
  28. Cohen JM, Lajeunesse MJ, Rohr JR 2018. A global synthesis of animal phenological responses to climate change. Nat. Clim. Change 8:224–28 Erratum. Nat. Clim. Change 8:258
    [Google Scholar]
  29. Coloma LA, Quiguango-Ubillús A 2016. Atelopus ignescens. Centro Jambatu. 2011–2012 Anfibios de Ecuador Fundación Otonga. Quito, Ecuador. http://www.anfibiosecuador.ec/index.php?ss,Atelopus&ignescens
    [Google Scholar]
  30. Colwell RK, Brehm G, Cardelús CL, Gilman AC, Longino JT 2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322:258–61
    [Google Scholar]
  31. Condit R, Hubbell SP, Foster RB 1996. Changes in tree species abundance in a Neotropical forest: impact of climate change. J. Trop. Ecol. 12:231–56
    [Google Scholar]
  32. Corlett RT, Lafrankie JV. 1998. Potential impacts of climate change on tropical Asian forests through an influence on phenology. Clim. Change 39:439–53
    [Google Scholar]
  33. Crump ML, Hensley FR, Clark KL 1992. Apparent decline of the golden toad: underground or extinct?. Copeia 1992:413–20
    [Google Scholar]
  34. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK et al. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. PNAS 105:186668–72
    [Google Scholar]
  35. Diaz H, Graham EN. 1996. Recent changes in tropical freezing heights and the role of sea temperature. Nature 383:152–55
    [Google Scholar]
  36. Drake JE, Aspinwall MJ, Pfautsch S, Rymer PD, Reich PB et al. 2015. The capacity to cope with climate warming declines from temperate to tropical latitudes in two widely distributed Eucalyptus species. Glob. Change Biol. 21:459–72
    [Google Scholar]
  37. Dulle HI, Ferger SW, Cordeiro NJ, Howell KM, Schleuning M et al. 2016. Changes in abundances of forest understorey birds on Africa's highest mountain suggest subtle effects of climate change. Divers. Distrib. 22:288–99
    [Google Scholar]
  38. Dunham AE, Erhart EM, Wright PC 2011. Global climate cycles and cyclones: consequences for rainfall patterns and lemur reproduction in southeastern Madagascar. Glob. Change Biol. 17:219–27
    [Google Scholar]
  39. Dunham AE, Razafindratsima OH, Rakotonirina P, Wright PC 2018. Fruiting phenology is linked to rainfall variability in a tropical rain forest. Biotropica 50:396–404
    [Google Scholar]
  40. Enquist JB, Enquist CAF. 2011. Long-term change within a Neotropical forest: assessing differential functional and floristic responses to disturbance and drought. Glob. Change Biol. 17:1408–24
    [Google Scholar]
  41. Esquivel‐Muelbert A, Baker TR, Dexter KG, Lewis SL, Brienen RJW et al. 2018. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25:39–56
    [Google Scholar]
  42. Fadrique B, Báez S, Duque Á, Malizia A, Blundo C et al. 2018. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564:207–12
    [Google Scholar]
  43. Feeley KJ. 2012. Distributional migrations, expansions, and contractions of tropical plant species as revealed in dated herbarium records. Glob. Change Biol. 18:1335–41
    [Google Scholar]
  44. Feeley KJ, Silman MR, Bush MB, Farfan W, Cabrera KG et al. 2011. Upslope migration of Andean trees. J. Biogeogr. 38:783–91
    [Google Scholar]
  45. Feeley KJ, Stroud JT. 2018. Where on Earth are the “tropics”?. Front. Biogeogr. 10:e38649
    [Google Scholar]
  46. Feeley KJ, Stroud JT, Perez TM 2017. Most ‘global’ reviews of species’ responses to climate change are not truly global. Divers. Distrib. 23:231–34
    [Google Scholar]
  47. Feeley KJ, Wright SJ, Supardi MNN, Kassim AR, Davies SJ 2007. Decelerating growth in tropical forest trees. Ecol. Lett. 10:461–69
    [Google Scholar]
  48. Feng X, Porporato A, Rodriguez-Iturbe I 2013. Changes in rainfall seasonality in the tropics. Nat. Clim. Change 3:811–15
    [Google Scholar]
  49. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–40
    [Google Scholar]
  50. Fogden MPL. 1972. The seasonality and population dynamics of equatorial forest birds in Sarawak. Ibis 114:307–43
    [Google Scholar]
  51. Forero-Medina G, Terborgh J, Socolar SJ, Pimm SL 2011. Elevational ranges of birds on a tropical montane gradient lag behind warming temperatures. PLOS ONE 6:e28535
    [Google Scholar]
  52. Forister ML, Novotny V, Panorska AK, Baje L, Basset Y et al. 2015. The global distribution of diet breadth in insect herbivores. PNAS 112:442–47
    [Google Scholar]
  53. Fortunel C, Paine CET, Fine PVA, Mesones I, Goret J-Y et al. 2016. There's no place like home: Seedling mortality contributes to the habitat specialisation of tree species across Amazonia. Ecol. Lett. 19:1256–66
    [Google Scholar]
  54. Freeman BG, Freeman AMC. 2014. Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming. PNAS 111:4490–94
    [Google Scholar]
  55. Freeman BG, Scholer MN, Ruiz-Gutierrez V, Fitzpatrick JW 2018. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. PNAS 115:11982–87
    [Google Scholar]
  56. García-Robledo C, Kuprewicz EK, Staines CL, Erwin TL, Kress WJ 2016. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. PNAS 113:680–85
    [Google Scholar]
  57. Gentry AH. 1995. Diversity and floristic composition of neotropical dry forests. Seasonally Dry Tropical Forests SH Bullock, HA Mooney, E Medina 146–94 New York: Cambridge Univ. Press
    [Google Scholar]
  58. Gibson-Reinemer D, Sheldon KS, Rahel FJ 2015. Climate change creates rapid species turnover in montane communities. Ecol. Evol. 5:2340–47
    [Google Scholar]
  59. Gienapp P, Teplitsky C, Alho JS, Mills JA, Merilä J 2008. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17:167–78
    [Google Scholar]
  60. Graham EA, Mulkey SS, Kitajima K, Phillips NG, Wright SJ 2003. Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons. PNAS 100:572–76
    [Google Scholar]
  61. Gunderson AR, Stillman JH. 2015. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B 282:20150401
    [Google Scholar]
  62. Harris JBC, Yong DL, Sheldon FH, Boyce AJ, Eaton JA et al. 2012. Using diverse data sources to detect elevational range changes of birds on Mount Kinabalu, Malaysian Borneo. Raffles Bull. Zool. 25:197–247
    [Google Scholar]
  63. Hau M, Wikelski M, Wingfield JC 1998. A neotropical forest bird can measure the slight changes in tropical photoperiod. Proc. R. Soc. B 265:89–95
    [Google Scholar]
  64. Hemp A. 2005. Climate change-driven forest fires marginalize the impact of ice cap wasting on Kilimanjaro. Glob. Change Biol. 11:1013–23
    [Google Scholar]
  65. Henry GHR, Molau U. 1997. Tundra plants and climate change: the International Tundra Experiment (ITEX). Glob. Change Biol. 3:1–9
    [Google Scholar]
  66. Hoffmann AA, Hallas RJ, Dean JA, Schiffer M 2003. Low potential for climatic stress adaptation in a rainforest Drosophila species. Science 301:100–2
    [Google Scholar]
  67. Holmes MW, Hammond TT, Wogan GOU, Walsh RE, LaBarbera K et al. 2016. Natural history collections as windows on evolutionary processes. Mol. Ecol. 25:864–81
    [Google Scholar]
  68. Houghton RA, Byers B, Nassikas AA 2015. A role for tropical forests in stabilizing atmospheric CO2. Nat. Clim. Change 5:1022–23
    [Google Scholar]
  69. Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE et al. 2009. Why tropical forest lizards are vulnerable to climate warming. Proc. R. Soc. B 276:1939–48
    [Google Scholar]
  70. IPCC (Intergov. Panel Clim. Change) 1990. Policymaker summary of Working Group II (potential impacts of climate change). Climate Change: the IPCC 1990 and 1992 Assessments87–113 Geneva: IPCC. https://www.ipcc.ch/site/assets/uploads/2018/05/ipcc_90_92_assessments_far_wg_II_spm.pdf
    [Google Scholar]
  71. Jankowski JE, Robinson SK, Levey DJ 2010. Squeezed at the top: Interspecific aggression may constrain elevational ranges in tropical birds. Ecology 91:1877–84
    [Google Scholar]
  72. Janzen DH. 1967. Why mountain passes are higher in the tropics. Am. Nat. 101:233–46
    [Google Scholar]
  73. Janzen DH. 1988. Tropical dry forests, the most endangered major tropical ecosystem. Biodiversity EO Wilson 130–37 Washington, DC: Natl. Acad. Press
    [Google Scholar]
  74. Kaspari M, Clay NA, Lucas J, Yanoviak SP, Kay A 2015. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Glob. Change Biol. 21:1092–102
    [Google Scholar]
  75. Khaliq I, Böhning‐Gaese K, Prinzinger R, Pfenninger M, Hof C 2017. The influence of thermal tolerances on geographical ranges of endotherms. Glob. Ecol. Biogeogr. 26:650–68
    [Google Scholar]
  76. Knutson TR, Manabe S. 1998. Model assessment of decadal variability and trends in the tropical Pacific Ocean. J. Clim. 11:2273–96
    [Google Scholar]
  77. Körner C. 2009. Responses of humid tropical trees to rising CO2. Annu. Rev. Ecol. Evol. Syst. 40:61–79
    [Google Scholar]
  78. Kricher J. 2011. Tropical Ecology Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  79. Latif M, Keenlyside NS. 2009. El Niño/Southern Oscillation response to global warming. PNAS 106:20578–83
    [Google Scholar]
  80. Laurance WF, Andrade AS, Magrach A, Camargo JLC, Valsko JJ et al. 2014. Long-term changes in liana abundance and forest dynamics in undisturbed Amazonian forests. Ecology 95:1604–11
    [Google Scholar]
  81. Laurance WF, Oliveira AA, Laurance SG, Condit R, Nascimento HEM et al. 2004. Pervasive alteration of tree communities in undisturbed Amazonian forests. Nature 428:171–75
    [Google Scholar]
  82. LaVal RK. 2004. Impact of global warming and locally changing climate on tropical cloud forest bats. J. Mammal. 85:237–44
    [Google Scholar]
  83. Lewis SL, Lloyd J, Sitch S, Mitchard ETA, Laurance WF 2009a. Changing ecology of tropical forests: evidence and drivers. Annu. Rev. Ecol. Evol. Syst. 40:529–49
    [Google Scholar]
  84. Lewis SL, Lopez-Gonzalez G, Sonké B, Affum-Baffoe K, Baker TR et al. 2009b. Increasing carbon storage in intact African tropical forests. Nature 457:1003–6
    [Google Scholar]
  85. Lewis SL, Malhi Y, Phillips OL 2004. Fingerprinting the impacts of global change on tropical forests. Philos. Trans. R. Soc. B 359:437–62
    [Google Scholar]
  86. Lips KR. 1998. Decline of a tropical montane amphibian fauna. Conserv. Biol. 13:106–17
    [Google Scholar]
  87. Lister BC, Garcia A. 2018. Climate-driven declines in arthropod abundance restructure a rainforest food web. PNAS 115:E10397–406
    [Google Scholar]
  88. Lister BC, Garcia A. 2019. Reply to Willig et al.: long-term population trends in the Luquillo Rainforest. PNAS 116:E12145–46
    [Google Scholar]
  89. Luo Y, Melillo J, Niu S, Beier C, Clark JS et al. 2011. Coordinated approaches to quantify long-term ecosystem dynamics in response to global change. Glob. Change Biol. 17:843–54
    [Google Scholar]
  90. Malhi Y, Wright J. 2004. Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos. Trans. R. Soc. B 359:311–29
    [Google Scholar]
  91. Manabe S, Wetherald RT. 1975. The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci. 32:3–15
    [Google Scholar]
  92. Mau AC, Reed S, Wood T, Cavaleri M 2018. Temperate and tropical forest canopies are already functioning beyond their thermal thresholds for photosynthesis. Forests 9:47
    [Google Scholar]
  93. Mendoza I, Peres CA, Morellato LPC 2017. Continental-scale patterns and climatic drivers of fruiting phenology: a quantitative Neotropical review. Glob. Planet. Change 148:227–41
    [Google Scholar]
  94. Merilä J. 2012. Evolution in response to climate change: in pursuit of the missing evidence. BioEssays 34:811–18
    [Google Scholar]
  95. Morueta-Holme N, Engemann K, Sandoval-Acuña P, Jonas JD, Segnitz RM, Svenning J-C 2015. Strong upslope shifts in Chimborazo's vegetation over two centuries since Humboldt. PNAS 112:12741–45
    [Google Scholar]
  96. Murphy PG, Lugo AE. 1986. Ecology of tropical dry forest. Annu. Rev. Ecol. Syst. 17:67–88
    [Google Scholar]
  97. Neelin JD, Münnich M, Su H, Meyerson JE, Holloway CE 2006. Tropical drying trends in global warming models and observations. PNAS 103:6110–15
    [Google Scholar]
  98. Nepstad DC, Tohver IM, Ray D, Moutinho P, Cardinot G 2007. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88:2259–69
    [Google Scholar]
  99. Nor SMD. 2001. Elevational diversity patterns of small mammals on Mount Kinabalu, Sabah, Malaysia. Glob. Ecol. Biogeogr. 10:41–62
    [Google Scholar]
  100. Nwaogu CJ, Tieleman BI, Cresswell W 2018. Weak breeding seasonality of a songbird in a seasonally arid tropical environment arises from individual flexibility and strongly seasonal moult. Ibis 161:533–45 https://doi.org/10.1111/ibi.12661
    [Crossref] [Google Scholar]
  101. O'Brien MJ, Peréz‐Aviles D, Powers JS 2018. Resilience of seed production to a severe El Niño-induced drought across functional groups and dispersal types. Glob. Change Biol. 24:5270–80
    [Google Scholar]
  102. Olivares I, Svenning J-C, van Bodegom PM, Valencia R, Balslev H 2017. Stability in a changing world—palm community dynamics in the hyperdiverse western Amazon over 17 years. Glob. Change Biol. 23:1232–39
    [Google Scholar]
  103. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE et al. 2011. A large and persistent carbon sink in the world's forests. Science 333:988–93
    [Google Scholar]
  104. Parmesan C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37:637–69
    [Google Scholar]
  105. Paulson DR. 2001. Recent Odonata records from southern Florida–effects of global warming?. Int. J. Odonatol. 4:57–69
    [Google Scholar]
  106. Pelini SL, Bowles FP, Ellison AM, Gotelli NJ, Sanders NJ, Dunn RR 2011. Heating up the forest: open-top chamber warming manipulation of arthropod communities at Harvard and Duke Forests. Methods Ecol. Evol. 2:534–40
    [Google Scholar]
  107. Phillips OL, Aragão LEOC, Lewis SL, Fisher JB, Lloyd J et al. 2009. Drought sensitivity of the Amazon rainforest. Science 323:1344–47
    [Google Scholar]
  108. Phillips OL, Malhi Y, Higuchi N, Laurance WF, Núñez PV et al. 1998. Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–42
    [Google Scholar]
  109. Phillips OL, Vásquez Martínez R, Arroyo L, Baker TR, Killeen T et al. 2002. Increasing dominance of large lianas in Amazonian forests. Nature 418:770–74
    [Google Scholar]
  110. Pincebourde S, Suppo C. 2016. The vulnerability of tropical ectotherms to warming is modulated by the microclimatic heterogeneity. Integr. Comp. Biol. 56:85–97
    [Google Scholar]
  111. Polato NR, Gill BA, Shah AA, Gray MM, Casner KL et al. 2018. Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. PNAS 115:12471–76
    [Google Scholar]
  112. Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MPL et al. 2006. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–67
    [Google Scholar]
  113. Pounds JA, Fogden MPL, Campbell JH 1999. Biological response to climate change on a tropical mountain. Nature 398:611–15
    [Google Scholar]
  114. Primack RB, Miller‐Rushing AJ. 2009. The role of botanical gardens in climate change research. New Phytol 182:303–13
    [Google Scholar]
  115. Raich JW, Schlesinger WH. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44:81–99
    [Google Scholar]
  116. Raxworthy CJ, Pearson RG, Rabibisoa N, Rakotondrazafy AM, Ramanamanjato J-B et al. 2008. Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar. Glob. Change Biol. 14:1703–20
    [Google Scholar]
  117. Renner SS, Zohner CM. 2018. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49:165–82
    [Google Scholar]
  118. Rivera G, Borchert R. 2001. Induction of flowering in tropical trees by a 30-min reduction in photoperiod: evidence from field observations and herbarium collections. Tree Physiol 21:201–12
    [Google Scholar]
  119. Rohr JR, Raffel TR. 2010. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease. PNAS 107:8269–74
    [Google Scholar]
  120. Ron SR, Duellman WE, Coloma LA, Bustamante MR 2003. Population decline of the Jambato toad Atelopus ignescens (Anura: Bufonidae) in the Andes of Ecuador. J. Herpetol. 37:116–26
    [Google Scholar]
  121. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA 2003. Fingerprints of global warming on wild animals and plants. Nature 421:57–60
    [Google Scholar]
  122. Rosselli L, Stiles FG, Camargo PA 2017. Changes in the avifauna in a high Andean cloud forest in Colombia over a 24-year period. J. Field Ornithol. 88:211–28
    [Google Scholar]
  123. Round PD, Gale GA. 2008. Changes in the status of Lophura pheasants in Khao Yai National Park, Thailand: a response to warming climate?. Biotropica 40:225–30
    [Google Scholar]
  124. Scheffers BR, Shoo L, Phillips B, Macdonald SL, Anderson A et al. 2017. Vertical (arboreality) and horizontal (dispersal) movement increase the resilience of vertebrates to climatic instability. Glob. Ecol. Biogeogr. 26:787–98
    [Google Scholar]
  125. Seimon TA, Seimon A, Daszak P, Halloy SRP, Schloegel LM et al. 2007. Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Glob. Change Biol. 13:288–99
    [Google Scholar]
  126. Senapathi D, Nicoll M, Teplitsky C, Jones C, Norris K 2011. Climate change and the risks associated with delayed breeding in a tropical wild bird population. Proc. R. Soc. B 278:3184–90
    [Google Scholar]
  127. Sheldon KS, Dillon ME. 2016. Beyond the mean: biological impacts of cryptic temperature change. Integr. Comp. Biol. 56:110–19
    [Google Scholar]
  128. Sheldon KS, Huey RB, Kaspari M, Sanders NJ 2018. Fifty years of mountain passes: a perspective on Dan Janzen's classic article. Am. Nat. 191:553–65
    [Google Scholar]
  129. Sheldon KS, Tewksbury JJ. 2014. The impact of seasonality in temperature on thermal tolerance and elevational range size. Ecology 95:2134–43
    [Google Scholar]
  130. Sheldon KS, Yang S, Tewksbury JJ 2011. Climate change and community disassembly: impacts of warming on tropical and temperate montane community structure. Ecol. Lett. 14:1191–200
    [Google Scholar]
  131. Sinervo B, Méndez-de-la-Cruz F, Miles DB, Heulin B, Bastiaans E et al. 2010. Erosion of lizard diversity by climate change and altered thermal niches. Science 328:894–99
    [Google Scholar]
  132. Slot M, Rey‐Sánchez C, Gerber S, Lichstein JW, Winter K, Kitajima K 2014. Thermal acclimation of leaf respiration of tropical trees and lianas: response to experimental canopy warming, and consequences for tropical forest carbon balance. Glob. Change Biol. 20:2915–26
    [Google Scholar]
  133. Stapley J, Garcia M, Andrews RM 2015. Long-term data reveal a population decline of the tropical lizard Anolis apletophallus, and a negative affect of El Niño years on population growth rate. PLOS ONE 10:e0115450
    [Google Scholar]
  134. Stocks G, Seales L, Paniagua F, Maehr E, Bruna EM 2008. The geographical and institutional distribution of ecological research in the tropics. Biotropica 40:397–404
    [Google Scholar]
  135. Townsend AR, Vitousek PM, Holland EA 1992. Tropical soils could dominate the short-term carbon cycle feedbacks to increased global temperatures. Clim. Change 22:293–303
    [Google Scholar]
  136. Tudhope AW, Chilcott CP, McCulloch MT, Cook ER, Chappell J et al. 2001. Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle. Science 291:1511–17
    [Google Scholar]
  137. Urban MC. 2015. Accelerating extinction risk from climate change. Science 348:571–73
    [Google Scholar]
  138. Urban MC, Tewksbury JJ, Sheldon KS 2012. On a collision course: Competition and climate change generate no-analog communities and extinction. Proc. R. Soc. B 279:2072–80
    [Google Scholar]
  139. van Heerwaarden B, Sgrò CM 2014. Is adaptation to climate change really constrained in niche specialists. Proc. R. Soc. B 281:20140396
    [Google Scholar]
  140. van Schaik CP, Terborgh JW, Wright SJ 1993. The phenology of tropical forests: adaptive significance and consequences for primary consumers. Annu. Rev. Ecol. Syst. 24:353–77
    [Google Scholar]
  141. Verbesselt J, Umlauf N, Hirota M, Holmgren M, Van Nes EH et al. 2016. Remotely sensed resilience of tropical forests. Nat. Clim. Change 6:1028–31
    [Google Scholar]
  142. von Humboldt A. 1817. Des lignes isothermes et de la distribution de la châleur sur le globe Paris: V.H. Perroneau
    [Google Scholar]
  143. von Humboldt A, Bonpland A 2009 (1807). Essay on the geography of plants—with a physical tableau of the equinoctial regions. Essay on the Geography of Plants ST Jackson, transl. S Romanowski 61–155 Chicago: Univ. Chicago Press
    [Google Scholar]
  144. Wang G, Dillon ME. 2014. Recent geographic convergence in diurnal and annual temperature cycling flattens global thermal profiles. Nat. Clim. Change 4:988–92
    [Google Scholar]
  145. Whitfield SM, Bell KE, Philippi T, Sasa M, Bolaños F et al. 2007. Amphibian and reptile declines over 35 years at La Selva, Costa Rica. PNAS 104:8352–56
    [Google Scholar]
  146. Wiens JJ. 2016. Climate-related local extinctions are already widespread among plant and animal species. PLOS Biol 14f:e2001104
    [Google Scholar]
  147. Willi Y, Van Buskirk J, Hoffmann AA 2006. Limits to the adaptive potential of small populations. Annu. Rev. Ecol. Evol. Syst. 37:433–58
    [Google Scholar]
  148. Williams CM, Ragland GJ, Betini G, Buckley LB, Cheviron ZA et al. 2017. Understanding evolutionary impacts of seasonality: an introduction to the symposium. Integr. Comp. Biol. 57:921–33
    [Google Scholar]
  149. Williams SE, Scheffers BR, VanDerWal J, Roslan N, Anderson A, Parsons S 2014. Species resilience: the key to understanding biodiversity in the rainforests of the Australian Wet Tropics Rep., Natl. Environ. Res. Prog., Reef Rainfor. Res. Cent., Cairns, Aust http://www.nerptropical.edu.au/sites/default/files/publications/files/NERP-TE-PROJECT-3.1-FINAL-REPORT-COMPLETE-A.pdf
    [Google Scholar]
  150. Willig MR, Woolbright L, Presley SJ, Schowalter TD, Waide RB et al. 2019. Populations are not declining and food webs are not collapsing at the Luquillo Experimental Forest. PNAS 116:12143–44
    [Google Scholar]
  151. Wolda H. 1988. Insect seasonality: why?. Annu. Rev. Ecol. Syst. 19:1–18
    [Google Scholar]
  152. Wright SJ, Muller-Landau HC, Schipper J 2009. The future of tropical species on a warmer planet. Conserv. Biol. 23:1418–26
    [Google Scholar]
  153. Würth MKR, Winter K, Körner C 1998. In situ responses to elevated CO2 in tropical forest understorey plants. Funct. Ecol. 12:886–95
    [Google Scholar]
  154. Xiao X, Hagen S, Zhang Q, Keller M, Moore B 2006. Detecting leaf phenology of seasonally moist tropical forests in South America with multi-temporal MODIS images. Remote Sens. Environ. 103:465–73
    [Google Scholar]
  155. Young BE, Lips KR, Reaser JK, Ibáñez R, Salas AW et al. 2001. Population declines and priorities for amphibian conservation in Latin America. Conserv. Biol. 15:1213–23
    [Google Scholar]
  156. Zhao J, Zhang Y, Song F, Xu Z, Xiao L 2013. Phenological response of tropical plants to regional climate change in Xishuangbanna, south-western China. J. Trop. Ecol. 29:161–72
    [Google Scholar]
  157. Zhou L, Tian Y, Myneni RB, Ciais P, Saatchi S et al. 2014. Widespread decline of Congo rainforest greenness in the past decade. Nature 509:86–90
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110218-025005
Loading
/content/journals/10.1146/annurev-ecolsys-110218-025005
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error