1932

Abstract

Resolving the genealogy of life—the phylogenetic relationships that describe the evolutionary history of species—remains one of the great challenges of systematic biology. The recent proliferation of DNA sequencing technologies has sparked a rapid increase in the volume of genetic data being applied to phylogenetic studies. Single nucleotide polymorphism (SNP) data, ubiquitous genetic markers once considered reserved for population genetic studies, are now being applied in phylogenetics research at deep evolutionary timescales. The potential for SNPs to resolve contentious phylogenetic problems while researchers also investigate population demographics is promising, yet serious challenges remain with respect to data collection, assembly, modeling, and analysis. The low cost and ease of collecting SNPs suggest that they will remain an important source of genetic information for inferring phylogenies across time periods ranging from the Anthropocene to the Cretaceous.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110316-022645
2017-11-02
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/48/1/annurev-ecolsys-110316-022645.html?itemId=/content/journals/10.1146/annurev-ecolsys-110316-022645&mimeType=html&fmt=ahah

Literature Cited

  1. Ali OA, O'Rourke SM, Amish SJ, Meek MH, Luikart G. et al. 2016. RAD capture (Rapture): flexible and efficient sequence-based genotyping. Genetics 202:389–400 [Google Scholar]
  2. Allman ES, Holder MT, Rhodes JA. 2010. Estimating trees from filtered data: identifiability of models for morphological phylogenetics. J. Theor. Biol. 263:108–19 [Google Scholar]
  3. Arnold B, Corbett-Detig RB, Hartl D, Bomblies K. 2013. RADseq underestimates diversity and introduces genealogical biases due to nonrandom haplotype sampling. Mol. Ecol. 22:3179–90 [Google Scholar]
  4. Avise JC. 2000. Phylogeography: The History and Formation of Species Cambridge, MA: Harvard Univ. Press [Google Scholar]
  5. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL. et al. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLOS ONE 3:e3376 [Google Scholar]
  6. Boucher F, Casazza G, Szövényi P, Conti E. 2016. Sequence capture using RAD probes clarifies phylogenetic relationships and species boundaries in Primula sect. Auricula. Mol. Phylogenetics Evol. 104:60–72 [Google Scholar]
  7. Brito PH, Edwards SV. 2009. Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica 135:439–55 [Google Scholar]
  8. Brumfield RT, Beerli P, Nickerson DA, Edwards SV. 2003. The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol. Evol. 18:249–56 [Google Scholar]
  9. Bryant D, Bouckaert R, Felsenstein J, Rosenberg NA, RoyChoudhury A. 2012. Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol. Biol. Evol. 29:1917–32 [Google Scholar]
  10. Cariou M, Duret L, Charlat S. 2013. Is RAD-seq suitable for phylogenetic inference? An in silico assessment and optimization. Ecol. Evol. 3:846–52 [Google Scholar]
  11. Chifman J, Kubatko L. 2014. Quartet inference from SNP data under the coalescent model. Bioinformatics 30:3317–24 [Google Scholar]
  12. Chifman J, Kubatko L. 2015. Identifiability of the unrooted species tree topology under the coalescent model with time-reversible substitution processes, site-specific rate variation, and invariable sites. J. Theor. Biol. 374:35–47 [Google Scholar]
  13. Chung Y, Hey J. 2017. Bayesian analysis of evolutionary divergence with genomic data under diverse demographic models. Mol. Biol. Evol. 34:1517–28 [Google Scholar]
  14. Collins RA, Hrbek T. 2015. An in silico comparison of reduced-representation and sequence-capture protocols for phylogenomics. bioRxiv 032565. http://dx.doi.org/10.1101/032565 [Crossref]
  15. DaCosta JM, Sorenson MD. 2014. Amplification biases and consistent recovery of loci in a double-digest RAD-seq protocol. PLOS ONE 9:e106713 [Google Scholar]
  16. DaCosta JM, Sorenson MD. 2016. ddRAD-seq phylogenetics based on nucleotide, indel, and presence–absence polymorphisms: analyses of two avian genera with contrasting histories. Mol. Phylogenetics Evol. 94:122–35 [Google Scholar]
  17. De Maio N, Schlötterer C, Kosiol C. 2013. Linking great apes genome evolution across time scales using polymorphism-aware phylogenetic models. Mol. Biol. Evol. 30:2249–62 [Google Scholar]
  18. De Maio N, Schrempf D, Kosiol C. 2015a. PoMo: an allele frequency-based approach for species tree estimation. Syst. Biol. 64:1018 [Google Scholar]
  19. De Maio N, Wu CH, O'Reilly KM, Wilson D. 2015b. New routes to phylogeography: a Bayesian structured coalescent approximation. PLOS Genet. 11:e1005421 [Google Scholar]
  20. Degnan JH, Rosenberg NA. 2009. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24:332–40 [Google Scholar]
  21. Eaton DA, Hipp AL, González-Rodríguez A, Cavender-Bares J. 2015. Historical introgression among the American live oaks and the comparative nature of tests for introgression. Evolution 69:2587–601 [Google Scholar]
  22. Eaton DA, Ree RH. 2013. Inferring phylogeny and introgression using RADseq data: an example from flowering plants (Pedicularis: Orobanchaceae). Syst. Biol. 62:689–706 [Google Scholar]
  23. Eaton DA, Spriggs EL, Park B, Donoghue MJ. 2016. Misconceptions on missing data in RAD-seq phylogenetics with a deep-scale example from flowering plants. Syst. Biol. 66:399–412 [Google Scholar]
  24. Edwards SV, Beerli P. 2000. Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution 54:1839–54 [Google Scholar]
  25. Edwards SV, Potter S, Schmitt CJ, Bragg JG, Moritz C. 2016a. Reticulation, divergence, and the phylogeography–phylogenetics continuum. PNAS 113:8025–32 [Google Scholar]
  26. Edwards SV, Xi Z, Janke A, Faircloth BC, McCormack JE. et al. 2016b. Implementing and testing the multispecies coalescent model: a valuable paradigm for phylogenomics. Mol. Phylogenetics Evol. 94:447–62 [Google Scholar]
  27. Emerson KJ, Merz CR, Catchen JM, Hohenlohe PA, Cresko WA. et al. 2010. Resolving postglacial phylogeography using high-throughput sequencing. PNAS 107:16196–200 [Google Scholar]
  28. Escudero M, Eaton DA, Hahn M, Hipp AL. 2014. Genotyping-by-sequencing as a tool to infer phylogeny and ancestral hybridization: a case study in Carex (cyperaceae). Mol. Phylogenetics Evol. 79:359–67 [Google Scholar]
  29. Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC. 2012. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst. Biol. 61:717–26 [Google Scholar]
  30. Felsenstein J. 2006. Accuracy of coalescent likelihood estimates: Do we need more sites, more sequences, or more loci?. Mol. Biol. Evol. 23:691–700 [Google Scholar]
  31. Filliol I, Motiwala AS, Cavatore M, Qi W, Hazbón MH. et al. 2006. Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set. J. Bacteriol. 188:759–72 [Google Scholar]
  32. Garner BA, Hand BK, Amish SJ, Bernatchez L, Foster JT. et al. 2016. Genomics in conservation: case studies and bridging the gap between data and application. Trends Ecol. Evol. 31:81–83 [Google Scholar]
  33. Garrick RC, Bonatelli IA, Hyseni C, Morales A, Pelletier TA. et al. 2015. The evolution of phylogeographic data sets. Mol. Ecol. 24:1164–71 [Google Scholar]
  34. Gautier M, Gharbi K, Cezard T, Foucaud J, Kerdelhué C. et al. 2013. The effect of RAD allele dropout on the estimation of genetic variation within and between populations. Mol. Ecol. 22:3165–78 [Google Scholar]
  35. Harris RB, Carling MD, Lovette IJ. 2014. The influence of sampling design on species tree inference: a new relationship for the New World chickadees (Aves: Poecile). Evolution 68:501–13 [Google Scholar]
  36. Harvey MG, Smith BT, Glenn TC, Faircloth BC, Brumfield RT. 2016. Sequence capture versus restriction site associated DNA sequencing for shallow systematics. Syst. Biol. 65:910–24 [Google Scholar]
  37. Herrera S, Shank TM. 2016. RAD sequencing enables unprecedented phylogenetic resolution and objective species delimitation in recalcitrant divergent taxa. Mol. Phylogenetics Evol. 100:70–79 [Google Scholar]
  38. Hickerson M, Carstens B, Cavender-Bares J, Crandall K, Graham C. et al. 2010. Phylogeography's past, present, and future: 10 years after. Mol. Phylogenetics Evol. 54:291–301 [Google Scholar]
  39. Hinchliff CE, Smith SA, Allman JF, Burleigh JG, Chaudhary R. et al. 2015. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. PNAS 112:12764–69 [Google Scholar]
  40. Hipp AL, Eaton DA, Cavender-Bares J, Fitzek E, Nipper R, Manos PS. 2014. A framework phylogeny of the American oak clade based on sequenced RAD data. PLOS ONE 9:e93975 [Google Scholar]
  41. Hoffberg SL, Kieran TJ, Catchen JM, Devault A, Faircloth BC. et al. 2016. RADcap: sequence capture of dual-digest RADseq libraries with identifiable duplicates and reduced missing data. Mol. Ecol. Resour. 16:1264–78 [Google Scholar]
  42. Huang H, Knowles LL. 2016. Unforeseen consequences of excluding missing data from next-generation sequences: simulation study of RAD sequences. Syst. Biol. 65:3357–65 [Google Scholar]
  43. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ. et al. 2016. A new view of the tree of life. Nat. Microbiol. 1:16048 [Google Scholar]
  44. Hykin SM, Bi K, McGuire JA. 2015. Fixing formalin: a method to recover genomic-scale DNA sequence data from formalin-fixed museum specimens using high-throughput sequencing. PLOS ONE 10:e0141579 [Google Scholar]
  45. Kawakami T, Smeds L, Backström N, Husby A, Qvarnström A. et al. 2014. A high-density linkage map enables a second-generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution. Mol. Ecol. 23:4035–58 [Google Scholar]
  46. Kuhner MK, Beerli P, Yamato J, Felsenstein J. 2000. Usefulness of single nucleotide polymorphism data for estimating population parameters. Genetics 156:439–47 [Google Scholar]
  47. Leaché AD, Banbury BL, Felsenstein J, Nieto-Montes de Oca A, Stamatakis A. 2015a. Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies. Syst. Biol. 64:1032–47 [Google Scholar]
  48. Leaché AD, Chavez AS, Jones LN, Grummer JA, Gottscho AD, Linkem CW. 2015b. Phylogenomics of phrynosomatid lizards: conflicting signals from sequence capture versus restriction site associated DNA sequencing. Genome Biol. Evol. 7:706–19 [Google Scholar]
  49. Leaché AD, Fujita MK, Minin VN, Bouckaert RR. 2014. Species delimitation using genome-wide SNP data. Syst. Biol. 63:534–42 [Google Scholar]
  50. Leaché AD, Harris RB, Maliska ME, Linkem CW. 2013. Comparative species divergence across eight triplets of spiny lizards (Sceloporus) using genomic sequence data. Genome Biol. Evol. 5:2410–19 [Google Scholar]
  51. Lewis PO. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50:913–25 [Google Scholar]
  52. Linck EB, Hanna Z, Sellas A, Dumbacher JP. 2017. Evaluating hybridization capture with RAD probes as a tool for museum genomics with historical bird specimens. Ecol. Evol. 74755–67 [Google Scholar]
  53. Liu L, Xi Z, Wu S, Davis CC, Edwards SV. 2015. Estimating phylogenetic trees from genome-scale data. Ann. N.Y. Acad. Sci. 1360:36–53 [Google Scholar]
  54. Long C, Kubatko L. 2017. Identifiability and reconstructibility of species phylogenies under a modified coalescent. arXiv:1701.06871 [q-bio.PE]
  55. Manthey JD, Campillo LC, Burns KJ, Moyle RG. 2016. Comparison of target-capture and restriction-site associated DNA sequencing for phylogenomics: a test in cardinalid tanagers (Aves, Genus: Piranga). Syst. Biol. 65:4640–50 [Google Scholar]
  56. McGill JR, Walkup EA, Kuhner MK. 2013. Correcting coalescent analyses for panel-based SNP ascertainment. Genetics 193:1185–96 [Google Scholar]
  57. McTavish EJ, Hillis DM. 2015. How do SNP ascertainment schemes and population demographics affect inferences about population history?. BMC Genom. 16:1 [Google Scholar]
  58. Morin PA, Luikart G, Wayne RK. SNP Workshop Group 2004. SNPs in ecology, evolution and conservation. Trends Ecol. Evol. 19:208–16 [Google Scholar]
  59. Nielsen R. 2000. Estimation of population parameters and recombination rates from single nucleotide polymorphisms. Genetics 154:931–42 [Google Scholar]
  60. Nieto-Montes de Oca A, Barley AJ, Meza-Lázaro RN, García-Vázquez UO, Zamora-Abrego JG. et al. 2017. Phylogenomics and species delimitation in the knob-scaled lizards of the genus Xenosaurus (Squamata: Xenosauridae) using ddRADseq data reveal a substantial underestimation of diversity. Mol. Phylogenetics Evol. 106:241–53 [Google Scholar]
  61. Pickrell JK, Pritchard JK. 2012. Inference of population splits and mixtures from genome-wide allele frequency data. PLOS Genet. 8:e1002967 [Google Scholar]
  62. Portik DM, Smith LL, Bi K. 2016. An evaluation of transcriptome-based exon capture for frog phylogenomics across multiple scales of divergence (Class: Amphibia, Order: Anura). Mol. Ecol. Resour. 16:51069–83 [Google Scholar]
  63. Posada D, Crandall KA. 2002. The effect of recombination on the accuracy of phylogeny estimation. J. Mol. Evol. 54:396–402 [Google Scholar]
  64. Rannala B, Yang Z. 2003. Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164:1645–56 [Google Scholar]
  65. Ree RH, Hipp AL. 2015. Inferring phylogenetic history from restriction site associated DNA (RADseq). Next-Generation Sequencing in Plant Systematics E Hörandl, MS Appelhans 181–204 Oberreifenberg, Ger.: Koeltz Scientific [Google Scholar]
  66. Reitzel A, Herrera S, Layden M, Martindale M, Shank T. 2013. Going where traditional markers have not gone before: utility of and promise for RAD sequencing in marine invertebrate phylogeography and population genomics. Mol. Ecol. 22:2953–70 [Google Scholar]
  67. Rubin BE, Ree RH, Moreau CS. 2012. Inferring phylogenies from RAD sequence data. PLOS ONE 7:e33394 [Google Scholar]
  68. Sanderson MJ, McMahon MM, Steel M. 2011. Terraces in phylogenetic tree space. Science 333:448–50 [Google Scholar]
  69. Schrempf D, Minh BQ, De Maio N, von Haeseler A, Kosiol C. 2016. Reversible polymorphism-aware phylogenetic models and their application to tree inference. J. Theor. Biol. 407:362–70 [Google Scholar]
  70. Schuster SC. 2007. Next-generation sequencing transforms today's biology. Nature 200:16–18 [Google Scholar]
  71. Seeb J, Carvalho G, Hauser L, Naish K, Roberts S, Seeb L. 2011. Single-nucleotide polymorphism (SNP) discovery and applications of SNP genotyping in nonmodel organisms. Mol. Ecol. Resour. 11:1–8 [Google Scholar]
  72. Shafer AB, Wolf JB, Alves PC, Bergström L, Bruford MW. et al. 2015. Genomics and the challenging translation into conservation practice. Trends Ecol. Evol. 30:78–87 [Google Scholar]
  73. Smith BT, Harvey MG, Faircloth BC, Glenn TC, Brumfield RT. 2014. Target capture and massively parallel sequencing of ultraconserved elements for comparative studies at shallow evolutionary time scales. Syst. Biol. 63:83–95 [Google Scholar]
  74. Stetz JB, Sawaya MA, Ramsey AB, Amish SJ, Schwartz MK. et al. 2016. Discovery of 20,000 RAD–SNPs and development of a 52-SNP array for monitoring river otters. Conserv. Genet. Resour. 8:299–302 [Google Scholar]
  75. Streicher JW, Schulte JA, Wiens JJ. 2016. How should genes and taxa be sampled for phylogenomic analyses with missing data? An empirical study in iguanian lizards. Syst. Biol. 65:128–45 [Google Scholar]
  76. Suchan T, Pitteloud C, Gerasimova NS, Kostikova A, Schmid S. et al. 2016. Hybridization capture using RAD probes (hyRAD), a new tool for performing genomic analyses on collection specimens. PLOS ONE 11:e0151651 [Google Scholar]
  77. Sutherland BJ, Gosselin T, Normandeau E, Lamothe M, Isabel N. et al. 2016. Salmonid chromosome evolution as revealed by a novel method for comparing RADseq linkage maps. Genome Biol. Evol. 8:3600–17 [Google Scholar]
  78. Swofford DL, Waddell PJ, Huelsenbeck JP, Foster PG, Lewis PO, Rogers JS. 2001. Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. Syst. Biol. 50:525–39 [Google Scholar]
  79. Wagner CE, Keller I, Wittwer S, Selz OM, Mwaiko S. et al. 2013. Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Mol. Ecol. 22:787–98 [Google Scholar]
  80. Xu B, Yang Z. 2016. Challenges in species tree estimation under the multispecies coalescent model. Genetics 204:1353–68 [Google Scholar]
  81. Yeates DK, Zwick A, Mikheyev AS. 2016. Museums are biobanks: unlocking the genetic potential of the three billion specimens in the world's biological collections. Curr. Opin. Insect Sci. 18:83–88 [Google Scholar]
  82. Zeng K, Charlesworth B. 2009. Estimating selection intensity on synonymous codon usage in a nonequilibrium population. Genetics 183:651–62 [Google Scholar]
  83. Zink RM, Barrowclough GF. 2008. Mitochondrial DNA under siege in avian phylogeography. Mol. Ecol. 17:2107–21 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110316-022645
Loading
/content/journals/10.1146/annurev-ecolsys-110316-022645
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error