1932

Abstract

Hybrid zones provide a powerful opportunity to analyze ecological and evolutionary interactions between divergent lineages. As such, research on hybrid zones has played a prominent role in the fields of evolutionary biology and systematics. Herein, we clarify what hybrid zones are, what is (and is not) known about them, and how different types of genomic data contribute to our understanding of hybrid zones. We then review two key topics, namely, what genomic analyses of hybrid zones have revealed about the basis and dynamics of speciation and how hybrid zones directly affect evolutionary processes. In the latter case, we emphasize the importance of contingency and ecological and genomic context in outcomes of hybridization. Throughout, we highlight limitations and key unknowns, and suggest approaches most likely to advance our understanding of hybrid zones and evolutionary processes in general.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110316-022652
2017-11-02
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/48/1/annurev-ecolsys-110316-022652.html?itemId=/content/journals/10.1146/annurev-ecolsys-110316-022652&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE. et al. 2013. Hybridization and speciation. J. Evol. Biol. 26:229–46 [Google Scholar]
  2. Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 191655–64 https://dx.doi.org/10.1101/gr.094052.109 [Crossref] [Google Scholar]
  3. Allendorf F, Leary R, Spruell P, Wenburg J. 2001. The problems with hybrids: setting conservation guidelines. Trends Ecol. Evol. 16:613–22 [Google Scholar]
  4. Arnold ML. 1997. Natural Hybridization and Evolution New York: Oxford Univ. Press [Google Scholar]
  5. Baird SJE. 1995. A simulation study of multilocus clines. Evolution 49:1038–45 [Google Scholar]
  6. Baldassarre DT, White TA, Karubian J, Webster MS. 2014. Genomic and morphological analysis of a semipermeable avian hybrid zone suggests asymmetrical introgression of a sexual signal. Evolution 68:2644–57 [Google Scholar]
  7. Barb JG, Bowers JE, Renaut S, Rey JI, Knapp SJ. et al. 2014. Chromosomal evolution and patterns of introgression in Helianthus. Genetics 197:969–79 [Google Scholar]
  8. Barton NH. 1983. Multilocus clines. Evolution 37:454–71 [Google Scholar]
  9. Barton NH, Baird S. 1995. Analyse: an application for analysing hybrid zones. Software for genomic analyses of hybrid zones. http://archive.bio.ed.ac.uk/software/Mac/Analyse/index.html [Google Scholar]
  10. Barton NH, Bengtsson B. 1986. The barrier to genetic exchange between hybridizing populations. Heredity 57:357–76 [Google Scholar]
  11. Barton NH, De Cara MAR. 2009. The evolution of strong reproductive isolation. Evolution 63:1171–90 [Google Scholar]
  12. Barton NH, Gale KS. 1993. Genetic analysis of hybrid zones. Hybrid Zones and the Evolutionary Process RG Harrison 13–45 New York: Oxford Univ. Press [Google Scholar]
  13. Barton NH, Hewitt GM. 1981. A chromosomal cline in the grasshopper Podisma pedestris. Evolution 35:1008–18 [Google Scholar]
  14. Barton NH, Hewitt GM. 1985. Analysis of hybrid zones. Annu. Rev. Ecol. Syst. 16:113–48 [Google Scholar]
  15. Barton NH, Hewitt GM. 1989. Adaptation, speciation and hybrid zones. Nature 341:497–503 [Google Scholar]
  16. Bazykin AD. 1969. Hypothetical mechanism of speciation. Evolution 23:685–87 [Google Scholar]
  17. Bierne N, Welch J, Loire E, Bonhomme F, David P. 2011. The coupling hypothesis: why genome scans may fail to map local adaptation genes. Mol. Ecol. 20:2044–72 [Google Scholar]
  18. Bímová BV, MacHolán M, Baird SJ, Munclinger P, Dufková P. et al. 2011. Reinforcement selection acting on the European house mouse hybrid zone. Mol. Ecol. 20:2403–24 [Google Scholar]
  19. Borge T, Lindroos K, Nádvorník P, Syvänen AC, Sætre GP. 2005. Amount of introgression in flycatcher hybrid zones reflects regional differences in pre and post-zygotic barriers to gene exchange. J. Evol. Biol. 18:1416–24 [Google Scholar]
  20. Buerkle CA, Lexer C. 2008. Admixture as the basis for genetic mapping. Trends Ecol. Evol. 23:686–94 [Google Scholar]
  21. Buerkle CA, Rieseberg LH. 2001. Low intraspecific variation for genomic isolation between hybridizing sunflower species. Evolution 55:684–91 [Google Scholar]
  22. Buerkle CA, Wolf DE, Rieseberg LH. 2003. The origin and extinction of species through hybridization. Population Viability in Plants: Conservation, Management, and Modeling of Rare Plants CA Brigham, MW Schwartz 117–41 New York: Springer-Verlag [Google Scholar]
  23. Buggs RJA. 2007. Empirical study of hybrid zone movement. Heredity 99:301–12 [Google Scholar]
  24. Burri R, Nater A, Kawakami T, Mugal CF, Olason PI. et al. 2015. Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Res. 25:1656–65 [Google Scholar]
  25. Carneiro M, Baird SJ, Afonso S, Ramirez E, Tarroso P. et al. 2013. Steep clines within a highly permeable genome across a hybrid zone between two subspecies of the European rabbit. Mol. Ecol. 22:2511–25 [Google Scholar]
  26. Coyne JA, Orr HA. 2004. Speciation Sunderland, MA: Sinauer [Google Scholar]
  27. Cutter AD. 2012. The polymorphic prelude to Bateson–Dobzhansky–Muller incompatibilities. Trends Ecol. Evol. 27:209–18 [Google Scholar]
  28. Dasmahapatra KK, Blum MJ, Aiello A, Hackwell S, Davies N. et al. 2002. Inferences from a rapidly moving hybrid zone. Evolution 56:741–53 [Google Scholar]
  29. Dasmahapatra KK, Walters JR, Briscoe AD, Davey JW, Whibley A. et al. 2012. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487:94–98 [Google Scholar]
  30. Davison A, Chiba S, Barton NH, Clarke B. 2005. Speciation and gene flow between snails of opposite chirality. PLOS Biol. 3e282 [Google Scholar]
  31. Derryberry EP, Derryberry GE, Maley JM, Brumfield RT. 2014. HZAR: hybrid zone analysis using an R software package. Mol. Ecol. Resourc. 14:652–63 [Google Scholar]
  32. Endler JA. 1977. Geographic Variation, Speciation, and Clines Princeton, NJ: Princeton Univ. Press [Google Scholar]
  33. Falush D, Stephens M, Pritchard JK. 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–87 [Google Scholar]
  34. Fitzpatrick BM. 2013. Alternative forms for genomic clines. Ecol. Evol. 3:1951–66 [Google Scholar]
  35. Fitzpatrick BM, Johnson JR, Kump DK, Shaffer HB, Smith JJ, Voss SR. 2009. Rapid fixation of non-native alleles revealed by genome-wide SNP analysis of hybrid tiger salamanders. BMC Evol. Biol. 9:176 [Google Scholar]
  36. Fitzpatrick BM, Johnson JR, Kump DK, Smith JJ, Voss SR, Shaffer HB. 2010. Rapid spread of invasive genes into a threatened native species. PNAS 107:3606–10 [Google Scholar]
  37. Flaxman SM, Wacholder AC, Feder JL, Nosil P. 2014. Theoretical models of the influence of genomic architecture on the dynamics of speciation. Mol. Ecol. 23:4074–88 [Google Scholar]
  38. Garrigan D, Kingan SB, Geneva AJ, Andolfatto P, Clark AG. et al. 2012. Genome sequencing reveals complex speciation in the Drosophila simulans clade. Genome Res. 22:1499–511 [Google Scholar]
  39. Gompert Z. 2016. A continuous correlated beta process model for genetic ancestry in admixed populations. PLOS ONE 11:e0151047 [Google Scholar]
  40. Gompert Z, Buerkle CA. 2009. A powerful regression-based method for admixture mapping of isolation across the genome of hybrids. Mol. Ecol. 18:1207–24 [Google Scholar]
  41. Gompert Z, Buerkle CA. 2011a. A hierarchical Bayesian model for next-generation population genomics. Genetics 187:903–17 [Google Scholar]
  42. Gompert Z, Buerkle CA. 2011b. Bayesian estimation of genomic clines. Mol. Ecol. 20:2111–27 [Google Scholar]
  43. Gompert Z, Buerkle CA. 2013. Analyses of genetic ancestry enable key insights for molecular ecology. Mol. Ecol. 22:5278–94 [Google Scholar]
  44. Gompert Z, Buerkle CA. 2016. What, if anything, are hybrids: enduring truths and challenges associated with population structure and gene flow. Evol. Appl. 9:909–23 [Google Scholar]
  45. Gompert Z, Egan SP, Barrett RDH, Feder JL, Nosil P. 2017. Multilocus approaches for the measurement of selection on correlated genetic loci. Mol. Ecol. 26:365–82 [Google Scholar]
  46. Gompert Z, Lucas LK, Buerkle CA, Forister ML, Fordyce JA, Nice CC. 2014. Admixture and the organization of genetic diversity in a butterfly species complex revealed through common and rare genetic variants. Mol. Ecol. 23:4555–73 [Google Scholar]
  47. Gompert Z, Lucas LK, Nice CC, Buerkle CA. 2013a. Genome divergence and the genetic architecture of barriers to gene flow between Lycaeides idas and L. melissa. Evolution 67:2498–514 [Google Scholar]
  48. Gompert Z, Lucas LK, Nice CC, Fordyce JA, Buerkle CA, Forister ML. 2013b. Geographically multifarious phenotypic divergence during speciation. Ecol. Evol. 3:595–613 [Google Scholar]
  49. Gompert Z, Lucas LK, Nice CC, Fordyce JA, Forister ML, Buerkle CA. 2012a. Genomic regions with a history of divergent selection affect fitness of hybrids between two butterfly species. Evolution 66:2167–81 [Google Scholar]
  50. Gompert Z, Parchman TL, Buerkle CA. 2012b. Genomics of isolation in hybrids. Philos. Trans. R. Soc. B 367:439–50 [Google Scholar]
  51. Good JM, Handel MA, Nachman MW. 2008. Asymmetry and polymorphism of hybrid male sterility during the early stages of speciation in house mice. Evolution 62:50–65 [Google Scholar]
  52. Gravel S. 2012. Population genetics models of local ancestry. Genetics 191:607–19 [Google Scholar]
  53. Hamilton JA, Lexer C, Aitken SN. 2013. Genomic and phenotypic architecture of a spruce hybrid zone (Picea sitchensis x P. glauca). Mol. Ecol. 22:827–41 [Google Scholar]
  54. Harris K, Nielsen R. 2016. The genetic cost of Neanderthal introgression. Genetics 203:881–91 [Google Scholar]
  55. Harrison RG. 1986. Pattern and process in a narrow hybrid zone. Heredity 56:337–49 [Google Scholar]
  56. Harrison RG. 1990. Hybrid zones: windows on evolutionary process. Oxf. Surv. Evol. Biol. 7:69–128 [Google Scholar]
  57. Harrison RG. 1993. Hybrids and hybrid zones: historical perspective. Hybrid Zones and the Evolutionary Process RG Harrison 3–12 New York: Oxford Univ. Press [Google Scholar]
  58. Harrison RG, Larson EL. 2014. Hybridization, introgression, and the nature of species boundaries. J. Heredity 105:795–809 [Google Scholar]
  59. Harrison RG, Larson EL. 2016. Heterogeneous genome divergence, differential introgression, and the origin and structure of hybrid zones. Mol. Ecol. 25:2454–66 [Google Scholar]
  60. Haselhorst MSH, Buerkle CA. 2013. Population genetic structure of Picea engelmannii, P. glauca and their previously unrecognized hybrids in the central Rocky Mountains. Tree Genet. Genomes 9:669–81 [Google Scholar]
  61. Hewitt GM. 1988. Hybrid zones—natural laboratories for evolution studies. Trends Ecol. Evol. 3:158–66 [Google Scholar]
  62. Hewitt GM. 2001. Speciation, hybrid zones and phylogeography—or seeing genes in space and time. Mol. Ecol. 10:537–49 [Google Scholar]
  63. Huddleston J, Ranade S, Malig M, Antonacci F, Chaisson M. et al. 2014. Reconstructing complex regions of genomes using long-read sequencing technology. Genome Res. 24:688–96 [Google Scholar]
  64. Janoušek V, Munclinger P, Wang L, Teeter KC, Tucker PK. 2015. Functional organization of the genome may shape the species boundary in the house mouse. Mol. Biol. Evol. [Google Scholar]
  65. Janoušek V, Wang L, Luzynski K, Dufková P, Vyskočilová MM. et al. 2012. Genome-wide architecture of reproductive isolation in a naturally occurring hybrid zone between Mus musculus musculus and M. m. domesticus. Mol. Ecol. 21:3032–47 [Google Scholar]
  66. Jiggins C, Naisbit R, Coe R, Mallet J. 2001. Reproductive isolation caused by colour pattern mimicry. Nature 411:302–5 [Google Scholar]
  67. Kovach RP, Hand BK, Hohenlohe PA, Cosart TF, Boyer MC. et al. 2016. Vive la résistance: genome-wide selection against introduced alleles in invasive hybrid zones. Proc. R. Soc. Lond. B 283:20161380 [Google Scholar]
  68. Larson EL, Andrés JA, Bogdanowicz SM, Harrison RG. 2013. Differential introgression in a mosaic hybrid zone reveals candidate barrier genes. Evolution 67:3653–61 [Google Scholar]
  69. Larson EL, White TA, Ross CL, Harrison RG. 2014. Gene flow and the maintenance of species boundaries. Mol. Ecol. 23:1668–78 [Google Scholar]
  70. Lepais O, Petit R, Guichoux E, Lavabre J, Alberto F. et al. 2009. Species relative abundance and direction of introgression in oaks. Mol. Ecol. 18:2228–42 [Google Scholar]
  71. Lexer C, Buerkle CA, Joseph JA, Heinze B, Fay MF. 2007. Admixture in European Populus hybrid zones makes feasible the mapping of loci that contribute to reproductive isolation and trait differences. Heredity 98:74–84 [Google Scholar]
  72. Lexer C, Joseph JA, van Loo M, Barbará T, Heinze B. et al. 2010. Genomic admixture analysis in European Populus spp. reveals unexpected patterns of reproductive isolation and mating. Genetics 186:699–712 [Google Scholar]
  73. Lindtke D, González-Martínez SC, Macaya-Sanz D, Lexer C. 2013. Admixture mapping of quantitative traits in Populus hybrid zones: power and limitations. Heredity 111:474–85 [Google Scholar]
  74. Lohse K, Clarke M, Ritchie MG, Etges WJ. 2015. Genome-wide tests for introgression between cactophilic Drosophila implicate a role of inversions during speciation. Evolution 69:1178–90 [Google Scholar]
  75. Long JC. 1991. The genetic structure of admixed populations. Genetics 127:417–28 [Google Scholar]
  76. Macholán M, Baird SJE, Dufková P, Munclinger P, Bimová BV, Piálek J. 2011. Assessing multilocus introgression patterns: a case study on the mouse X chromosome in Central Europe. Evolution 65:1428–46 [Google Scholar]
  77. Malek TB, Boughman JW, Dworkin I, Peichel CL. 2012. Admixture mapping of male nuptial colour and body shape in a recently formed hybrid population of threespine stickleback. Mol. Ecol. 21:5265–79 [Google Scholar]
  78. Mallet J. 2007. Hybrid speciation. Nature 445:279–83 [Google Scholar]
  79. Mallet J, Barton N, Lamas G, Santisteban J, Muedas M, Eeley H. 1990. Estimates of selection and gene flow from measures of cline width and linkage disequilibrium in Heliconius hybrid zones. Genetics 124:921–36 [Google Scholar]
  80. Mallet J, Besansky N, Hahn MW. 2016. How reticulated are species?. BioEssays 38:140–49 [Google Scholar]
  81. Mandeville EG, Parchman TL, McDonald DB, Buerkle CA. 2015. Highly variable reproductive isolation among pairs of Catostomus species. Mol. Ecol. 24:1856–72 [Google Scholar]
  82. Mandeville EG, Parchman TL, Song SJ, Thompson KG, Compton RI. 2017. Inconsistent reproductive isolation revealed by interactions between Catostomus fish species. Evol. Lett. In press [Google Scholar]
  83. Maroja LS, Larson EL, Bogdanowicz SM, Harrison RG. 2015. Genes with restricted introgression in a field cricket (Gryllus firmus/Gryllus pennsylvanicus) hybrid zone are concentrated on the X chromosome and a single autosome. G3 5:2219–27 [Google Scholar]
  84. Martin SH, Dasmahapatra KK, Nadeau NJ, Salazar C, Walters JR. et al. 2013. Genome-wide evidence for speciation with gene flow in heliconius butterflies. Genome Res. 23:1817–28 [Google Scholar]
  85. McDonald DB, Parchman TL, Bower MR, Hubert WA, Rahel FJ. 2008. An introduced and a native vertebrate hybridize to form a genetic bridge to a second native species. PNAS 105:10837–42 [Google Scholar]
  86. Moore WS. 1977. An evaluation of narrow hybrid zones in vertebrates. Q. Rev. Biol. 52:263–67 [Google Scholar]
  87. Muhlfeld CC, Kovach RP, Jones LA, Al-Chokhachy R, Boyer MC. et al. 2014. Invasive hybridization in a threatened species is accelerated by climate change. Nat. Clim. Change 4:620–24 [Google Scholar]
  88. Nadeau NJ, Ruiz M, Salazar P, Counterman B, Medina JA. et al. 2014. Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato. Genome Res. 24:1316–33 [Google Scholar]
  89. Noor MAF, Bennett SM. 2009. Islands of speciation or mirages in the desert? Examining the role of restricted recombination in maintaining species. Heredity 103:439–44 [Google Scholar]
  90. Nosil P, Feder JL, Flaxman SM, Gompert Z. 2017. Tipping points in the dynamics of speciation. Nat. Ecol. Evol. 1:0001 [Google Scholar]
  91. Pallares LF, Harr B, Turner LM, Tautz D. 2014. Use of a natural hybrid zone for genomewide association mapping of craniofacial traits in the house mouse. Mol. Ecol. 23:5756–70 [Google Scholar]
  92. Parchman TL, Gompert Z, Braun MJ, Brumfield RT, McDonald DB. et al. 2013. The genomic consequences of adaptive divergence and reproductive isolation between species of manakins. Mol. Ecol. 22:3304–17 [Google Scholar]
  93. Pardo-Diaz C, Salazar C, Baxter SW, Merot C, Figueiredo-Ready W. et al. 2012. Adaptive introgression across species boundaries in heliconius butterflies. PLOS Genet. 8:1–13 [Google Scholar]
  94. Paşaniuc B, Sankararaman S, Kimmel G, Halperin E. 2009. Inference of locus-specific ancestry in closely related populations. Bioinformatics 25:i213–21 [Google Scholar]
  95. Patterson N, Hattangadi N, Lane B, Lohmueller KE, Hafler DA. et al. 2004. Methods for high-density admixture mapping of disease genes. Am. J. Hum. Genet. 74:979–1000 [Google Scholar]
  96. Payseur BA. 2010. Using differential introgression in hybrid zones to identify genomic regions involved in speciation. Mol. Ecol. Resourc. 10:806–20 [Google Scholar]
  97. Payseur BA, Rieseberg LH. 2016. A genomic perspective on hybridization and speciation. Mol. Ecol. 25:2337–60 [Google Scholar]
  98. Petit RJ, Excoffier L. 2009. Gene flow and species delimitation. Trends Ecol. Evol. 24:386–93 [Google Scholar]
  99. Poelstra JW, Vijay N, Bossu CM, Lantz H, Ryll B. et al. 2014. The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science 344:1410–14 [Google Scholar]
  100. Price AL, Tandon A, Patterson N, Barnes KC, Rafaels N. et al. 2009. Sensitive detection of chromosomal segments of distinct ancestry in admixed populations. PLOS Genet. 5:e1000519 [Google Scholar]
  101. Rand DM, Harrison RG. 1989. Ecological genetics of a mosaic hybrid zone: mitochondrial, nuclear, and reproductive differentiation of crickets by soil type. Evolution 43:432–49 [Google Scholar]
  102. Rhymer JM, Simberloff D. 1996. Extinction by hybridization and introgression. Annu. Rev. Ecol. Syst. 27:83–109 [Google Scholar]
  103. Rieseberg LH, Whitton J, Gardner K. 1999. Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics 152:713–27 [Google Scholar]
  104. Riley SPD, Shaffer HB, Voss SR, Fitzpatrick BM. 2003. Hybridization between a rare, native tiger salamander (Ambystoma californiense) and its introduced congener. Ecol. Appl. 13:1263–75 [Google Scholar]
  105. Roux C, Fraisse C, Romiguier J, Anciaux Y, Galtier N, Bierne N. 2016. Shedding light on the grey zone of speciation along a continuum of genomic divergence. PLOS Biol. 14:e2000234 [Google Scholar]
  106. Saarman NP, Pogson GH. 2015. Introgression between invasive and native blue mussels (genus Mytilus) in the central California hybrid zone. Mol. Ecol. 24:4723–38 [Google Scholar]
  107. Sankararaman S, Mallick S, Dannemann M, Prüfer K, Kelso J. et al. 2014. The genomic landscape of Neanderthal ancestry in present-day humans. Nature 507:354–57 [Google Scholar]
  108. Sedghifar A, Brandvain Y, Ralph P. 2016. Beyond clines: lineages and haplotype blocks in hybrid zones. Mol. Ecol. 25:2559–76 [Google Scholar]
  109. Servedio MR. 2004. The what and why of research on reinforcement. PLOS Biol. 2:e420 [Google Scholar]
  110. Servedio MR, Noor MAF. 2003. The role of reinforcement in speciation: theory and data. Annu. Rev. Ecol. Evol. Syst. 34:339–64 [Google Scholar]
  111. Shriner D, Adeyemo A, Rotimi CN. 2011. Joint ancestry and association testing in admixed individuals. PLOS Comput. Biol. 7:e1002325 [Google Scholar]
  112. Slatkin M. 1973. Gene flow and selection in a cline. Genetics 75:733–56 [Google Scholar]
  113. Szymura JM, Barton NH. 1986. Genetic analysis of a hybrid zone between the fire-bellied toads, Bombina bombina and B. variegata, near Cracow in southern Poland. Evolution 40:1141–59 [Google Scholar]
  114. Szymura JM, Barton NH. 1991. The genetic structure of the hybrid zone between the fire-bellied toads Bombina bombina and B. variegata: comparisons between transects and between loci. Evolution 45:237–61 [Google Scholar]
  115. Tang H, Coram M, Wang P, Zhu XF, Risch N. 2006. Reconstructing genetic ancestry blocks in admixed individuals. Am. J. Hum. Genet. 79:1–12 [Google Scholar]
  116. Taylor SA, White TA, Hochachka WM, Ferretti V, Curry RL, Lovette I. 2014. Climate-mediated movement of an avian hybrid zone. Curr. Biol. 24:671–76 [Google Scholar]
  117. Teeter KC, Thibodeau LM, Gompert Z, Buerkle CA, Nachman MW, Tucker PK. 2010. The variable genomic architecture of isolation between hybridizing species of house mouse. Evolution 64:472–85 [Google Scholar]
  118. Toews DP, Taylor SA, Vallender R, Brelsford A, Butcher BG. et al. 2016. Plumage genes and little else distinguish the genomes of hybridizing warblers. Curr. Biol. 26:2313–18 [Google Scholar]
  119. Turner LM, Harr B. 2014. Genome-wide mapping in a house mouse hybrid zone reveals hybrid sterility loci and Dobzhansky-Muller interactions. eLife 3:e02504 [Google Scholar]
  120. Vines TH, Kohler SC, Thiel A, Ghira I, Sands TR. et al. 2003. The maintenance of reproductive isolation in a mosaic hybrid zone between the fire-bellied toads Bombina bombina and B. variegata. Evolution 57:1876–88 [Google Scholar]
  121. vonHoldt BM, Kays R, Pollinger JP, Wayne RK. 2016. Admixture mapping identifies introgressed genomic regions in North American canids. Mol. Ecol. 25:2443–53 [Google Scholar]
  122. Wegmann D, Kessner DE, Veeramah KR, Mathias RA, Nicolae DL. et al. 2011. Recombination rates in admixed individuals identified by ancestry-based inference. Nat. Genet. 43:847–53 [Google Scholar]
  123. Whitney KD, Randell RA, Rieseberg LH. 2010. Adaptive introgression of abiotic tolerance traits in the sunflower Helianthus annuus. New Phytologist 187:230–39 [Google Scholar]
  124. Wielstra B, Burke T, Butlin RK, Avcı A, Üzüm N. et al. 2017. A genomic footprint of hybrid zone movement in crested newts. Evol. Lett. 1:93–101 [Google Scholar]
  125. Wolf DE, Takebayashi N, Rieseberg LH. 2001. Predicting the risk of extinction through hybridization. Conserv. Biol. 15:1039–53 [Google Scholar]
  126. Wu CI. 2001. The genic view of the process of speciation. J. Evol. Biol. 14:851–65 [Google Scholar]
  127. Yanchukov A, Hofman S, Szymura JM, Mezhzherin SV. 2006. Hybridization of Bombina bombina and B. variegata (Anura, Discoglossidae) at a sharp ecotone in western Ukraine: comparisons across transects and over time. Evolution 60:583–600 [Google Scholar]
  128. Zbawicka M, Sańko T, Strand J, Wenne R. 2014. New SNP markers reveal largely concordant clinal variation across the hybrid zone between Mytilus spp. in the Baltic Sea. Aquat. Biol. 21:25–36 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110316-022652
Loading
/content/journals/10.1146/annurev-ecolsys-110316-022652
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error