Evolutionary biologists often predict the outcome of natural selection on an allele by measuring its effects on lifetime survival and reproduction of individual carriers. However, alleles affecting traits like sex, evolvability, and cooperation can cause fitness effects that depend heavily on differences in the environmental, social, and genetic context of individuals carrying the allele. This variability makes it difficult to summarize the evolutionary fate of an allele solely on the basis of its effects on any one individual. Attempts to average over this variability can sometimes salvage the concept of fitness. In other cases, evolutionary outcomes can be predicted only by considering the entire genealogy of an allele, thus limiting the utility of individual fitness altogether. We describe a number of intriguing new evolutionary phenomena that have emerged in studies that explicitly model long-term lineage dynamics and discuss implications for the evolution of infectious diseases.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Akçay E, Van Cleve J. 2016. There is no fitness but fitness, and the lineage is its bearer. Philos. Trans. R. Soc. B 371:20150085 [Google Scholar]
  2. Alizon S, de Roode JC, Michalakis Y. 2013. Multiple infections and the evolution of virulence. Ecol. Lett. 16:556–67 [Google Scholar]
  3. Alizon S, Fraser C. 2013. Within-host and between-host evolutionary rates across the HIV-1 genome. Retrovirology 10:49 [Google Scholar]
  4. Alizon S, Hurford A, Mideo N, Van Baalen M. 2009. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evol. Biol. 22:245–59 [Google Scholar]
  5. Alizon S, Michalakis Y. 2015. Adaptive virulence evolution: the good old fitness-based approach. Trends Ecol. Evol. 30:248–54 [Google Scholar]
  6. Allen RC, Popat R, Diggle SP, Brown SP. 2014. Targeting virulence: Can we make evolution-proof drugs. Nat. Rev. Microbiol. 12:300–8 [Google Scholar]
  7. Anderson RM, May RM. 1982. Coevolution of hosts and parasites. Parasitology 85:Pt. 2411–26 [Google Scholar]
  8. André J-B, Godelle B. 2006. The evolution of mutation rate in finite asexual populations. Genetics 172:611–26 [Google Scholar]
  9. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. 2004. Bacterial persistence as a phenotypic switch. Science 305:1622–25 [Google Scholar]
  10. Barton NH. 1995a. Linkage and the limits to natural selection. Genetics 140:821–41 [Google Scholar]
  11. Barton NH. 1995b. A general model for the evolution of recombination. Genet. Res. 65:123–44 [Google Scholar]
  12. Blundell JR, Levy SF. 2014. Beyond genome sequencing: lineage tracking with barcodes to study the dynamics of evolution, infection, and cancer. Genomics 104:417–30 [Google Scholar]
  13. Bonhoeffer S, Nowak MA. 1994. Mutation and the evolution of virulence. Proc. R. Soc. B 258:133–40 [Google Scholar]
  14. Bull JJ, Lauring AS. 2014. Theory and empiricism in virulence evolution. PLOS Pathog 10:e1004387 [Google Scholar]
  15. Cannings C. 1974. The latent roots of certain Markov chains arising in genetics: a new approach, I. Haploid models. Adv. Appl. Probab. 6:260–90 [Google Scholar]
  16. Chao L, Cox EC. 1983. Competition between high and low mutating strains of Escherichia coli. Evolution 37:125–34 [Google Scholar]
  17. Childs DZ, Metcalf C, Rees M. 2010. Evolutionary bet-hedging in the real world: empirical evidence and challenges revealed by plants. Proc. R. Soc. B 277:3055–64 [Google Scholar]
  18. Clauss M, Venable D. 2000. Seed germination in desert annuals: an empirical test of adaptive bet hedging. Am. Nat. 155:168–86 [Google Scholar]
  19. Colegrave N. 2002. Sex releases the speed limit on evolution. Nature 420:664–66 [Google Scholar]
  20. Coombs D, Gilchrist MA, Ball CL. 2007. Evaluating the importance of within- and between-host selection pressures on the evolution of chronic pathogens. Theor. Popul. Biol. 72:576–91 [Google Scholar]
  21. Cooper TF. 2007. Recombination speeds adaptation by reducing competition between beneficial mutations in populations of Escherichia coli. PLOS Biol 5:e225 [Google Scholar]
  22. Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C. et al. 2016. A global genetic interaction network maps a wiring diagram of cellular function. Science 353:aaf1420 [Google Scholar]
  23. Cvijović I, Good BH, Jerison ER, Desai MM. 2015. Fate of a mutation in a fluctuating environment. PNAS 112:E5021–28 [Google Scholar]
  24. Day T. 2003. Virulence evolution and the timing of disease life-history events. Trends Ecol. Evol. 18:113–18 [Google Scholar]
  25. Day T, Gandon S. 2007. Applying population-genetic models in theoretical evolutionary epidemiology. Ecol. Lett. 10:876–88 [Google Scholar]
  26. Day T, Read AF. 2016. Does high-dose antimicrobial chemotherapy prevent the evolution of resistance. PLOS Comput. Biol. 12:e1004689 [Google Scholar]
  27. Deitsch KW, Lukehart SA, Stringer JR. 2009. Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat. Rev. Microbiol. 7:493–503 [Google Scholar]
  28. Dempster ER. 1955. Maintenance of genetic heterogeneity. Cold Spring Harb. Symp. Quant. Biol. 20:25–31 [Google Scholar]
  29. Denamur E, Matic I. 2006. Evolution of mutation rates in bacteria. Mol. Microbiol. 60:820–27 [Google Scholar]
  30. Der R, Epstein CL, Plotkin JB. 2011. Generalized population models and the nature of genetic drift. Theor. Popul. Biol. 80:80–99 [Google Scholar]
  31. Desai MM, Fisher DS. 2007. Beneficial mutation selection balance and the effect of linkage on positive selection. Genetics 176:1759–98 [Google Scholar]
  32. Diard M, Garcia V, Maier L, Remus-Emsermann MNP, Regoes RR. et al. 2013. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature 494:353–56 [Google Scholar]
  33. Eshel I. 1973. Clone-selection and optimal rates of mutation. J. Appl. Probab. 10:728–38 [Google Scholar]
  34. Eshel I, Feldman MW. 1970. On the evolutionary effect of recombination. Theor. Popul. Biol. 1:88–100 [Google Scholar]
  35. Eshel I, Feldman MW, Bergman A. 1998. Long-term evolution, short-term evolution, and population genetic theory. J. Theor. Biol. 191:391–96 [Google Scholar]
  36. Falconer DS. 1994. Introduction to Quantitative Genetics Essex, UK: Longman Sci. Tech. [Google Scholar]
  37. Frank SA. 1995. Mutual policing and repression of competition in the evolution of cooperative groups. Nature 377:520–22 [Google Scholar]
  38. Frank SA. 2013. Microbial evolution: regulatory design prevents cancer-like overgrowths. Curr. Biol. 23:R343–46 [Google Scholar]
  39. Frank SA, Slatkin M. 1990. Evolution in a variable environment. Am. Nat. 136:244–60 [Google Scholar]
  40. Fraser D, Kaern M. 2009. A chance at survival: gene expression noise and phenotypic diversification strategies. Mol. Microbiol. 71:1333–40 [Google Scholar]
  41. Gerland U, Hwa T. 2009. Evolutionary selection between alternative modes of gene regulation. PNAS 106:8841–46 [Google Scholar]
  42. Gilchrist MA, Coombs D. 2006. Evolution of virulence: interdependence, constraints, and selection using nested models. Theor. Popul. Biol. 69:145–53 [Google Scholar]
  43. Gillespie JH. 1973. Natural selection with varying selection coefficients—a haploid model. Genet. Res. 21:115–20 [Google Scholar]
  44. Gillespie JH. 1974. Natural selection for within-generation variance in offspring number. Genetics 76:601–6 [Google Scholar]
  45. Giraud A, Matic I, Tenaillon O, Clara A, Radman M. et al. 2001. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291:2606–8 [Google Scholar]
  46. Goddard MR, Godfray HCJ, Burt A. 2005. Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434:636–40 [Google Scholar]
  47. Good BH, Desai MM. 2016. Evolution of mutation rates in rapidly adapting asexual populations. Genetics 204:1249–66 [Google Scholar]
  48. Gore J, Youk H, Van Oudenaarden A. 2009. Snowdrift game dynamics and facultative cheating in yeast. Nature 459:253–56 [Google Scholar]
  49. Graves CJ, Ros VI, Stevenson B, Sniegowski PD, Brisson D. 2013. Natural selection promotes antigenic evolvability. PLOS Pathog 9:e1003766 [Google Scholar]
  50. Gremer JR, Venable DL. 2014. Bet hedging in desert winter annual plants: optimal germination strategies in a variable environment. Ecol. Lett. 17:380–87 [Google Scholar]
  51. Hamilton WD. 1964. The genetical evolution of social behaviour. I. Theor. Popul. Biol. 7:1–16 [Google Scholar]
  52. Hamilton WD, Axelrod R, Tanese R. 1990. Sexual reproduction as an adaptation to resist parasites (a review). PNAS 87:3566–73 [Google Scholar]
  53. Hopper KR. 1999. Risk-spreading and bet-hedging in insect population biology. Annu. Rev. Entomol. 44:535–60 [Google Scholar]
  54. Huijben S, Bell AS, Sim DG, Tomasello D, Mideo N. et al. 2013. Aggressive chemotherapy and the selection of drug resistant pathogens. PLOS Pathog 9:e1003578 [Google Scholar]
  55. Jones SE, Lennon JT. 2010. Dormancy contributes to the maintenance of microbial diversity. PNAS 107:5881–86 [Google Scholar]
  56. Kawashima Y, Pfafferott K, Frater J, Matthews P, Payne R. et al. 2009. Adaptation of HIV-1 to human leukocyte antigen class I. Nature 458:641–45 [Google Scholar]
  57. Kimura M. 1962. On the probability of fixation of mutant genes in a population. Genetics 47:713–19 [Google Scholar]
  58. King OD, Masel J. 2007. The evolution of bet-hedging adaptations to rare scenarios. Theor. Popul. Biol. 72:560–75 [Google Scholar]
  59. Kondrashov AS. 1988. Deleterious mutations and the evolution of sex. Nature 336:435–40 [Google Scholar]
  60. Koschwanez JH, Foster KR, Murray AW. 2013. Improved use of a public good selects for the evolution of undifferentiated multicellularity. eLife 2:e00367 [Google Scholar]
  61. Kryazhimskiy S, Rice DP, Jerison ER, Desai MM. 2014. Global epistasis makes adaptation predictable despite sequence-level stochasticity. Science 344:1519–22 [Google Scholar]
  62. Kussell E, Leibler S. 2005. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309:2075–78 [Google Scholar]
  63. Lande R, Goodnight C. 2007. Expected relative fitness and the adaptive topography of fluctuating selection. Evolution 61:1835–46 [Google Scholar]
  64. LeClerc JE, Li B, Payne WL, Cebula TA. 1996. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274:1208 [Google Scholar]
  65. Lehmann L, Mullon C, Akçay E, Van Cleve J. 2016. Invasion fitness, inclusive fitness, and reproductive numbers in heterogeneous populations. Evolution 70:1689–702 [Google Scholar]
  66. Levin BR, Bull JJ. 1994. Short-sighted evolution and the virulence of pathogenic microorganisms. Trends Microbiol 2:76–81 [Google Scholar]
  67. Levins R. 1968. Evolution in Changing Environments: Some Theoretical Explorations Princeton, NJ: Princeton Univ. Press [Google Scholar]
  68. Levy SF, Blundell JR, Venkataram S, Petrov DA, Fisher DS, Sherlock G. 2015. Quantitative evolutionary dynamics using high-resolution lineage tracking. Nature 519:181–86 [Google Scholar]
  69. Levy SF, Ziv N, Siegal ML. 2012. Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant. PLOS Biol 10:e1001325 [Google Scholar]
  70. Lewontin RC, Cohen D. 1969. On population growth in a randomly varying environment. PNAS 62:1056–60 [Google Scholar]
  71. Livnat A, Papadimitriou CH. 2016. Sex as an algorithm: the theory of evolution under the lens of computation. Commun. ACM 59:84–93 [Google Scholar]
  72. Luo S. 2014. A unifying framework reveals key properties of multilevel selection. Theor. Popul. Biol. 341:41–52 [Google Scholar]
  73. Lynch M. 2007. The frailty of adaptive hypotheses for the origins of organismal complexity. PNAS 104:8597–604 [Google Scholar]
  74. Masel J, King Oliver D, Maughan H. 2007. The loss of adaptive plasticity during long periods of environmental stasis. Am. Nat. 169:38–46 [Google Scholar]
  75. Matic I, Radman M, Taddei F, Picard B, Doit C. et al. 1997. Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science 277:1833–34 [Google Scholar]
  76. Maynard Smith J. 1964. Group selection and kin selection. Nature 201:1145–47 [Google Scholar]
  77. Maynard Smith J. 1978. The Evolution of Sex Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  78. Maynard Smith J. 1982. Evolution and the Theory of Games Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  79. Maynard Smith J, Price G. 1973. The logic of animal conflict. Nature 246:15 [Google Scholar]
  80. McDonald MJ, Rice DP, Desai MM. 2016. Sex speeds adaptation by altering the dynamics of molecular evolution. Nature 531:233–36 [Google Scholar]
  81. Menu F, Roebuck J-P, Viala M. 2000. Bet-hedging diapause strategies in stochastic environments. Am. Nat. 155:724–34 [Google Scholar]
  82. Meyers LA, Bull JJ. 2002. Fighting change with change: adaptive variation in an uncertain world. Trends Ecol. Evol. 17:551–57 [Google Scholar]
  83. Mideo N, Alizon S, Day T. 2008. Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases. Trends Ecol. Evol. 23:511–17 [Google Scholar]
  84. Moran PAP. 1958. Random processes in genetics. Math. Proc. Camb. 54:60–71 [Google Scholar]
  85. Morran LT, Schmidt OG, Gelarden IA, Parrish RC, Lively CM. 2011. Running with the Red Queen: Host-parasite coevolution selects for biparental sex. Science 333:216–18 [Google Scholar]
  86. Moxon ER, Rainey PB, Nowak MA, Lenski RE. 1994. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4:24–33 [Google Scholar]
  87. Mulder DT, Coombes BK. 2013. Infection biology: cheats never prosper. Nature 494:321–22 [Google Scholar]
  88. Neher RA, Shraiman BI. 2009. Competition between recombination and epistasis can cause a transition from allele to genotype selection. PNAS 106:6866–71 [Google Scholar]
  89. Nowak MA, Sasaki A, Taylor C, Fudenberg D. 2004. Emergence of cooperation and evolutionary stability in finite populations. Nature 428:646–50 [Google Scholar]
  90. Nunney L. 1989. The maintenance of sex by group selection. Evolution 43:245–57 [Google Scholar]
  91. Nunney L. 1999a. Lineage selection and the evolution of multistage carcinogenesis. Proc. R. Soc. B 266:493–98 [Google Scholar]
  92. Nunney L. 1999b. Lineage selection: natural selection for long-term benefit. Levels of Selection in Evolution L Keller 238–52 Princeton, NJ: Princeton Univ. Press [Google Scholar]
  93. Orr HA. 2009. Fitness and its role in evolutionary genetics. Nat. Rev. Genet. 10:531–39 [Google Scholar]
  94. Otto SP. 2013. Evolution of modifier genes and biological systems. Princeton Guide to Evolution DA Baum, DJ Futuyma 253–60 Princeton, NJ: Princeton Univ. Press [Google Scholar]
  95. Philippi T, Seger J. 1989. Hedging one's evolutionary bets, revisited. Trends Ecol. Evol. 4:41–44 [Google Scholar]
  96. Phillips PC. 1998. The language of gene interaction. Genetics 149:1167–71 [Google Scholar]
  97. Pigliucci M. 2008. Is evolvability evolvable?. Nat. Rev. Genet. 9:75–82 [Google Scholar]
  98. Rainey PB, Rainey K. 2003. Evolution of cooperation and conflict in experimental bacterial populations. Nature 425:72–74 [Google Scholar]
  99. Ratnieks FL, Visscher PK. 1989. Worker policing in the honeybee. Nature 342:796–97 [Google Scholar]
  100. Raynes Y, Halstead AL, Sniegowski PD. 2014. The effect of population bottlenecks on mutation rate evolution in asexual populations. J. Evol. Biol. 27:161–69 [Google Scholar]
  101. Read AF, Day T, Huijben S. 2011. The evolution of drug resistance and the curious orthodoxy of aggressive chemotherapy. PNAS 108:10871–77 [Google Scholar]
  102. Simon B, Fletcher JA, Doebeli M. 2013. Towards a general theory of group selection. Evolution 67:1561–72 [Google Scholar]
  103. Sniegowski PD, Gerrish PJ, Johnson T, Shaver A. 2000. The evolution of mutation rates: separating causes from consequences. Bioessays 22:1057–66 [Google Scholar]
  104. Sniegowski PD, Gerrish PJ, Lenski RE. 1997. Evolution of high mutation rates in experimental populations of E. coli. Nature 387:703–5 [Google Scholar]
  105. Sniegowski PD, Murphy HA. 2006. Evolvability. Curr. Biol. 16:R831–34 [Google Scholar]
  106. Stearns SC. 2000. Daniel Bernoulli (1738): evolution and economics under risk. J. Biosci. 25:221–28 [Google Scholar]
  107. Szathmary E, Maynard Smith J. 1995. The major evolutionary transitions. Nature 374:227–32 [Google Scholar]
  108. Takahata N, Ishii K, Matsuda H. 1975. Effect of temporal fluctuation of selection coefficient on gene frequency in a population. PNAS 72:4541–45 [Google Scholar]
  109. Traulsen A, Hauert C. 2009. Stochastic evolutionary game dynamics. Reviews of Nonlinear Dynamics and Complexity HG Schuster 25–61 Weinheim, Ger.: Wiley-VCH [Google Scholar]
  110. Traulsen A, Nowak MA. 2006. Evolution of cooperation by multilevel selection. PNAS 103:10952–55 [Google Scholar]
  111. Travisano M, Velicer GJ. 2004. Strategies of microbial cheater control. Trends Microbiol 12:72–78 [Google Scholar]
  112. Turner PE, Chao L. 1999. Prisoner's dilemma in an RNA virus. Nature 398:441–43 [Google Scholar]
  113. Uecker H, Hermisson J. 2011. On the fixation process of a beneficial mutation in a variable environment. Genetics 188:915–30 [Google Scholar]
  114. Van Valen L. 1973. A new evolutionary law. Evol. Theory 1:1–30 [Google Scholar]
  115. Velicer GJ, Kroos L, Lenski RE. 2000. Developmental cheating in the social bacterium Myxococcus xanthus. Nature 404:598–601 [Google Scholar]
  116. Via S, Gomulkiewicz R, De Jong G, Scheiner SM, Schlichting CD, Van Tienderen PH. 1995. Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol. Evol. 10:212–17 [Google Scholar]
  117. Wagner GP, Altenberg L. 1996. Perspective: complex adaptations and the evolution of evolvability. Evolution 50:967–76 [Google Scholar]
  118. Watson RA, Szathmáry E. 2016. How can evolution learn?. Trends Ecol. Evol. 31:147–57 [Google Scholar]
  119. Weinreich DM, Lan Y, Wylie CS, Heckendorn RB. 2013. Should evolutionary geneticists worry about higher-order epistasis. Curr. Opin. Dev. Genet. 23:700–7 [Google Scholar]
  120. Williams GC. 1966. Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought Princeton, NJ: Princeton Univ. Press [Google Scholar]
  121. Wylie CS, Ghim CM, Kessler DA, Levine H. 2009. The fixation probability of rare mutators in finite asexual populations. Genetics 181:1595–602 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error