The use of artificial lighting to illuminate the night has provided substantial benefits to humankind. It has also disrupted natural daily, seasonal, and lunar light cycles as experienced by a diversity of organisms, and hence it has also altered cues for the timings of many biological activities. Here we review the evidence for impacts of artificial nighttime lighting on these timings. Although the examples are scattered, concerning a wide variety of species and environments, the breadth of such impacts is compelling. Indeed, it seems reasonable to conclude that the vast majority of impacts of artificial nighttime lighting stem from effects on biological timings. This adds support to arguments that artificial nighttime lighting has a quite pervasive and marked impact on ecological systems, that the rapid expansion in the global extent of both direct illuminance and skyglow is thus of significant concern, and that a widespread implementation of mitigation measures is required.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Altermatt F, Ebert D. 2016. Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution. Biol. Lett. 12:20160111 [Google Scholar]
  2. Aubé M, Kocifaj M, Zamorano J, Lamphar HAS, de Miguel AS. 2016. The spectral amplification effect of clouds to the night sky radiance in Madrid. J. Quant. Spectrosc. Rad. Transf. 181:11–23 [Google Scholar]
  3. Azam C, Kerbiriou C, Vernet A, Julien J-F, Bas Y. et al. 2015. Is part-night lighting an effective measure to limit the impacts of artificial lighting on bats. Glob. Change Biol. 21:4333–41 [Google Scholar]
  4. Bakken LE, Bakken GS. 1977. American redstart feeding by artificial light. Auk 94:373–74 [Google Scholar]
  5. Bedrosian TA, Fonken LK, Nelson RJ. 2016. Endocrine effects of circadian disruption. Annu. Rev. Physiol. 78:109–31 [Google Scholar]
  6. Beier P. 1995. Dispersal of juvenile cougars in fragmented habitat. J. Wildl. Manag. 59:228–37 [Google Scholar]
  7. Bennie J, Davies TW, Cruse D, Bell F, Gaston KJ. 2017. Artificial light at night alters grassland vegetation species composition and phenology. J. Appl. Ecol. In press
  8. Bennie J, Davies TW, Cruse D, Gaston KJ. 2016. Ecological effects of artificial light at night on wild plants. J. Ecol. 104:611–20 [Google Scholar]
  9. Bennie J, Davies TW, Cruse D, Inger R, Gaston KJ. 2015. Cascading effects of artificial light at night: resource-mediated control of herbivores in a grassland ecosystem. Philos. Trans. R. Soc. B 370:20140131 [Google Scholar]
  10. Bennie J, Davies TW, Duffy JP, Inger R, Gaston KJ. 2014. Contrasting trends in light pollution across Europe based on satellite observed night time lights. Sci. Rep. 4:3789 [Google Scholar]
  11. Berge J, Cottier F, Last KS, Varpe Ø, Leu E. et al. 2009. Diel vertical migration of Arctic zooplankton during the polar night. Biol. Lett. 5:69–72 [Google Scholar]
  12. Beyer F, Ker K. 2009. Street lighting for preventing road traffic injuries. Cochrane Database Syst. Rev. 1:CD004728 [Google Scholar]
  13. Biebouw K, Blumstein DT. 2003. Tammar wallabies (Macropus eugenii) associate safety with higher levels of nocturnal illumination. Ethol. Ecol. Evol. 15:159–72 [Google Scholar]
  14. Bird BL, Branch LC, Miller DL. 2004. Effects of coastal lighting on foraging behaviour of beach mice. Conserv. Biol. 18:1435–39 [Google Scholar]
  15. Bird S, Parker J. 2014. Low levels of light pollution may block the ability of male glow-worms (Lampyris noctiluca L.) to locate females. J. Insect Conserv. 18:737–43 [Google Scholar]
  16. Bliss-Ketchum LL, de Rivera CE, Turner BC, Weisbaum DM. 2016. The effect of artificial light on wildlife use of a passage structure. Biol. Conserv. 199:25–28 [Google Scholar]
  17. Boeuf G, Le Bail PY. 1999. Does light have an influence on fish growth. Aquaculture 177:129–52 [Google Scholar]
  18. Brüning A, Hölker F, Franke S, Preuer T, Kloas W. 2013. Spotlight on fish: Light pollution affects circadian rhythms of European perch but does not cause stress. Sci. Total Environ. 511:516–22 [Google Scholar]
  19. Buchanan BW. 1993. Effects of enhanced lighting on the behaviour of nocturnal frogs. Anim. Behav. 45:893–99 [Google Scholar]
  20. Canário F, Leitão AH, Tomé R. 2012. Predation attempts by short-eared and long-eared owls on migrating songbirds attracted to artificial lights. J. Raptor Res. 46:232–34 [Google Scholar]
  21. Chang AM, Aeschbach D, Duffy JF, Czeisler CA. 2015. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. PNAS 112:1232–37 [Google Scholar]
  22. Chen C-L, Su Y-H, Liu C-J, Lee Y-C. 2009. Effect of night illumination on growth and yield of soybean. J. Taiwan Agric. Res. 58:146–54 [Google Scholar]
  23. Da Silva A, Samplonius JM, Schlicht E, Valcu M, Kempenaers B. 2014. Artificial night lighting rather than traffic noise affects the daily timing of dawn and dusk singing in common European songbirds. Behav. Ecol. 25:1037–47 [Google Scholar]
  24. Da Silva A, Valcu M, Kempenaers B. 2015. Light pollution alters the phenology of dawn and dusk singing in common European songbirds. Philos. Trans. R. Soc. B 370:20140126 [Google Scholar]
  25. Da Silva A, Valcu M, Kempenaers B. 2016. Behavioural plasticity in the onset of dawn song under intermittent experimental night lighting. Anim. Behav. 117:155–65 [Google Scholar]
  26. Davies TW, Bennie J, Gaston KJ. 2012. Street lighting changes the composition of invertebrate communities. Biol. Lett. 8:764–67 [Google Scholar]
  27. Davies TW, Bennie J, Inger R, Gaston KJ. 2013a. Artificial light alters natural regimes of night-time sky brightness. Sci. Rep. 3:1722 [Google Scholar]
  28. Davies TW, Bennie J, Inger R, Hempel de Ibarra N, Gaston KJ. 2013b. Artificial light pollution: Are shifting spectral signatures changing the balance of species interactions?. Glob. Change Biol. 19:1417–23 [Google Scholar]
  29. Davies TW, Duffy J, Bennie J, Gaston KJ. 2014. The nature, extent, and ecological implications of marine light pollution. Front. Ecol. Environ. 12:347–55 [Google Scholar]
  30. de Jong M, Jeninga L, Ouyang JQ, van Oers K, Spoelstra K, Visser ME. 2016. Dose-dependent responses of avian daily rhythms to artificial light at night. Physiol. Behav. 155:172–79 [Google Scholar]
  31. de Jong M, Ouyang JQ, Da Silva A, van Grunsven RHA, Kempenaers B. et al. 2015. Effects of nocturnal illumination on life-history decisions and fitness in two wild songbird species. Philos. Trans. R. Soc. B 370:20140128 [Google Scholar]
  32. Dominoni DM, Partecke J. 2015. Does light pollution alter daylength? A test using light loggers on free-ranging European blackbirds (Turdus merula). Philos. Trans. R. Soc. B 370:20140118 [Google Scholar]
  33. Dominoni DM, Quetting M, Partecke J. 2013a. Long-term effects of chronic light pollution on seasonal functions of European blackbirds (Turdus merula). PLOS ONE 8:e85069 [Google Scholar]
  34. Dominoni D, Quetting M, Partecke J. 2013b. Artificial light at night advances avian reproductive physiology. Proc. R. Soc. B 280:20123017 [Google Scholar]
  35. Dorado-Correa AM, Rodríguez-Rocha M, Brumm H. 2016. Anthropogenic noise, but not artificial light levels predicts song behaviour in an equatorial bird. R. Soc. Open Sci. 3:160231 [Google Scholar]
  36. Dwyer RG, Bearhop S, Campbell HA, Bryant DM. 2013. Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird. J. Anim. Ecol. 82:478–85 [Google Scholar]
  37. Eisenbeis G. 2006. Artificial night lighting and insects: attraction of insects to streetlamps in a rural setting in Germany. Ecological Consequences of Artificial Night Lighting C Rich, T Longcore 281–304 Washington, DC: Island Press [Google Scholar]
  38. Endler JA. 1993. The color of light in forests and its implications. Ecol. Monogr. 63:1–27 [Google Scholar]
  39. Falchi F, Cinzano P, Duriscoe D, Kyba CCM, Elvidge CD. et al. 2016. The new world atlas of artificial night sky brightness. Sci. Adv. 2:e1600377 [Google Scholar]
  40. Farnworth B, Innes J, Waas JR. 2016. Converting predation cues into conservation tools: the effect of light on mouse foraging behaviour. PLOS ONE 11:e0145432 [Google Scholar]
  41. ffrench-Constant RH, Somers-Yeates R, Bennie J, Economou T, Hodgson D. et al. 2016. Light pollution is associated with earlier tree budburst across the United Kingdom. Proc. R. Soc. B 283:20160813 [Google Scholar]
  42. Firebaugh A, Haynes KJ. 2016. Experimental tests of light-pollution impacts on nocturnal insect courtship and dispersal. Oecologia 182:1203–11 [Google Scholar]
  43. Frank KD. 2009. Exploitation of artificial light at night by a jumping spider. Peckhamia 78:1–3 [Google Scholar]
  44. Fuller RA, Warren PH, Gaston KJ. 2007. Daytime noise predicts nocturnal singing in urban robins. Biol. Lett. 3:368–70 [Google Scholar]
  45. Gaston KJ, Bennie J, Davies TW, Hopkins J. 2013. The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biol. Rev. 88:912–27 [Google Scholar]
  46. Gaston KJ, Davies TW, Bennie J, Hopkins J. 2012. Reducing the ecological consequences of night-time light pollution: options and developments. J. Appl. Ecol. 49:1256–66 [Google Scholar]
  47. Gaston KJ, Duffy JP, Gaston S, Bennie J, Davies TW. 2014. Human alteration of natural light cycles: causes and ecological consequences. Oecologia 176:917–31 [Google Scholar]
  48. Grenis K, Tjossem B, Murphy SM. 2015. Predation of larval Lepidoptera in habitat fragments varies spatially and temporally but is not affected by light pollution. J. Insect Conserv. 19:559–66 [Google Scholar]
  49. Hale JD, Fairbrass AJ, Matthews TJ, Davies G, Sadler JP. 2015. The ecological impact of city lighting scenarios: exploring gap crossing thresholds for urban bats. Glob. Change Biol. 21:2467–78 [Google Scholar]
  50. Han B-H, Kim J-Y, Kwak J-I, Choi T-Y. 2015. Correlation between the illuminance and the flowering and leaf growth of trees at night—in case of downtown from Jamsil Station to Olympic Park, Seoul. Korean J. Environ. Ecol. 29:441–53 [Google Scholar]
  51. Heiling AM. 1999. Why do nocturnal orb-web spiders (Araneidae) search for light. Behav. Ecol. Sociobiol. 46:43–49 [Google Scholar]
  52. Helm B, Ben-Shlomo R, Sheriff MJ, Hut RA, Foster R. et al. 2013. Annual rhythms that underlie phenology: biological time-keeping meets environmental change. Proc. R. Soc. B 280:20130016 [Google Scholar]
  53. Henn M, Nichols H, Zhang Y, Bonner TH. 2014. Effect of artificial light on the drift of aquatic insects in urban central Texas streams. J. Freshw. Ecol. 29:307–18 [Google Scholar]
  54. Hölker F, Wurzbacher C, Weissenborn C, Monaghan MT, Holzhauer SIJ, Premke K. 2015. Microbial diversity and community respiration in freshwater sediments influenced by artificial light at night. Philos. Trans. R. Soc. B 370:20140130 [Google Scholar]
  55. Hut RA, Paolucci S, Dor R, Kyriacou CP, Daan S. 2013. Latitudinal clines: an evolutionary view on biological rhythms. Proc. R. Soc. B 280:20130433 [Google Scholar]
  56. Johnsen S. 2012. The Optics of Life: A Biologist's Guide to Light in Nature Princeton, NJ: Princeton Univ. Press
  57. Kaniewska P, Alon S, Karako-Lampert S, Hoegh-Guldberg O, Levy O. 2015. Signaling cascades and the importance of moonlight in coral broadcast mass spawning. eLife 4:e09991 [Google Scholar]
  58. Kempenaers B, Borgström P, Löes P, Schlicht E, Valcu M. 2010. Artificial night lighting affects dawn song, extra-pair siring success, and lay date in songbirds. Curr. Biol. 20:1735–39 [Google Scholar]
  59. Kronfeld-Schor N, Dominoni D, de la Iglesia H, Levy O, Herzog ED. et al. 2013. Chronobiology by moonlight. Proc. R. Soc. B 280:20123088 [Google Scholar]
  60. Kurtze W. 1974. Synökologische und experimentelle Untersuchungen zur Nachtaktivität von Insekten. Zool. Jahrb. Abt. Syst. Ökol. Geogr. Tiere 101:297–344 [Google Scholar]
  61. Kyba CCM, Mohar A, Posch T. 2017. How bright is moonlight. A&G News Rev. Astron. Geophys. 58:1.31–32 [Google Scholar]
  62. Kyba CCM, Tong KP, Bennie J, Birriel I, Birriel JJ. et al. 2015. Worldwide variations in artificial skyglow. Sci. Rep. 5:8409 [Google Scholar]
  63. Lacoeuilhe A, Machon N, Julien J-F, Le Bocq A, Kerbiriou C. 2014. The influence of low intensities of light pollution on bat communities in a semi-natural context. PLOS ONE 9:e103042 [Google Scholar]
  64. Last KS, Hobbs L, Berge J, Brierley AS, Cottier F. 2016. Moonlight drives ocean-scale mass vertical migration of zooplankton during the Arctic winter. Curr. Biol. 26:244–51 [Google Scholar]
  65. Lebbin DJ, Harvey MG, Lenz TC, Andersen MJ, Ellis JM. 2007. Nocturnal migrants foraging at night by artificial light. Wilson J. Ornithol. 119:506–8 [Google Scholar]
  66. Longcore T, Aldern HL, Eggers JF, Flores S, Franco L. et al. 2015. Tuning the white light spectrum of light emitting diode lamps to reduce attraction of nocturnal arthropods. Philos. Trans. R. Soc. B 370:20140125 [Google Scholar]
  67. Longcore T, Rich C, Mineau P, MacDonald B, Bert DG. et al. 2012. An estimate of avian mortality at communication towers in the United States and Canada. PLOS ONE 7:e34025 [Google Scholar]
  68. Luginbuhl CB, Boley PA, Davis DR. 2014. The impact of light source spectral power distribution on sky glow. J. Quant. Spectrosc. Rad. Transf. 139:21–26 [Google Scholar]
  69. Macgregor CJ, Pocock MJO, Fox R, Evans DM. 2015. Pollination by nocturnal Lepidoptera, and the effects of light pollution: a review. Ecol. Entomol. 40:187–98 [Google Scholar]
  70. Matzke EB. 1936. The effect of street lights in delaying leaf-fall in certain trees. Am. J. Bot. 23:446–52 [Google Scholar]
  71. May RM, Lawton JH, Stork NE. 1995. Assessing extinction rates. Extinction Rates JH Lawton, RM May 1–24 Oxford, UK: Oxford Univ. Press [Google Scholar]
  72. Miller MW. 2006. Apparent effects of light pollution on singing behavior of American robins. Condor 108:130–39 [Google Scholar]
  73. Minnaar C, Boyles JG, Minnaar IA, Sole CL, McKechnie AE. 2015. Stacking the odds: Light pollution may shift the balance in an ancient predator–prey arms race. J. Appl. Ecol. 52:522–31 [Google Scholar]
  74. Moore MV, Pierce SM, Walsh HM, Kvalvik SK, Lim JD. 2000. Urban light pollution alters the diel vertical migration of Daphnia. Verh. Int. Ver. Limnol. 27:779–82 [Google Scholar]
  75. Naylor E. 1999. Marine animal behaviour in relation to lunar phase. Earth Moon Planets 85:291–302 [Google Scholar]
  76. Negro J, Bustamante J, Melguizo C, Ruiz JL, Grande JM. 2000. Nocturnal activity of Lesser Kestrels under artificial lighting conditions in Seville, Spain. J. Raptor Res. 34:327–29 [Google Scholar]
  77. Nordt A, Klenke R. 2013. Sleepless in town—drivers of the temporal shift in dawn song in urban European Blackbirds. PLOS ONE 8:e71476 [Google Scholar]
  78. Pacheco-Tucuch FS, Ramirez-Sierra MJ, Gourbière S, Dumonteil E. 2012. Public street lights increase house infestation by the Chagas disease vector Triatoma dimidiata. PLOS ONE 7:e36207 [Google Scholar]
  79. Palmer G, Johnsen S. 2015. Downwelling spectral irradiance during evening twilight as a function of the lunar phase. Appl. Optics 54:B85–92 [Google Scholar]
  80. Panda S. 2016. Circadian physiology of metabolism. Science 354:1008–15 [Google Scholar]
  81. Perry G, Fisher RN. 2006. Night lights and reptiles: observed and potential effects. Ecological Consequences of Artificial Night Lighting C Rich, T Longcore 169–91 Washington, DC: Island Press [Google Scholar]
  82. Raap T, Pinxten R, Eens M. 2016. Artificial light at night disrupts sleep in female great tits (Parus major) during the nestling period, and is followed by a sleep rebound. Environ. Pollut. 215:125–34 [Google Scholar]
  83. Raven JA, Cockell CS. 2006. Influence on photosynthesis of starlight, moonlight, planetlight and light pollution (reflections on photosynthetically active radiation in the universe). Astrobiology 6:668–76 [Google Scholar]
  84. Riley WD, Bendall B, Ives MJ, Edmonds NJ, Maxwell DL. 2012. Street lighting disrupts the diel migratory pattern of wild Atlantic salmon, Salmo salar L., smolts leaving their natal stream. Aquaculture 330–333:74–81 [Google Scholar]
  85. Rivera G, Elliot S, Caldas LS, Nicolossi G, Coradin VTR, Borchert R. 2002. Increasing day-length induces spring flushing of tropical dry forest trees in the absence of rain. Trees 16:445–56 [Google Scholar]
  86. Robert KA, Lesku JA, Partecke J, Chambers B. 2015. Artificial light at night desynchronizes strictly seasonal reproduction in a wild mammal. Proc. R. Soc. B 282:20151745 [Google Scholar]
  87. Rodríguez A, Rodríguez B, Negro JJ. 2015. GPS tracking for mapping seabird mortality induced by light pollution. Sci. Rep. 5:10670 [Google Scholar]
  88. Rotics S, Dayan T, Kronfeld-Schor N. 2011. Effect of artificial night lighting on temporally partitioned spiny mice. J. Mammal. 92:159–68 [Google Scholar]
  89. Rowse EG, Harris S, Jones G. 2016. The switch from low-pressure sodium to light emitting diodes does not affect bat activity at street lights. PLOS ONE 11:e0150884 [Google Scholar]
  90. Rydell J. 1991. Seasonal use of illuminated areas by foraging northern bats Eptesicus nilssoni. Ecography 14:203–7 [Google Scholar]
  91. Salmon M, Tolbert MG, Painter DP, Goff M. 1995. Behavior of loggerhead sea turtles on an urban beach. II. Hatchling orientation. J. Herpetol. 29:568–76 [Google Scholar]
  92. Sanders D, Kehoe R, Tiley K, Bennie J, Cruse D. et al. 2015. Artificial nighttime light changes aphid-parasitoid population dynamics. Sci. Rep. 5:15232 [Google Scholar]
  93. Santos CD, Miranda AC, Granadeiro JP, Lourenço PM, Saraiva S, Palmeirim JM. 2010. Effects of artificial illumination on the nocturnal foraging of waders. Acta Oecol 36:166–72 [Google Scholar]
  94. Schad W. 2001. Lunar influence on plants. Earth Moon Planets 85:405–9 [Google Scholar]
  95. Schoech SJ, Bowman R, Hahn TP, Goymann W, Schwabl I, Bridge ES. 2013. The effects of low levels of light at night upon the endocrine physiology of western scrub-jays (Aphelocoma californica). J. Exp. Zool. 319A:527–38 [Google Scholar]
  96. Schroeder CA. 1945. Tree foliation affected by street lights. Arborists News 10:1–3 [Google Scholar]
  97. Somers-Yeates R, Hodgson D, McGregor PK, Spalding A, ffrench-Constant RH. 2013. Shedding light on moths: shorter wavelengths attract noctuids more than geometrids. Biol. Lett. 9:20130376 [Google Scholar]
  98. Spitschan M, Aguirre GK, Brainard DH, Sweeney AM. 2016. Variation of outdoor illumination as a function of solar elevation and light pollution. Sci. Rep. 6:26756 [Google Scholar]
  99. Spoelstra K, van Grunsven RHA, Donners M, Gienapp P, Huigens ME. et al. 2015. Experimental illumination of natural habitat—an experimental set-up to assess the direct and indirect ecological consequences of artificial light of different spectral composition. Philos. Trans. R. Soc. B 370:20140129 [Google Scholar]
  100. Steinbach R, Perkins C, Tompson L, Johnson S, Armstrong B. et al. 2015. The effect of reduced street lighting on road casualties and crime in England and Wales: controlled interrupted time series analysis. J. Epidemiol. Community Health 69:1118–24 [Google Scholar]
  101. Stevenson TJ, Visser ME, Arnold W, Barrett P, Biello S. et al. 2015. Disrupted seasonal biology impacts health, food security and ecosystems. Proc. R. Soc. B 282:20151453 [Google Scholar]
  102. Stone EL, Wakefield A, Harris S, Jones G. 2015. The impacts of new street light technologies: experimentally testing the effects on bats of changing from low-pressure sodium to white metal halide. Philos. Trans. R. Soc. B 370:20140127 [Google Scholar]
  103. Swaddle JP, Francis CD, Barber JR, Cooper CB, Kyba CCM. et al. 2015. A framework to assess evolutionary responses to anthropogenic light and sound. Trends Ecol. Evol. 30:550–60 [Google Scholar]
  104. Sweeney AM, Boch CA, Johnsen S, Morse DE. 2011. Twilight spectral dynamics and the coral reef invertebrate spawning response. J. Exp. Biol. 214:770–77 [Google Scholar]
  105. Szaz D, Horváth G, Barta A, Robertson BA, Farkas A. et al. 2015. Lamp-lit bridges as dual light-traps for the night-swarming mayfly, Ephoron virgo: interaction of polarized and unpolarized light pollution. PLOS ONE 10:e0121194 [Google Scholar]
  106. Thomas JR, James J, Newman RC, Riley WD, Griffiths SW, Cable J. 2016. The impact of streetlights on an aquatic invasive species: Artificial light at night alters signal crayfish behaviour. Appl. Anim. Behav. Sci. 176:143–49 [Google Scholar]
  107. Thums M, Whiting SD, Reisser J, Pendoley KL, Pattiaratchi CB. et al. 2016. Artificial light on water attracts turtle hatchlings during their near shore transit. R. Soc. Open Sci. 3:160142 [Google Scholar]
  108. van Geffen KG, Groot AT, van Grunsven RHA, Donners M, Berendse F, Veenendaal EM. 2015a. Artificial night lighting disrupts sex pheromone in a noctuid moth. Ecol. Entomol. 40:401–8 [Google Scholar]
  109. van Geffen KG, van Eck E, de Boer RA, van Grunsven RHA, Salis L. et al. 2015b. Artificial light at night inhibits mating in a Geometrid moth. Insect Conserv. Divers. 8:282–87 [Google Scholar]
  110. van Langevelde F, Ettema JA, Donners M, Wallisdevries MF, Groenendijk D. 2011. Effect of spectral composition of artificial light on the attraction of moths. Biol. Conserv. 144:2274–81 [Google Scholar]
  111. Velez-Ramirez AI, van leperen W, Vreugdenhil D, Millenaar FF. 2011. Plant under continuous light. Trends Plant Sci 16:310–18 [Google Scholar]
  112. Verovnik R, Fišer Ž, Zakšek V. 2015. How to reduce the impact of artificial lighting on moths: A case study on cultural heritage sites in Slovenia. J. Nat. Conserv. 28:105–11 [Google Scholar]
  113. Vollsnes AV, Eriksen AB, Otterholt E, Kvaal K, Oxaal U, Futsaether CM. 2009. Visible foliar injury and infrared imaging show that daylength affects short-term recovery after ozone stress in Trifolium subterraneum. J. Exp. Bot. 60:3677–86 [Google Scholar]
  114. Wahr JM. 1988. The Earth's rotation. Annu. Rev. Earth Planet. Sci. 16:231–49 [Google Scholar]
  115. Wakefield A, Stone EL, Jones G, Harris S. 2015. Light-emitting diode street lights reduce last-ditch evasive manoeuvres by moths to bat echolocation calls. R. Soc. Open Sci. 2:150291 [Google Scholar]
  116. Walmsley L, Hanna L, Mouland J, Martial F, West A. et al. 2015. Colour as a signal for entraining the mammalian circadian clock. PLOS Biol 13:e1002127 [Google Scholar]
  117. Welsh B, Farrington D. 2008. Effects of improved street lighting on crime. Campbell Syst. Rev. 13:1–51 [Google Scholar]
  118. West KE, Jablonski MR, Warfield B, Cecil KS, James M. et al. 2011. Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans. J. Appl. Physiol. 110:619–26 [Google Scholar]
  119. Wolff RJ. 1982. Nocturnal activity under artificial lights by the jumping spider Sitticus fasciger. Peckhamia 2:32 [Google Scholar]
  120. Zhang S, Chen X, Zhang J, Li H. 2014. Differences in the reproductive hormone rhythm of tree sparrows (Passer montanus) from urban and rural sites in Beijing: the effect of anthropogenic light sources. Gen. Comp. Endocrinol. 206:24–29 [Google Scholar]
  121. Zozaya SM, Alford RA, Schwarzkopf L. 2015. Invasive house geckos are more willing to use artificial lights than are native geckos. Austral Ecol 40:982–87 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error