Ecological networks have a long history in ecology, and a recent increase in network analyses across environmental gradients has revealed important changes in their structure, dynamics, and functioning. These changes can be broadly grouped according to three nonexclusive mechanisms: () changes in the species composition of the networks (driven by interaction patterns of invaders, nonrandom extinction of species according to their traits, or differences among species in population responses across gradients); () changes that alter interaction frequencies via changes in search efficiency (driven by altered habitat structure or metabolic rates) or changes in spatial and temporal overlap; and () changes to coevolutionary processes and patterns. Taking spatial and temporal processes into account can further elucidate network variation and improve predictions of network responses to environmental change. Emerging evidence links network structure to ecosystem functioning; however, scaling up to metanetworks or multilayer networks may modify interpretations of network structure, stability, and functioning.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aizen MA, Gleiser G, Sabatino M, Gilarranz LJ, Bascompte J, Verdu M. 2016. The phylogenetic structure of plant–pollinator networks increases with habitat size and isolation. Ecol. Lett. 19:29–36 [Google Scholar]
  2. Aizen MA, Morales C, Morales J. 2008. Invasive mutualists erode native pollination webs. PLOS Biol 6:2e31 [Google Scholar]
  3. Aizen MA, Sabatino M, Tylianakis JM. 2012. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335:1486–89 [Google Scholar]
  4. Alarcón R, Waser NM, Ollerton J. 2008. Year‐to‐year variation in the topology of a plant–pollinator interaction network. Oikos 117:1796–807 [Google Scholar]
  5. Albrecht M, Padron B, Bartomeus I, Traveset A. 2014. Consequences of plant invasions on compartmentalization and species' roles in plant–pollinator networks. Proc. R. Soc. B 281:20140773 [Google Scholar]
  6. Amundrud SL, Srivastava DS. 2015. Drought sensitivity predicts habitat size sensitivity in an aquatic ecosystem. Ecology 96:1957–65 [Google Scholar]
  7. Baiser B, Russell GJ, Lockwood JL. 2010. Connectance determines invasion success via trophic interactions in model food webs. Oikos 119:1970–76 [Google Scholar]
  8. Baker NJ, Kaartinen R, Roslin T, Stouffer DB. 2015. Species' roles in food webs show fidelity across a highly variable oak forest. Ecography 38:130–39 [Google Scholar]
  9. Banasek-Richter C, Bersier LF, Cattin MF, Baltensperger R, Gabriel JP. et al. 2009. Complexity in quantitative food webs. Ecology 90:1470–77 [Google Scholar]
  10. Barbosa M, Fernandes GW, Lewis OT, Morris RJ. 2017. Experimentally reducing species abundance indirectly affects food web structure and robustness. J. Anim. Ecol. 86:327–36 [Google Scholar]
  11. Bartomeus I, Gravel D, Tylianakis JM, Aizen MA, Dickie IA, Bernard‐Verdier M. 2016. A common framework for identifying linkage rules across different types of interactions. Funct. Ecol. 30:1894–903 [Google Scholar]
  12. Bartomeus I, Vila M, Santamaria L. 2008. Contrasting effects of invasive plants in plant–pollinator networks. Oecologia 155:761–70 [Google Scholar]
  13. Bascompte J, Jordano P. 2007. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38:567–93 [Google Scholar]
  14. Bascompte J, Jordano P, Melian CJ, Olesen JM. 2003. The nested assembly of plant–animal mutualistic networks. PNAS 100:9383–87 [Google Scholar]
  15. Bastolla U, Fortuna MA, Pascual-Garcia A, Ferrera A, Luque B, Bascompte J. 2009. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458:1018–20 [Google Scholar]
  16. Baxter CV, Fausch KD, Murakami M, Chapman PL. 2004. Fish invasion restructures stream and forest food webs by interrupting reciprocal prey subsidies. Ecology 85:2656–63 [Google Scholar]
  17. Benadi G, Hovestadt T, Poethke HJ, Blüthgen N. 2014. Specialization and phenological synchrony of plant–pollinator interactions along an altitudinal gradient. J. Anim. Ecol. 83:639–50 [Google Scholar]
  18. Bersier LF, Banasek-Richter C, Cattin MF. 2002. Quantitative descriptors of food-web matrices. Ecology 83:2394–407 [Google Scholar]
  19. Bosch J, Martín González AM, Rodrigo A, Navarro D. 2009. Plant–pollinator networks: adding the pollinator's perspective. Ecol. Lett. 12:409–19 [Google Scholar]
  20. Brose U, Jonsson T, Berlow EL, Warren P, Banasek-Richter C. et al. 2006. Consumer-resource body-size relationships in natural food webs. Ecology 87:2411–17 [Google Scholar]
  21. Brosi BJ. 2016. Pollinator specialization: from the individual to the community. New Phytol 210:1190–94 [Google Scholar]
  22. Burkle LA, Alarcón R. 2011. The future of plant–pollinator diversity: understanding interaction networks across time, space, and global change. Am. J. Bot. 98:528–38 [Google Scholar]
  23. Burkle LA, Irwin RE. 2009. The importance of interannual variation and bottom-up nitrogen enrichment for plant-pollinator networks. Oikos 118:1816–29 [Google Scholar]
  24. Burkle LA, Irwin RE. 2010. Beyond biomass: measuring the effects of community-level nitrogen enrichment on floral traits, pollinator visitation and plant reproduction. J. Ecol. 98:705–17 [Google Scholar]
  25. Burkle LA, Knight TM. 2012. Shifts in pollinator composition and behavior cause slow interaction accumulation with area in plant–pollinator networks. Ecology 93:2329–35 [Google Scholar]
  26. Burkle LA, Marlin JC, Knight TM. 2013. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339:1611–15 [Google Scholar]
  27. Cagnolo L, Valladares G, Salvo A, Cabido M, Zak M. 2009. Habitat fragmentation and species loss across three interacting trophic levels: effects of life‐history and food‐web traits. Conserv. Biol. 23:1167–75 [Google Scholar]
  28. CaraDonna PJ, Petry WK, Brennan RM, Cunningham JL, Bronstein JL. et al. 2017. Interaction rewiring and the rapid turnover of plant-pollinator networks. Ecol. Lett. 20:385–94 [Google Scholar]
  29. Carnicer J, Jordano P, Melián CJ. 2009. The temporal dynamics of resource use by frugivorous birds: a network approach. Ecology 90:1958–70 [Google Scholar]
  30. Chung YA, Burkle LA, Knight TM. 2014. Minimal effects of an invasive flowering shrub on the pollinator community of native forbs. PLOS ONE 9:8 [Google Scholar]
  31. Coux C, Rader R, Bartomeus I, Tylianakis JM. 2016. Linking species functional roles to their network roles. Ecol. Lett. 19:762–70 [Google Scholar]
  32. Crea C, Ali RA, Rader R. 2015. A new model for ecological networks using species‐level traits. Methods Ecol. Evol. 7:232–41 [Google Scholar]
  33. Crespo JE, Martínez GA, Castelo MK. 2015. Exposure to competitors influences parasitism decisions in ectoparasitoid fly larvae. Anim. Behav. 100:38–43 [Google Scholar]
  34. Daufresne M, Lengfellner K, Sommer U. 2009. Global warming benefits the small in aquatic ecosystems. PNAS 106:12788–93 [Google Scholar]
  35. Davies KF, Margules CR, Lawrence JF. 2004. A synergistic effect puts rare, specialized species at greater risk of extinction. Ecology 85:265–71 [Google Scholar]
  36. de Sassi C, Lewis OT, Tylianakis JM. 2012a. Plant-mediated and nonadditive effects of two global change drivers on an insect herbivore community. Ecology 93:1892–901 [Google Scholar]
  37. de Sassi C, Staniczenko PPA, Tylianakis JM. 2012b. Warming and nitrogen affect size structuring and density dependence in a host–parasitoid food web. Philos. Trans. R. Soc. B 367:3033–41 [Google Scholar]
  38. de Sassi C, Tylianakis JM. 2012. Climate change disproportionately increases herbivore over plant or parasitoid biomass. PLOS ONE 7:e40557 [Google Scholar]
  39. Dehling DM, Jordano P, Schaefer HM, Böhning-Gaese K, Schleuning M. 2016. Morphology predicts species' functional roles and their degree of specialization in plant–frugivore interactions. Proc. R. Soc. B 283:20152444 [Google Scholar]
  40. Dehling DM, Töpfer T, Schaefer HM, Jordano P, Böhning‐Gaese K, Schleuning M. 2014. Functional relationships beyond species richness patterns: trait matching in plant–bird mutualisms across scales. Glob. Ecol. Biogeogr. 23:1085–93 [Google Scholar]
  41. Devoto M, Bailey S, Memmott J. 2014. Ecological meta-networks integrate spatial and temporal dynamics of plant–bumble bee interactions. Oikos 123:714–20 [Google Scholar]
  42. Devoto M, Medan D, Montaldo NH. 2005. Patterns of interaction between plants and pollinators along an environmental gradient. Oikos 109:461–72 [Google Scholar]
  43. Díaz-Castelazo C, Guimarães PR, Jordano P, Thompson JN, Marquis RJ, Rico-Gray V. 2010. Changes of a mutualistic network over time: reanalysis over a 10‐year period. Ecology 91:793–801 [Google Scholar]
  44. Dormann CF, Fründ J, Schaefer HM. 2017. Identifying causes of patterns in ecological networks: opportunities and limitations. Annu. Rev. Ecol. Evol. Syst. 48:559–84 [Google Scholar]
  45. Dormann CF, Gruber B, Fründ J. 2008. Introducing the bipartite package: analysing ecological networks. R News 8/2:8–11 [Google Scholar]
  46. Dunne JA, Williams RJ, Martinez ND. 2002. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5:558–67 [Google Scholar]
  47. Eklöf A, Jacob U, Kopp J, Bosch J, Castro‐Urgal R. et al. 2013. The dimensionality of ecological networks. Ecol. Lett. 16:577–83 [Google Scholar]
  48. Elton CS. 1927. Animal Ecology London: Sidgwick and Jackson
  49. Emer C, Memmott J, Vaughan IP, Montoya D, Tylianakis JM. 2016. Species roles in plant–pollinator communities are conserved across native and alien ranges. Divers. Dist. 22:841–52 [Google Scholar]
  50. Emer C, Vaughan IP, Hiscock S, Memmott J. 2015. The impact of the invasive alien plant, Impatiens glandulifera, on pollen transfer networks. PLOS ONE 10:16 [Google Scholar]
  51. Fontaine C, Guimarães PR, Kéfi S, Loeuille N, Memmott J. et al. 2011. The ecological and evolutionary implications of merging different types of networks. Ecol. Lett. 14:1170–81 [Google Scholar]
  52. Frost CM, Didham RK, Rand TA, Peralta G, Tylianakis JM. 2015. Community‐level net spillover of natural enemies from managed to natural forest. Ecology 96:193–202 [Google Scholar]
  53. Frost CM, Peralta G, Rand TA, Didham RK, Varsani A, Tylianakis JM. 2016. Apparent competition drives community-wide parasitism rates and changes in host abundance across ecosystem boundaries. Nat. Comm. 7:12644 [Google Scholar]
  54. Gagic V, Hanke S, Thies C, Scherber C, Tomanovic Z, Tscharntke T. 2012. Agricultural intensification and cereal aphid–parasitoid–hyperparasitoid food webs: network complexity, temporal variability and parasitism rates. Oecologia 170:1099–109 [Google Scholar]
  55. Gagic V, Tscharntke T, Dormann CF, Gruber B, Wilstermann A, Thies C. 2011. Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient. Proc. R. Soc. B 278:2946–53 [Google Scholar]
  56. Galiana N, Lurgi M, Montoya JM, López BC. 2014. Invasions cause biodiversity loss and community simplification in vertebrate food webs. Oikos 123:721–28 [Google Scholar]
  57. García D, Martínez D, Herrera JM, Morales JM. 2013. Functional heterogeneity in a plant–frugivore assemblage enhances seed dispersal resilience to habitat loss. Ecography 36:197–208 [Google Scholar]
  58. García D, Martínez D, Stouffer DB, Tylianakis JM. 2014. Exotic birds increase generalization and compensate for native bird decline in plant–frugivore assemblages. J. Anim. Ecol. 83:1441–50 [Google Scholar]
  59. Gauld ID. 1987. Some factors affecting the composition of tropical ichneumonid faunas. Biol. J. Linn. Soc. 30:299–312 [Google Scholar]
  60. Gómez JM, Nunn CL, Verdú M. 2013. Centrality in primate–parasite networks reveals the potential for the transmission of emerging infectious diseases to humans. PNAS 110:7738–41 [Google Scholar]
  61. Gómez JM, Verdú M, Perfectti F. 2010. Ecological interactions are evolutionarily conserved across the entire tree of life. Nature 465:918–21 [Google Scholar]
  62. Gonzalez AMM, Dalsgaard B, Nogues-Bravo D, Graham CH, Schleuning M. et al. 2015. The macroecology of phylogenetically structured hummingbird–plant networks. Glob. Ecol. Biogeogr. 24:1212–24 [Google Scholar]
  63. González-Castro A, Yang S, Nogales M, Carlo TA. 2012. What determines the temporal changes of species degree and strength in an oceanic island plant-disperser network?. PLOS ONE 7:e41385 [Google Scholar]
  64. Goudard A, Loreau M. 2008. Nontrophic interactions, biodiversity, and ecosystem functioning: an interaction web model. Am. Nat. 171:91–106 [Google Scholar]
  65. Gravel D, Poisot T, Albouy C, Velez L, Mouillot D. 2013. Inferring food web structure from predator–prey body size relationships. Methods Ecol. Evol. 4:1083–90 [Google Scholar]
  66. Guimaraes PR, Jordano P, Thompson JN. 2011. Evolution and coevolution in mutualistic networks. Ecol. Lett. 14:877–85 [Google Scholar]
  67. Hagen M, Kissling WD, Rasmussen C, De Aguiar MAM, Brown LE. et al. 2012. Biodiversity, species interactions and ecological networks in a fragmented world. Adv. Ecol. Res. 46:89–210 [Google Scholar]
  68. Harvey E, Gounand I, Ward CL, Altermatt F. 2016. Bridging ecology and conservation: from ecological networks to ecosystem function. J. Appl. Ecol. 54:371–79 [Google Scholar]
  69. Hegland SJ, Nielsen A, Lazaro A, Bjerknes AL, Totland O. 2009. How does climate warming affect plant-pollinator interactions. Ecol. Lett. 12:184–95 [Google Scholar]
  70. Heleno RH, Ramos JA, Memmott J. 2013. Integration of exotic seeds into an Azorean seed dispersal network. Biol. Invasions 15:1143–54 [Google Scholar]
  71. Hoiss B, Krauss J, Steffan‐Dewenter I. 2015. Interactive effects of elevation, species richness and extreme climatic events on plant–pollinator networks. Glob. Change Biol. 21:4086–97 [Google Scholar]
  72. Hoover SER, Ladley JJ, Shchepetkina AA, Tisch M, Gieseg SP, Tylianakis JM. 2012. Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator mutualism. Ecol. Lett. 15:227–34 [Google Scholar]
  73. Hopper KR, Prager SM, Heimpel GE. 2013. Is parasitoid acceptance of different host species dynamic?. Funct. Ecol. 27:1201–11 [Google Scholar]
  74. Hrček J, Godfray HCJ. 2015. What do molecular methods bring to host–parasitoid food webs?. Trends Parasitol 31:30–35 [Google Scholar]
  75. Jordano P. 2016. Sampling networks of ecological interactions. Funct. Ecol. 30:1883–93 [Google Scholar]
  76. Kaartinen R, Roslin T. 2012. High temporal consistency in quantitative food web structure in the face of extreme species turnover. Oikos 121:1771–82 [Google Scholar]
  77. Kaiser-Bunbury CN, Muff S, Memmott J, Muller CB, Caflisch A. 2010. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13:442–52 [Google Scholar]
  78. Kemp JE, Evans DM, Augustyn WJ, Ellis AG. 2017. Invariant antagonistic network structure despite high spatial and temporal turnover of interactions. Ecography In press
  79. Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA. 2014. Multilayer networks. J. Complex Net. 2:203–71 [Google Scholar]
  80. Kortsch S, Primicerio R, Fossheim M, Dolgov AV, Aschan M. 2015. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proc. R. Soc. B 282:20151546 [Google Scholar]
  81. Kratina P, Greig HS, Thompson PL, Carvalho-Pereira TSA, Shurin JB. 2012. Warming modifies trophic cascades and eutrophication in experimental freshwater communities. Ecology 93:1421–30 [Google Scholar]
  82. Krishna A, Guimaraes PR Jr., Jordano P, Bascompte J. 2008. A neutral-niche theory of nestedness in mutualistic networks. Oikos 117:1609–18 [Google Scholar]
  83. Laliberté E, Tylianakis JM. 2010. Deforestation homogenizes tropical parasitoid–host networks. Ecology 91:1740–47 [Google Scholar]
  84. Lang B, Rall BC, Scheu S, Brose U. 2014. Effects of environmental warming and drought on size-structured soil food webs. Oikos 123:1224–33 [Google Scholar]
  85. Larsen TH, Williams NM, Kremen C. 2005. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol. Lett. 8:538–47 [Google Scholar]
  86. Lavandero B, Tylianakis JM. 2013. Genotype matching in a parasitoid–host genotypic food web: an approach for measuring effects of environmental change. Mol. Ecol. 22:229–38 [Google Scholar]
  87. Layer K, Hildrew A, Monteith D, Woodward G. 2010. Long-term variation in the littoral food web of an acidified mountain lake. Glob. Change Biol. 16:3133–43 [Google Scholar]
  88. Layman CA, Giery ST, Buhler S, Rossi R, Penland T. et al. 2015. A primer on the history of food web ecology: fundamental contributions of fourteen researchers. Food Webs 4:14–24 [Google Scholar]
  89. Ledger ME, Brown LE, Edwards FK, Milner AM, Woodward G. 2013. Drought alters the structure and functioning of complex food webs. Nat. Clim. Change 3:223–27 [Google Scholar]
  90. Ledger ME, Hildrew AG. 2005. The ecology of acidification and recovery: changes in herbivore-algal food web linkages across a stream pH gradient. Environ. Pollut. 137:103–18 [Google Scholar]
  91. Lopezaraiza-Mikel ME, Hayes RB, Whalley MR, Memmott J. 2007. The impact of an alien plant on a native plant–pollinator network: an experimental approach. Ecol. Lett. 10:539–50 [Google Scholar]
  92. López-Urrutia Á, San Martin E, Harris RP, Irigoien X. 2006. Scaling the metabolic balance of the oceans. PNAS 103:8739–44 [Google Scholar]
  93. Lundberg J, Moberg F. 2003. Mobile link organisms and ecosystem functioning: implications for ecosystem resilience and management. Ecosystems 6:87–98 [Google Scholar]
  94. Macfadyen S, Gibson R, Polaszek A, Morris RJ, Craze PG. et al. 2009. Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control?. Ecol. Lett. 12:229–38 [Google Scholar]
  95. Maunsell SC, Kitching RL, Burwell CJ, Morris RJ. 2015. Changes in host–parasitoid food web structure with elevation. J. Anim. Ecol. 84:353–63 [Google Scholar]
  96. McCann KS, Rasmussen JB, Umbanhowar J. 2005. The dynamics of spatially coupled food webs. Ecol. Lett. 8:513–23 [Google Scholar]
  97. Melián CJ, Bascompte J, Jordano P, Krivan V. 2009. Diversity in a complex ecological network with two interaction types. Oikos 118:122–30 [Google Scholar]
  98. Memmott J. 2009. Food webs: a ladder for picking strawberries or a practical tool for practical problems?. Philos. Trans. R. Soc. B 364:1693–99 [Google Scholar]
  99. Memmott J, Craze PG, Waser NM, Price MV. 2007. Global warming and the disruption of plant–pollinator interactions. Ecol. Lett. 10:710–17 [Google Scholar]
  100. Memmott J, Godfray HCJ, Gauld ID. 1994. The structure of a tropical host–parasitoid community. J. Anim. Ecol. 63:521–40 [Google Scholar]
  101. Memmott J, Waser NM, Price MV. 2004. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B 271:2605–11 [Google Scholar]
  102. Mithen SJ, Lawton JH. 1986. Food-web models that generate constant predator-prey ratios. Oecologia 69:542–50 [Google Scholar]
  103. Montoya D, Yallop ML, Memmott J. 2015. Functional group diversity increases with modularity in complex food webs. Nat. Comm. 6:7379 [Google Scholar]
  104. Montoya JM, Rodriguez MA, Hawkins BA. 2003. Food web complexity and higher-level ecosystem services. Ecol. Lett. 6:587–93 [Google Scholar]
  105. Morris RJ, Gripenberg S, Lewis OT, Roslin T. 2014. Antagonistic interaction networks are structured independently of latitude and host guild. Ecol. Lett. 17:340–49 [Google Scholar]
  106. Morris RJ, Lewis OT, Godfray HCJ. 2005. Apparent competition and insect community structure: towards a spatial perspective. Ann. Zool. Fennici 42:449–62 [Google Scholar]
  107. Morris RJ, Sinclair FH, Burwell CJ. 2015. Food web structure changes with elevation but not rainforest stratum. Ecography 38:792–802 [Google Scholar]
  108. Mougi A, Kondoh M. 2012. Diversity of interaction types and ecological community stability. Science 337:349–51 [Google Scholar]
  109. Neutel A-M, Heesterbeek JAP, van de Koppel J, Hoenderboom G, Vos A. et al. 2007. Reconciling complexity with stability in naturally assembling food webs. Nature 449:599–602 [Google Scholar]
  110. O'Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF. 2009. Warming and resource availability shift food web structure and metabolism. PLOS Biol 7:e1000178 [Google Scholar]
  111. O'Gorman EJ, Pichler DE, Adams G, Benstead JP, Cohen H. et al. 2012. Impacts of warming on the structure and functioning of aquatic communities: individual- to ecosystem-level responses. Adv. Ecol. Res. 47:81–176 [Google Scholar]
  112. Olesen JM, Bascompte J, Elberling H, Jordano P. 2008. Temporal dynamics in a pollination network. Ecology 89:1573–82 [Google Scholar]
  113. Olesen JM, Jordano P. 2002. Geographic patterns in plant–pollinator mutualistic networks. Ecology 83:2416–24 [Google Scholar]
  114. Paine RT. 1988. Road maps of interactions or grist for theoretical development. Ecology 69:1648–54 [Google Scholar]
  115. Pawar S, Dell AI, Savage VM. 2012. Dimensionality of consumer search space drives trophic interaction strengths. Nature 486:485–89 [Google Scholar]
  116. Peralta G. 2016. Merging evolutionary history into species interaction networks. Funct. Ecol. 30:1917–25 [Google Scholar]
  117. Peralta G, Frost CM, Didham RK, Rand TA, Tylianakis JM. 2017. Non‐random food‐web assembly at habitat edges increases connectivity and functional redundancy. Ecology 98:995–1005 [Google Scholar]
  118. Peralta G, Frost CM, Didham RK, Varsani A, Tylianakis JM. 2015. Phylogenetic diversity and co‐evolutionary signals among trophic levels change across a habitat edge. J. Anim. Ecol. 84:364–72 [Google Scholar]
  119. Peralta G, Frost CM, Rand TA, Didham RK, Tylianakis JM. 2014. Complementarity and redundancy of interactions enhance attack rates and spatial stability in host–parasitoid food webs. Ecology 95:1888–96 [Google Scholar]
  120. Petanidou T, Kallimanis AS, Sgardelis SP, Mazaris AD, Pantis JD, Waser NM. 2014. Variable flowering phenology and pollinator use in a community suggest future phenological mismatch. Acta Oecol 59:104–11 [Google Scholar]
  121. Petanidou T, Kallimanis AS, Tzanopoulos J, Sgardelis SP, Pantis JD. 2008. Long‐term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol. Lett. 11:564–75 [Google Scholar]
  122. Petchey OL, Beckerman AP, Riede JO, Warren PH. 2008. Size, foraging, and food web structure. PNAS 105:4191–96 [Google Scholar]
  123. Petchey OL, McPhearson PT, Casey TM, Morin PJ. 1999. Environmental warming alters food-web structure and ecosystem function. Nature 402:69–72 [Google Scholar]
  124. Pimm SL, Lawton JH, Cohen JE. 1991. Food web patterns and their consequences. Nature 350:669–74 [Google Scholar]
  125. Pires AP, Marino NA, Srivastava DS, Farjalla VF. 2016. Predicted rainfall changes disrupt trophic interactions in a tropical aquatic ecosystem. Ecology 97:102750–59 [Google Scholar]
  126. Plein M, Längsfeld L, Neuschulz EL, Schultheiß C, Ingmann L. et al. 2013. Constant properties of plant–frugivore networks despite fluctuations in fruit and bird communities in space and time. Ecology 94:1296–306 [Google Scholar]
  127. Pocock MJO, Evans DM, Memmott J. 2012. The robustness and restoration of a network of ecological networks. Science 335:973–77 [Google Scholar]
  128. Poisot T, Canard E, Mouillot D, Mouquet N, Gravel D. 2012a. The dissimilarity of species interaction networks. Ecol. Lett. 15:1353–61 [Google Scholar]
  129. Poisot T, Canard E, Mouquet N, Hochberg ME. 2012b. A comparative study of ecological specialization estimators. Methods Ecol. Evol. 3:537–44 [Google Scholar]
  130. Poisot T, Mouquet N, Gravel D. 2013. Trophic complementarity drives the biodiversity-ecosystem functioning relationship in food webs. Ecol. Lett. 16:853–61 [Google Scholar]
  131. Poisot T, Stouffer DB, Gravel D. 2015. Beyond species: why ecological interaction networks vary through space and time. Oikos 124:243–51 [Google Scholar]
  132. Poisot T, Stouffer DB, Kéfi S. 2016. Describe, understand and predict: why do we need networks in ecology?. Funct. Ecol. 30:1878–82 [Google Scholar]
  133. Rafferty NE, CaraDonna PJ, Burkle LA, Iler AM, Bronstein JL. 2013. Phenological overlap of interacting species in a changing climate: an assessment of available approaches. Ecol. Evol. 3:3183–93 [Google Scholar]
  134. Rall BC, Brose U, Hartvig M, Kalinkat G, Schwarzmuller F. et al. 2012. Universal temperature and body-mass scaling of feeding rates. Philos. Trans. R. Soc. B 367:2923–34 [Google Scholar]
  135. Ramos‐Jiliberto R, Valdovinos FS, Moisset de Espanés P, Flores JD. 2012. Topological plasticity increases robustness of mutualistic networks. J. Anim. Ecol. 81:896–904 [Google Scholar]
  136. Ramos-Robles M, Andresen E, Díaz-Castelazo C. 2016. Temporal changes in the structure of a plant-frugivore network are influenced by bird migration and fruit availability. PeerJ 4:e2048 [Google Scholar]
  137. Rand TA, Tscharntke T. 2007. Contrasting effects of natural habitat loss on generalist and specialist aphid natural enemies. Oikos 116:1353–62 [Google Scholar]
  138. Rand TA, Tylianakis JM, Tscharntke T. 2006. Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol. Lett. 9:603–14 [Google Scholar]
  139. Rantalainen ML, Fritze H, Haimi J, Pennanen T, Setala H. 2005. Species richness and food web structure of soil decomposer community as affected by the size of habitat fragment and habitat corridors. Glob. Change Biol. 11:1614–27 [Google Scholar]
  140. Rezende EL, Lavabre JE, Guimarães PR, Jordano P, Bascompte J. 2007. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448:925–28 [Google Scholar]
  141. Rodewald AD, Rohr RP, Fortuna MA, Bascompte J. 2015. Does removal of invasives restore ecological networks? An experimental approach. Biol. Invasions 17:2139–46 [Google Scholar]
  142. Rodríguez‐Pérez J, García D, Martínez D. 2014. Spatial networks of fleshy‐fruited trees drive the flow of avian seed dispersal through a landscape. Funct. Ecol. 28:990–98 [Google Scholar]
  143. Romanuk TN, Zhou Y, Brose U, Berlow EL, Williams RJ, Martinez ND. 2009. Predicting invasion success in complex ecological networks. Philos. Trans. R. Soc. B 364:1743–54 [Google Scholar]
  144. Romero GQ, Piccoli GCO, de Omena PM, Gonçalves-Souza T. 2016. Food web structure shaped by habitat size and climate across a latitudinal gradient. Ecology 97:2705–15 [Google Scholar]
  145. Russo L, Memmott J, Montoya D, Shea K, Buckley YM. 2014. Patterns of introduced species interactions affect multiple aspects of network structure in plant-pollinator communities. Ecology 95:2953–63 [Google Scholar]
  146. Russo L, Shea K. 2016. Deliberately increased network connectance in a plant-pollinator community experiment. J. Complex Netw. 5:473–85 [Google Scholar]
  147. Saavedra F, Hensen I, Beck SG, Böhning-Gaese K, Lippok D. et al. 2014. Functional importance of avian seed dispersers changes in response to human-induced forest edges in tropical seed-dispersal networks. Oecologia 176:837–48 [Google Scholar]
  148. Saavedra S, Stouffer DB, Uzzi B, Bascompte J. 2011. Strong contributors to network persistence are the most vulnerable to extinction. Nature 478:233–35 [Google Scholar]
  149. Santos GMDM, Aguiar CM, Genini J, Martins CF, Zanella FC, Mello MA. 2012. Invasive Africanized honeybees change the structure of native pollination networks in Brazil. Biol. Invasions 14:2369–78 [Google Scholar]
  150. Sargent RD, Ackerly DD. 2008. Plant–pollinator interactions and the assembly of plant communities. Trends Ecol. Evol. 23:123–30 [Google Scholar]
  151. Sauve AMC, Fontaine C, Thébault E. 2014. Structure-stability relationships in networks combining mutualistic and antagonistic interactions. Oikos 123:378–84 [Google Scholar]
  152. Schleuning M, Bohning-Gaese K, Dehling DM, Burns KC. 2014. At a loss for birds: insularity increases asymmetry in seed-dispersal networks. Glob. Ecol. Biogeogr. 23:385–94 [Google Scholar]
  153. Schleuning M, Frund J, Garcia D. 2015. Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant–animal interactions. Ecography 38:380–92 [Google Scholar]
  154. Schleuning M, Fründ J, Klein A-M, Abrahamczyk S, Alarcón R. et al. 2012. Specialization of mutualistic interaction networks decreases toward tropical latitudes. Curr. Biol. 22:1925–31 [Google Scholar]
  155. Schleuning M, Fründ J, Schweiger O, Welk E, Albrecht J. et al. 2016. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Comm. 7:13965 [Google Scholar]
  156. Schweiger O, Settele J, Kudrna O, Klotz S, Kühn I. 2008. Climate change can cause spatial mismatch of trophically interacting species. Ecology 89:3472–79 [Google Scholar]
  157. Shurin JB, Clasen JL, Greig HS, Kratina P, Thompson PL. 2012. Warming shifts top-down and bottom-up control of pond food web structure and function. Philos. Trans. R. Soc. B 367:3008–17 [Google Scholar]
  158. Staniczenko PPA, Kopp JC, Allesina S. 2013. The ghost of nestedness in ecological networks. Nat. Comm. 4:1391 [Google Scholar]
  159. Stouffer DB, Cirtwill AR, Bascompte J. 2014. How exotic plants integrate into pollination networks. J. Ecol. 102:1442–50 [Google Scholar]
  160. Stouffer DB, Sales-Pardo M, Sirer MI, Bascompte J. 2012. Evolutionary conservation of species’ roles in food webs. Science 335:1489–92 [Google Scholar]
  161. Thebault E, Fontaine C. 2010. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:853–56 [Google Scholar]
  162. Thierry A, Beckerman AP, Warren PH, Williams RJ, Cole AJ, Petchey OL. 2011. Adaptive foraging and the rewiring of size-structured food webs following extinctions. Basic Appl. Ecol. 12:562–70 [Google Scholar]
  163. Thompson JN. 1994. The Coevolutionary Process Chicago: Univ. Chicago Press
  164. Thompson RM, Brose U, Dunne JA, Hall RO, Hladyz S. et al. 2012. Food webs: reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27:689–97 [Google Scholar]
  165. Timoteo S, Ramos JA, Vaughan IP, Memmott J. 2016. High resilience of seed dispersal webs highlighted by the experimental removal of the dominant disperser. Curr. Biol. 26:910–15 [Google Scholar]
  166. Traveset A, Tur C, Trøjelsgaard K, Heleno R, Castro‐Urgal R, Olesen JM. 2015. Global patterns of mainland and insular pollination networks. Glob. Ecol. Biogeogr. 25:880–90 [Google Scholar]
  167. Trøjelsgaard K, Olesen JM. 2016. Ecological networks in motion: micro- and macroscopic variability across scales. Funct. Ecol. 30:1926–35 [Google Scholar]
  168. Tur C, Sáez A, Traveset A, Aizen MA. 2016. Evaluating the effects of pollinator‐mediated interactions using pollen transfer networks: evidence of widespread facilitation in south Andean plant communities. Ecol. Lett. 19:576–86 [Google Scholar]
  169. Tylianakis JM. 2008. Understanding the web of life: the birds, the bees and sex with aliens. PLOS Biol 6:e47 [Google Scholar]
  170. Tylianakis JM, Binzer A. 2014. Effects of global environmental changes on parasitoid-host food webs and biological control. Biol. Control 75:77–86 [Google Scholar]
  171. Tylianakis JM, Didham RK, Bascompte J, Wardle DA. 2008. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11:1351–63 [Google Scholar]
  172. Tylianakis JM, Laliberté E, Nielsen A, Bascompte J. 2010. Conservation of species interaction networks. Biol. Cons. 143:2270–79 [Google Scholar]
  173. Tylianakis JM, Tscharntke T, Lewis OT. 2007. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445:202–5 [Google Scholar]
  174. Valladares G, Cagnolo L, Salvo A. 2012. Forest fragmentation leads to food web contraction. Oikos 121:299–305 [Google Scholar]
  175. Vander Zanden MJ, Casselman JM, Rasmussen JB. 1999. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401:464–67 [Google Scholar]
  176. Vazquez DP, Chacoff NP, Cagnolo L. 2009. Evaluating multiple determinants of the structure of plant–animal mutualistic networks. Ecology 90:2039–46 [Google Scholar]
  177. Vazquez DP, Melian CJ, Williams NM, Bluthgen N, Krasnov BR, Poulin R. 2007. Species abundance and asymmetric interaction strength in ecological networks. Oikos 116:1120–27 [Google Scholar]
  178. Vidal MM, Hasui E, Pizo MA, Tamashiro JY, Silva WR, Guimaraes PR. 2014. Frugivores at higher risk of extinction are the key elements of a mutualistic network. Ecology 95:3440–47 [Google Scholar]
  179. Vilà M, Bartomeus I, Dietzsch AC, Petanidou T, Steffan-Dewenter I. et al. 2009. Invasive plant integration into native plant–pollinator networks across Europe. Proc. R. Soc. B 276:3887–93 [Google Scholar]
  180. Vucic-Pestic O, Ehnes RB, Rall BC, Brose U. 2011. Warming up the system: higher predator feeding rates but lower energetic efficiencies. Glob. Change Biol. 17:1301–10 [Google Scholar]
  181. Wardle DA, Bardgett RD, Callaway RM, Van der Putten WH. 2011. Terrestrial ecosystem responses to species gains and losses. Science 332:1273–77 [Google Scholar]
  182. Wei Z, Yang T, Friman V-P, Xu Y, Shen Q, Jousset A. 2015. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Comm. 6:8413 [Google Scholar]
  183. Winemiller KO. 1990. Spatial and temporal variation in tropical fish trophic networks. Ecol. Monogr. 60:331–67 [Google Scholar]
  184. Woodward G, Ebenman B, Ernmerson M, Montoya JM, Olesen JM. et al. 2005. Body size in ecological networks. Trends Ecol. Evol. 20:402–9 [Google Scholar]
  185. Woodward G, Hildrew AG. 2001. Invasion of a stream food web by a new top predator. J. Anim. Ecol. 70:273–88 [Google Scholar]
  186. Yang S, Albert R, Carlo TA. 2013. Transience and constancy of interactions in a plant‐frugivore network. Ecosphere 4:1–25 [Google Scholar]
  187. Yletyinen J, Bodin Ö, Weigel B, Nordström MC, Bonsdorff E, Blenckner T. 2016. Regime shifts in marine communities: a complex systems perspective on food web dynamics. Proc. R. Soc. B 283:20152569 [Google Scholar]
  188. Yvon-Durocher G, Montoya JM, Trimmer M, Woodward G. 2011. Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Glob. Change Biol. 17:1681–94 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error