By facilitating plant reproduction, pollinators perform a crucial ecological function that supports the majority of the world's plant diversity, and associated organisms, and a significant fraction of global agriculture. Thus, pollinators are simultaneously vital to supporting both natural ecosystems and human food security, which is a unique position for such a diverse group of organisms. The past two decades have seen unprecedented interest in pollinators and pollination ecology, stimulated in part by concerns about the decline of pollinator abundance and diversity in some parts of the world. This review synthesizes what is currently understood about the taxonomic diversity of organisms that are known to act as pollinators; their distribution in both deep time and present space; the importance of their diversity for ecological function (including agro-ecology); changes to diversity and abundance over more recent timescales, including introduction of non-native species; and a discussion of arguments for conserving their diversity.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aizen MA, Garibaldi LA, Cunningham SA, Klein AM. 2008. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 18:1572–75 [Google Scholar]
  2. Aizen MA, Harder LD. 2009. The global stock of domesticated honeybees is growing slower than agricultural demand for pollination. Curr. Biol. 19:915–18 [Google Scholar]
  3. Albrecht M, Schmid B, Hautier Y, Müller CB. 2012. Diverse pollinator communities enhance plant reproductive success. Proc. R. Soc. B 279:4845–52 [Google Scholar]
  4. Arbetman M, Meeus I, Morales CL, Aizen MA, Smagghe G. 2013. Alien parasite hitchhikes to Patagonia on invasive bumblebee. Biol. Inv. 15:489–94 [Google Scholar]
  5. Armbruster WS. 2016. The specialization continuum in pollination systems: diversity of concepts and implications for ecology, evolution and conservation. Funct. Ecol. 31:88–100 https://doi.org/10.1111/1365-2435.12783 [Crossref] [Google Scholar]
  6. Armstrong JA. 1979. Biotic pollination mechanisms in the Australian flora—a review. N.Z. J. Bot. 17:467–508 [Google Scholar]
  7. Baldock KCR, Goddard MA, Hicks DM, Kunin WE, Mitschunas N. et al. 2015. Where is the UK's pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. R. Soc. B 282:20142849 https://doi.org/10.1098/rspb.2014.2849 [Crossref] [Google Scholar]
  8. Ballantyne G, Baldock KCR, Rendell L, Willmer PG. 2017. Pollinator importance networks illustrate the crucial value of bees in a highly speciose plant community. Sci. Rep. 7:8389 https://doi.org/10.1038/s41598-017-08798-x [Crossref] [Google Scholar]
  9. Ballantyne GA, Baldock KCR, Willmer PG. 2015. Constructing more informative plant–pollinator networks: visitation and pollen deposition networks in a heathland plant community. Proc. R. Soc. B 282:20151130 https://doi.org/10.1098/rspb.2015.1130 [Crossref] [Google Scholar]
  10. Bartomeus I, Ascher JS, Gibbs J, Danforth BN, Wagner DL. et al. 2013. Historical changes in northeastern US bee pollinators related to shared ecological traits. PNAS 110:4656–60 [Google Scholar]
  11. Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M. et al. 2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–54 [Google Scholar]
  12. Blitzer EJ, Gibbs J, Park MG, Danforth BN. 2016. Pollination services for apple are dependent on diverse wild bee communities. Agric. Ecosyst. Environ. 221:1–7 [Google Scholar]
  13. Brosi BJ. 2016. Pollinator specialization: from the individual to the community. New Phytol 210:1190–94 [Google Scholar]
  14. Brosi BJ, Briggs HM. 2013. Single pollinator species losses reduce floral fidelity and plant reproductive function. PNAS 110:13044–48 [Google Scholar]
  15. Burkle LA, Marlin JC, Knight TM. 2013. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339:1611–15 [Google Scholar]
  16. Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N. et al. 2011. Patterns of widespread decline in North American bumble bees. PNAS 108:662–67 [Google Scholar]
  17. Cardinal S, Danforth BN. 2013. Bees diversified in the age of eudicots. Proc. R. Soc. B 280:20122686 https://doi.org/10.1098/rspb.2012.2686 [Crossref] [Google Scholar]
  18. Carvalheiro LG, Kunin WE, Keil P, Aguirre-Gutiérrez J, Ellis WN. et al. 2013. Species richness declines and biotic homogenisation have slowed down for NW-European pollinators and plants. Ecol. Lett. 16:870–78 [Google Scholar]
  19. Costello MJ, May RM, Stork NE. 2013. Can we name Earth's species before they go extinct. Science 339:413–16 [Google Scholar]
  20. Cox PA. 1983. Extinction of the Hawaiian avifauna resulted in a change of pollinators for the ieie. Freycinetia arborea. Oikos 41:195–99 [Google Scholar]
  21. Crepet WL. 1979. Insect pollination: a paleontological perspective. Bioscience 29:102–8 [Google Scholar]
  22. Cronk Q, Ojeda I. 2008. Bird-pollinated flowers in an evolutionary and molecular context. J. Exp. Bot. 59:715–27 [Google Scholar]
  23. Dafni A, Kevan P, Gross C, Goka K. 2010. Bombus terrestris, pollinator, invasive and pest: an assessment of problems associated with its widespread introductions for commercial purposes. Appl. Entomol. Zool. 45:101–13 [Google Scholar]
  24. Dalsgaard B, Magård E, Fjeldså J, Martín González AM, Rahbek C. et al. 2011. Specialization in plant-hummingbird networks is associated with species richness, contemporary precipitation and quaternary climate-change velocity. PLOS ONE 6:e25891 https://doi.org/10.1371/journal.pone.0025891 [Crossref] [Google Scholar]
  25. Danforth BN, Sipes S, Fang F, Brady SG. 2006. The history of early bee diversification based on five genes plus morphology. PNAS 103:15118–23 [Google Scholar]
  26. da Silva LP, Ramos JA, Olesen JM, Traveset A, Heleno RH. 2014. Flower visitation by birds in Europe. Oikos 123:1377–83 [Google Scholar]
  27. Devoto M, Bailey S, Craze P, Memmott J. 2012. Understanding and planning ecological restoration of plant-pollinator networks. Ecol. Lett. 15:319–28 [Google Scholar]
  28. Devoto M, Bailey S, Memmott J. 2011. The ‘night shift’: nocturnal pollen-transport networks in a boreal pine forest. Ecol. Entomol. 36:25–35 [Google Scholar]
  29. Ebeling A, Klein A-M, Schumacher J, Weisser WW, Tscharntke T. 2008. How does plant richness affect pollinator richness and temporal stability of flower visits. Oikos 117:1808–15 [Google Scholar]
  30. Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JT. 2004. Pollination syndromes and floral specialization. Annu. Rev. Ecol. Evol. Syst. 35:375–403 [Google Scholar]
  31. Forup ML, Henson KSE, Craze PG, Memmott J. 2008. The restoration of ecological interactions: plant-pollinator networks on ancient and restored heathlands. J. Appl. Ecol. 45:742–52 [Google Scholar]
  32. Fox K, Vitt P, Anderson K, Fauske G, Travers S. et al. 2013. Pollination of a threatened orchid by an introduced hawk moth species in the tallgrass prairie of North America. Biol. Conserv. 167:316–24 [Google Scholar]
  33. Fox R. 2013. The decline of moths in Great Britain: a review of possible causes. Insect Conserv. Divers. 6:5–19 [Google Scholar]
  34. Gang H, Zhongjian L, Xueling L, Limi M, Jacques FMB, Xin W. 2016. A whole plant herbaceous angiosperm from the Middle Jurassic of China. Acta Geol. Sin 90:19–29 [Google Scholar]
  35. Garratt MPD, Breeze TD, Jenner N, Polce C, Biesmeijer JC, Potts SG. 2014a. Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agric. Ecosyst. Environ. 184:34–40 [Google Scholar]
  36. Garratt MPD, Truslove L, Coston D, Evans R, Moss E, Dodson C. et al. 2014b. Pollination deficits in UK apple orchards. J. Poll. Ecol. 12:9–14 [Google Scholar]
  37. Ghazoul J. 2005. Buzziness as usual? Questioning the global pollination crisis. Trends Ecol. Evol. 20:367–73 [Google Scholar]
  38. Ghazoul J. 2015. Qualifying pollinator decline evidence. Science 348:981–82 [Google Scholar]
  39. Gómez JM, Abdelaziz M, Lorite J, Muñoz-Pajares AJ, Perfectti F. 2010. Changes in pollinator fauna cause spatial variation in pollen limitation. J. Ecol. 98:1243–52 [Google Scholar]
  40. Gómez JM, Muñoz-Pajares AJ, Abdelaziz M, Lorite J, Perfectti F. 2013. Evolution of pollination niches and floral divergence in the generalist plant Erysimum mediohispanicum. Ann. Bot. 113:237–49 [Google Scholar]
  41. Goulson D. 2003. Effects of introduced bees on native ecosystems. Annu. Rev. Ecol. Evol. Syst. 34:1–26 [Google Scholar]
  42. Goulson D, Nicholls E, Botías C, Rotheray EL. 2015a. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957 https://doi.org/10.1126/science.1255957 [Crossref] [Google Scholar]
  43. Goulson D, Nicholls E, Rotheray EL, Botías C. 2015b. Qualifying pollinator decline evidence—response. Science 348:982 https://doi.org/10.1126/science.348.6238.982 [Crossref] [Google Scholar]
  44. Goulson D, Williams PH. 2001. Bombus hypnorum (Hymenoptera: Apidae), a new British bumblebee. Br. J. Entomol. Nat. Hist. 14:129–31 [Google Scholar]
  45. Haber WA, Frankie GW. 1989. A tropical hawkmoth community: Costa Rican dry forest Sphingidae. Biotropica 21:155–72 [Google Scholar]
  46. Hahn M, Brühl CA. 2016. The secret pollinators: an overview of moth pollination with a focus on Europe and North America. Arthropod-Plant Interact 10:21–28 [Google Scholar]
  47. Hallett AC, Mitchell RJ, Chamberlain ER, Karron JD. 2017. Pollination success following loss of a frequent pollinator: the role of compensatory visitation by other effective pollinators. AoB PLANTS 9:plx020 https://doi.org/10.1093/aobpla/plx020 [Crossref] [Google Scholar]
  48. Hegland SJ, Boeke L. 2006. Relationships between the density and diversity of floral resources and flower visitor activity in a temperate grassland community. Ecol. Entomol. 31:532–538 [Google Scholar]
  49. Hembry DH, Althoff DM. 2016. Diversification and coevolution in brood pollination mutualisms: windows into the role of biotic interactions in generating biological diversity. Am. J. Bot. 103:1783–92 https://doi.org/10.3732/ajb.1600056 [Crossref] [Google Scholar]
  50. Herbertsson L, Lindström SAM, Rundlöf M, Bommarco R, Smith HG. 2016. Competition between managed honeybees and wild bumblebees depends on landscape context. Basic Appl. Ecol. 17:609–16 [Google Scholar]
  51. Herrera CM. 1987. Components of pollinator “quality”: comparative analysis of a diverse insect assemblage. Oikos 50:79–90 [Google Scholar]
  52. Herrera CM. 1988. Variation in mutualisms: the spatio-temporal mosaic of a pollinator assemblage. Biol. J. Linn. Soc. 35:95–125 [Google Scholar]
  53. Hillebrand H. 2004. On the generality of the latitudinal diversity gradient. Am. Nat. 163:192–211 [Google Scholar]
  54. Hingston A. 2007. The potential impact of the large earth bumblebee Bombus terrestris (Apidae) on the Australian mainland: lessons from Tasmania. Vic. Nat. 124:110–16 [Google Scholar]
  55. Hogendoorn K, Gross C, Sedgley M, Keller M. 2006. Increased tomato yield through pollination by native Australian Amegilla chlorocyanea (Hymenoptera: Anthophoridae). J. Econ. Entomol. 99:828–33 [Google Scholar]
  56. Holzschuh A, Dudenhöffer J-H, Tscharntke T. 2012. Landscapes with wild bee habitats enhance pollination, fruit set and yield of sweet cherry. Biol. Conserv. 153:101–7 [Google Scholar]
  57. Høye TT, Post E, Schmidt NM, Trøjelsgaard K, Forchhammer MC. 2013. Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic. Nat. Clim. Change 3:759–63 [Google Scholar]
  58. Int. Coffee Org. 2017. Total production by all exporting countries Accessed June 20, 2017. http://www.ico.org/prices/po-production.pdf
  59. IPBES (Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv.). 2016. Assessment of Pollinators, Pollination and Food Production SG Potts, VL Imperatriz-Fonseca, HT Ngo Bonn, Ger.: Secretariat of the IPBES
  60. Jevanandam N, Goh AGR, Corlett RT. 2013. Climate warming and the potential extinction of fig wasps, the obligate pollinators of figs. Biol. Lett. 9:20130041 https://doi.org/10.1098/rsbl.2013.0041 [Crossref] [Google Scholar]
  61. Johnson SD. 2004. An overview of plant–pollinator relationships in southern Africa. Int. J. Trop. Insect Sci. 24:45–54 [Google Scholar]
  62. Johnson SD, Steiner KE. 2000. Generalization versus specialization in plant pollination systems. Trends Ecol. Evol. 15:140–43 [Google Scholar]
  63. Jordano P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am. Nat. 129:657–77 [Google Scholar]
  64. Kaiser-Bunbury CN, Mougal J, Whittington AE, Valentin T, Gabriel R. et al. 2017. Ecosystem restoration strengthens pollination network resilience and function. Nature 542:223–27 https://doi.org/10.1038/nature21071 [Crossref] [Google Scholar]
  65. Kato M, Inoue T, Nagamitsu T. 1995. Pollination biology of Gnetum (Gnetaceae) in a lowland mixed dipterocarp forest in Sarawak. Am. J. Bot. 82:862–68 [Google Scholar]
  66. Kirkitadze GJ, Japoshvili GO. 2015. Renewed checklist of bees (Hymenoptera: Apoidea) from Georgia. Ann. Agrar. Sci. 13:20–32 [Google Scholar]
  67. Klein AM, Steffan-Dewenter I, Tscharntke T. 2003. Fruit set of highland coffee increases with the diversity of pollinating bees. Proc. R. Soc. B. 270:955–61 [Google Scholar]
  68. Klein A-M, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA. et al. 2007. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274:303–313 [Google Scholar]
  69. Knight TM, Steets JA, Vamosi JC, Mazer SJ, Burd M. et al. 2005. Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ann. Rev. Ecol. Evol. Syst. 36:467–97 [Google Scholar]
  70. Kristensen NP, Scoble MJ, Karsholt O. 2007. Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Zootaxa 1668:699–747 [Google Scholar]
  71. Labandeira CC. 2010. The pollination of Mid Mesozoic seed plants and the early history of long-proboscid insects. Ann. Mo. Bot. Gard. 97:469–513 [Google Scholar]
  72. Labandeira CC, Kvaček J, Mostovski M. 2007. Pollination drops, pollen, and insect pollination of Mesozoic gymnosperms. Taxon 56:663–95 [Google Scholar]
  73. Labandeira CC, Yang Q, Santiago-Blay JA, Hotton CL, Monteiro A. et al. 2016. The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies. Proc. R. Soc. B 283:2015893 https://doi.org/10.1098/rspb.2015.2893 [Crossref] [Google Scholar]
  74. Larson BMH, Kevan PG, Inouye DW. 2001. Flies and flowers: taxonomic diversity of anthophiles and pollinators. Can. Entomol. 133:439–65 [Google Scholar]
  75. Lebuhn G, Droege S, Connor EF, Gemmill-Herren B, Potts SG. et al. 2013. Detecting insect pollinator declines on regional and global scales. Conserv. Biol. 27:113–20 [Google Scholar]
  76. López-Uribe M, Cane J. 2016. Crop domestication facilitated rapid geographical expansion of a specialist pollinator, the squash bee Peponapis pruinosa. Proc. R. Soc. B 283:20160443 [Google Scholar]
  77. Lord JM. 1991. Pollination and seed dispersal in Freycinetia baueriana, a dioecious liane that has lost its bat pollinator. N.Z. J. Bot. 29:83–86 [Google Scholar]
  78. Louchart A, Tourment N, Carrier J, Roux T, Mourer-Chauviré C. 2008. Hummingbird with modern feathering: an exceptionally well-preserved Oligocene fossil from southern France. Naturwissenschaften 95:171–75 [Google Scholar]
  79. Lundgren R, Totland O, Lazaro A. 2016. Experimental simulation of pollinator decline causes community-wide reductions in seedling diversity and abundance. Ecology 97:1420–30 [Google Scholar]
  80. Mace GM, Norris K, Fitter AH. 2012. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27:19–26 [Google Scholar]
  81. Mayr G. 2004. Old world fossil record of modern-type hummingbirds. Science 304:861–64 [Google Scholar]
  82. Micheneau C, Fournel J, Warren BH, Hugel S, Gauvin-Bialecki A. et al. 2010. Orthoptera, a new order of pollinator. Ann. Bot. 105:355–64
  83. Michener CD. 2007. The Bees of the World Baltimore, MD: Johns Hopkins Univ. Press
  84. Mikkola K. 1984. Migration of wasp and bumble bee queens across the Gulf of Finland (Hymenoptera: Vespidae and Apidae). Not. Entomol. 64:125–28 [Google Scholar]
  85. Moles A, Ollerton J. 2016. Is the notion that species interactions are stronger and more specialized in the tropics a zombie idea. Biotropica 48:141–45 [Google Scholar]
  86. Morales CL, Arbetman MP, Cameron SA, Aizen MA. 2013. Rapid ecological replacement of a native bumble bee by invasive species. Front. Ecol. Environ. 11:529–34 [Google Scholar]
  87. Ne'eman G, Jürgens A, Newstrom-Lloyd L, Potts SG, Dafni A. 2009. A framework for comparing pollinator performance: effectiveness and efficiency. Biol. Rev. 85:435–51 [Google Scholar]
  88. Ngo HT, Mojica AC, Packer L. 2007. Coffee plant–pollinator interactions: a review. Can. J. Zool. 89:647–60 [Google Scholar]
  89. Nieto A, Roberts SPM, Kemp J, Rasmont P, Kuhlmann M. et al. 2014. European Red List of Bees. Luxembourg: Publ. Off. Eur. Union [Google Scholar]
  90. Olesen JM, Eskildsen LI, Venkatasamy S. 2002. Invasion of pollination networks on oceanic islands: importance of invader complexes and endemic super generalists. Divers. Distrib. 8:181–92 [Google Scholar]
  91. Olesen JM, Jordano P. 2002. Geographic patterns in plant-pollinator mutualistic networks. Ecology 83:2416–24 [Google Scholar]
  92. Olesen JM, Valido A. 2003. Lizards as pollinators and seed dispersers: an island phenomenon. Trends Ecol. Evol. 18:177–81 [Google Scholar]
  93. Ollerton J. 1999. The evolution of pollinator-plant relationships within the arthropods. Evolution and Phylogeny of the Arthropoda A Melic, JJ DeHaro, M Mendez, I Ribera 741–58 Zaragoza, Spain: Entomol. Soc. Aragon [Google Scholar]
  94. Ollerton J, Cranmer L. 2002. Latitudinal trends in plant-pollinator interactions: Are tropical plants more specialised?. Oikos 98:340–50 [Google Scholar]
  95. Ollerton J, Dötterl S, Ghorpadé K, Heiduk A, Liede-Schumann S. 2017. Diversity of Diptera families that pollinate Ceropegia (Apocynaceae) trap flowers: an update in light of new data and phylogenetic analyses. Flora 234:233–44 [Google Scholar]
  96. Ollerton J, Erenler H, Edwards M, Crockett R. 2014. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346:1360–62 [Google Scholar]
  97. Ollerton J, Johnson SD, Cranmer L, Kellie S. 2003. The pollination ecology of an assemblage of grassland asclepiads in South Africa. Ann. Bot. 92:807–34 [Google Scholar]
  98. Ollerton J, Johnson SD, Hingston AB. 2006. Geographical variation in diversity and specificity of pollination systems. Plant-Pollinator Interactions: From Specialization to Generalization NM Waser, J Ollerton 283–308 Chicago: Univ. Chicago Press [Google Scholar]
  99. Ollerton J, Liede S. 1997. Pollination systems in the Asclepiadaceae: a survey and preliminary analysis. Biol. J. Linn. Soc. 62:593–610 [Google Scholar]
  100. Ollerton J, Masinde S, Meve U, Picker M, Whittington A. 2009. Fly pollination in Ceropegia (Apocynaceae: Asclepiadoideae): biogeographic and phylogenetic perspectives. Ann. Bot. 103:1501–14 [Google Scholar]
  101. Ollerton J, Price V, Armbruster WS, Memmott J, Watts S. et al. 2012. Overplaying the role of honey bees as pollinators: a comment on Aebi and Neumann 2011. Trends Ecol. Evol. 27:141–42 [Google Scholar]
  102. Ollerton J, Rouquette JR, Breeze TD. 2016. Insect pollinators boost the market price of culturally important crops: holly, mistletoe and the spirit of Christmas. J. Pollinat. Ecol. 19:93–97 [Google Scholar]
  103. Ollerton J, Winfree R, Tarrant S. 2011. How many flowering plants are pollinated by animals. Oikos 120:321–26 [Google Scholar]
  104. Orford KA, Vaughan IP, Memmott J. 2015. The forgotten flies: the importance of non-syrphid Diptera as pollinators. Proc. R. Soc. B 282:20142934 https://doi.org/10.1098/rspb.2014.2934 [Crossref] [Google Scholar]
  105. Ortega-Olivencia A, Rodríguez-Riaño T, Valtueña FJ, López J, Devesa JA. 2005. First confirmation of a native bird-pollinated plant in Europe. Oikos 110:578–90 [Google Scholar]
  106. Parmesan C, Ryrholm N, Stefanescu C, Hill JK. 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–83 [Google Scholar]
  107. Paton AJ, Brummitt N, Govaerts R, Harman K, Hinchcliffe S. et al. 2008. Towards target 1 of the global strategy for plant conservation: a working list of all known plant species—progress and prospects. Taxon 57:602–11 [Google Scholar]
  108. Pauw A. 2007. Collapse of a pollination web in small conservation areas. Ecology 88:1759–69 [Google Scholar]
  109. Pauw A, Stanway R. 2015. Unrivalled specialization in a pollination network from South Africa reveals that specialization increases with latitude only in the Southern Hemisphere. J. Biogeogr. 42:652–61 [Google Scholar]
  110. Peñalver E, Arillo A, Pérez-de la Fuente R, Riccio ML, Delclòs X. et al. 2015. Long-proboscid flies as pollinators of Cretaceous gymnosperms. Curr. Biol. 14:1917–23 [Google Scholar]
  111. Peñalver E, Labandeira CC, Barrón E, Delclòs X, Nel P. et al. 2012. Thrips pollination of Mesozoic gymnosperms. PNAS 109:8623–28 [Google Scholar]
  112. Peris D, Pérez-de la Fuente R, Peñalver E, Delclòs X, Barrón E, Labandeira CC. 2017. False blister beetles and the expansion of gymnosperm-insect pollination modes before angiosperm dominance. Curr. Biol. 27:897–904 [Google Scholar]
  113. Pitts JP, Wasbauer MS, von Dohlen CD. 2005. Preliminary morphological analysis of relationships between the spider wasp subfamilies (Hymenoptera: Pompilidae): revisiting an old problem. Zool. Scr. 35:63–84 [Google Scholar]
  114. Poinar GO. 2017. Ancient termite pollinator of milkweed flowers in Dominican amber. Am. Entomol. 63:52–56 [Google Scholar]
  115. Poinar GO, Danforth BN. 2006. A fossil bee from Early Cretaceous Burmese amber. Science 314:614 [Google Scholar]
  116. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. 2010a. Global pollinator declines: trends, impacts and drivers. Trend Ecol. Evol. 25:345–53 [Google Scholar]
  117. Potts SG, Roberts SPM, Dean R, Marris G, Brown MA. et al. 2010b. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 49:15–22 [Google Scholar]
  118. Rader R, Bartomeus I, Garibaldi LA, Garratt MPD, Howlett BG. et al. 2015. Non-bee insects are important contributors to global crop pollination. PNAS 113:146–51 [Google Scholar]
  119. Ramírez SR, Gravendeel B, Singer RB, Marshall CR, Pierce NE. 2007. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature 448:1042–45 [Google Scholar]
  120. Rasmont P, Franzén M, Lecocq T, Harpke A, Roberts SPM. et al. 2015. Climatic risk and distribution atlas of European bumblebees. BioRisk 10:1–246 [Google Scholar]
  121. Rech AR, Dalsgaard B, Sandel B, Sonne J, Svenning J-C. et al. 2016. The macroecology of animal versus wind pollination: Ecological factors are more important than historical climate stability. Plant Ecol. Divers. 9:253–62 [Google Scholar]
  122. Regan EC, Santini L, Ingwall-King L, Hoffmann M, Rondinini C. et al. 2015. Global trends in the status of bird and mammal pollinators. Conserv. Lett. 8:397–403 [Google Scholar]
  123. Ren D. 1998. Flower-associated Brachycera flies as fossil evidence for Jurassic angiosperm origins. Science 280:85–88 [Google Scholar]
  124. Ren D, Labandeira CC, Santiago-Blay JA, Rasnitsyn A, Shih C. et al. 2009. A probable pollination mode before angiosperms: Eurasian, long-proboscid scorpionflies. Science 326:840–47 [Google Scholar]
  125. Rios LD, Fuchs EJ, Hodel DR, Cascante-Marín A. 2014. Neither insects nor wind: ambophily in dioecious Chamaedorea palms (Arecaceae). Plant Biol 16:702–10 [Google Scholar]
  126. Roberts S, Vereecken N. 2010. Ivy Bee (Colletes hederae) information sheet Bees, Wasps, and Ants Recording Society (BWARS). http://www.bwars.com/sites/www.bwars.com/files/info_sheets/01_Colletes_hederae_20100908.pdf [Google Scholar]
  127. Rodriguez-Rodriguez MC, Jordano P, Valido A. 2013. Quantity and quality components of effectiveness in insular pollinator assemblages. Oecologia 173:179–90 [Google Scholar]
  128. Russo L. 2016. Positive and negative impacts of non-native bee species around the world. Insects 7:69 https://doi.org/10.3390/insects7040069 [Crossref] [Google Scholar]
  129. Sakai K, Nagai S. 1998. The Cetoniine Beetles of the World Tokyo: Mushi-Sha
  130. Samways M. 2015. Future-proofing insect diversity. Curr. Opin. Insect Sci. 12:71–78 [Google Scholar]
  131. Schleuning M, Fründ J, Klein AM, Abrahamczyk S, Alarcón R. et al. 2012. Specialization of mutualistic interaction networks decreases toward tropical latitudes. Curr. Biol. 22:1925–31 [Google Scholar]
  132. Settele J, Kudrna O, Harpke A, Kühn I, Swaay C. et al. 2008. Climatic risk atlas of European butterflies. BioRisk 10:1–710 [Google Scholar]
  133. Shrestha M, Lunau K, Dorin A, Schulze B, Bischoff M. et al. 2016. Floral colours in a world without birds and bees: the plants of Macquarie Island. Plant Biol 18:842–50 [Google Scholar]
  134. Shuttleworth A, Johnson SD. 2009. New records of insect pollinators for South African asclepiads (Apocynaceae: Asclepiadoideae). S. Afr. J. Bot. 75:689–98 [Google Scholar]
  135. Sirohi MH, Jackson J, Edwards M, Ollerton J. 2015. Diversity and abundance of solitary and primitively eusocial bees in an urban centre: a case study from Northampton (England). J. Insect Cons. 19:487–500 [Google Scholar]
  136. Smith TJ, Saunders ME. 2016. Honey bees: the queens of mass media, despite minority rule among insect pollinators. Insect Conserv. Divers. 9:384–90 [Google Scholar]
  137. Steffan-Dewenter I, Tscharntke T. 2001. Succession of bee communities on fallows. Ecography 24:83–93 [Google Scholar]
  138. Tarrant S, Ollerton J, Rahman MD, Griffin J, McCollin D. 2013. Grassland restoration on landfill sites in the East Midlands, UK: an evaluation of floral resources and pollinating insects. Restor. Ecol. 21:560–68 [Google Scholar]
  139. Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJD. et al. 2004. Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303:1879–81 [Google Scholar]
  140. Tiusanen M, Hebert PDN, Schmidt NM, Roslin T. 2016. One fly to rule them all—muscid flies are the key pollinators in the Arctic. Proc. R. Soc. B 283:20161271 https://doi.org/10.1098/rspb.2016.1271 [Crossref] [Google Scholar]
  141. van Tussenbroek BI, Villami N, Márquez-Guzmán J, Wong R, Monroy-Velázquez LV, Solis-Weiss V. 2016. Experimental evidence of pollination in marine flowers by invertebrate fauna. Nat. Commun. 7:12980 https://doi.org/10.1038/ncomms12980 [Crossref] [Google Scholar]
  142. Vázquez DP, Stevens RD. 2004. The latitudinal gradient in niche breadth: concepts and evidence. Am. Nat. 164:E1–19 [Google Scholar]
  143. Vizentin-Bugoni J, Maruyama PK, Silveira CS, Ollerton J, Rech AR, Sazima M. 2017. Plant-pollinator networks in the tropics: a review. Ecological Networks in the Tropics: An Integrative Overview of Species Interactions from Some of the Most Species-Rich Habitats on Earth W Dáttilo, V Rico-Gray New York: Springer. In press [Google Scholar]
  144. Wardhaugh CW. 2015. How many species of arthropods visit flowers?. Arthropod-Plant Interact 9:547–65 https://doi.org/10.1007/s11829-015-9398-4 [Crossref] [Google Scholar]
  145. Waser NM. 2006. Specialization and generalization in plant-pollinator interactions: an historical perspective. Plant-Pollinator Interactions: From Specialization to Generalization NM Waser, J Ollerton 3–17 Chicago: Univ. Chicago Press [Google Scholar]
  146. Waser NM, Chittka L, Price MV, Williams NM, Ollerton J. 1996. Generalization in pollination systems, and why it matters. Ecology 77:1043–60 [Google Scholar]
  147. Watts S, Dormann CF, Martín González AM, Ollerton J. 2016. The influence of floral traits on specialisation and modularity of plant-pollinator networks in a biodiversity hotspot in the Peruvian Andes. Ann. Bot. 118:415–29 [Google Scholar]
  148. Watts S, Huamán Ovalle D, Moreno Herrera M, Ollerton J. 2012. Pollinator effectiveness of native and non-native flower visitors to an apparently generalist Andean shrub, Duranta mandonii (Verbenaceae). Plant Species Biol 27:147–58 [Google Scholar]
  149. Weissmann JA, Picanço A, Borges PAV, Schaefer H. 2017. Bees of the Azores: an annotated checklist (Apidae, Hymenoptera). ZooKeys 642:63–95 https://doi.org/10.3897/zookeys.642.10773 [Crossref] [Google Scholar]
  150. Williams P, Tang Y, Yao J, Cameron S. 2009. The bumblebees of Sichuan (Hymenoptera: Apidae, Bombini). Syst. Biodivers. 7:101–89 [Google Scholar]
  151. Willmer PG, Finlayson K. 2014. Big bees do a better job: intraspecific size variation influences pollination effectiveness. J. Pollinat. Ecol. 14:244–54 [Google Scholar]

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error