1932

Abstract

How ecological niche breadth evolves is central to adaptation and speciation and has been a topic of perennial interest. Niche breadth evolution research has occurred within environmental, ecological, evolutionary, and biogeographical contexts, and although some generalities have emerged, critical knowledge gaps exist. Performance breadth trade-offs, although long invoked, may not be common determinants of niche breadth evolution or limits. Niche breadth can expand or contract from specialist or generalist lineages, and so specialization need not be an evolutionary dead end. Whether niche breadth determines diversification and distribution breadth and how niche breadth is partitioned among individuals and populations within a species are important but particularly understudied topics. Molecular genetic and phylogenetic techniques have greatly expanded understanding of niche breadth evolution, but field studies of how niche breadth evolves are essential for providing mechanistic details and allowing the development of comprehensive theory and improved prediction of biological responses under global change.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110316-023003
2017-11-02
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/48/1/annurev-ecolsys-110316-023003.html?itemId=/content/journals/10.1146/annurev-ecolsys-110316-023003&mimeType=html&fmt=ahah

Literature Cited

  1. Ackermann M, Doebeli M. 2004. Evolution of niche width and adaptive diversification. Evolution 58:122599–612Modeled and highlighted tension between diversification and niche breadth evolution. [Google Scholar]
  2. Alexander JM, Diez JM, Levine JM. 2015. Novel competitors shape species’ responses to climate change. Nature 525:7570515–18 [Google Scholar]
  3. Anacker BL, Strauss SY. 2014. The geography and ecology of plant speciation: range overlap and niche divergence in sister species. Proc. R. Soc. B. 281:177820132980 [Google Scholar]
  4. Anderson JT, Lee C-R, Rushworth CA, Colautti RI, Mitchell-Olds T. 2013. Genetic trade-offs and conditional neutrality contribute to local adaptation. Mol. Ecol. 22:3699–708 [Google Scholar]
  5. Anderson JT, Perera N, Chowdhury B, Mitchell-Olds T. 2015. Microgeographic patterns of genetic divergence and adaptation across environmental gradients in Boechera stricta (Brassicaceae). Am. Nat. 186:Suppl. 1S60–73 [Google Scholar]
  6. Angert AL, Sheth SN, Paul JR. 2011. Incorporating population variation in thermal niche properties into geographic range shift predictions. Integr. Comp. Biol. 51:733–50 [Google Scholar]
  7. Angilletta MJ Jr., Niewiarowski PH, Navas CA. 2002. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27:4249–68 [Google Scholar]
  8. Araújo MB, Ferri-Yáñez F, Bozinovic F, Marquet PA, Valladares F, Chown SL. 2013. Heat freezes niche evolution. Ecol. Lett. 16:91206–19 [Google Scholar]
  9. Atkins KE, Travis JMJ. 2010. Local adaptation and the evolution of species’ ranges under climate change. J. Theor. Biol. 266:3449–57 [Google Scholar]
  10. Bakkenes M, Alkemade JRM, Ihle F, Leemans R, Latour JB. 2002. Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Glob. Change Biol. 8:4390–407 [Google Scholar]
  11. Barrett SCH, Hough J. 2013. Sexual dimorphism in flowering plants. J. Exp. Bot. 64:167–82 [Google Scholar]
  12. Bennett AF, Lenski RE. 2007. An experimental test of evolutionary trade-offs during temperature adaptation. PNAS 104:Suppl. 18649–54 [Google Scholar]
  13. Berner D, Salzburger W. 2015. The genomics of organismal diversification illuminated by adaptive radiations. Trends Genet 31:9491–99 [Google Scholar]
  14. Blonder B, Lamanna C, Violle C, Enquist BJ. 2014. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23:5595–609 [Google Scholar]
  15. Blows MW, Hoffmann AA. 2005. A reassessment of genetic limits to evolutionary change. Ecology 86:61371–84 [Google Scholar]
  16. Blüthgen N, Menzel F, Blüthgen N. 2006. Measuring specialization in species interaction networks. BMC Ecol 6:9 [Google Scholar]
  17. Bolnick DI. 2001. Intraspecific competition favours niche width expansion in Drosophila melanogaster. Nature 410:6827463–66 [Google Scholar]
  18. Bolnick DI, Ingram T, Stutz WE, Snowberg LK, Lau OL, Paull JS. 2010. Ecological release from interspecifc competition leads to decoupled changes in population and individual niche width. Proc. R. Soc. B 277:1789–97 [Google Scholar]
  19. Bolnick DI, Svanback R, Araujo MS, Persson L. 2007. Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. PNAS 104:2410075–79 [Google Scholar]
  20. Bolnick DI, Svanback R, Fordyce JA, Yang LH, Davis JM. et al. 2003. The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 161:11–28Reviewed the evidence for individual specialization, suggesting that it is a widespread phenomenon. [Google Scholar]
  21. Bonetti MF, Wiens JJ. 2014. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians. Proc. R. Soc. B 281:179520133229 [Google Scholar]
  22. Bono LM, Smith LB, Pfennig DW, Burch CL. 2017. The emergence of performance trade-offs during local adaptation: insights from experimental evolution. Mol. Ecol. 26:1720–33 https://doi.org/10.1111/mec.13979 Review of experimental evolution studies, addressing questions of antagonistic pleiotropy versus conditional neutrality. [Crossref] [Google Scholar]
  23. Botta-Dukát Z. 2012. Co-occurrence-based measure of species’ habitat specialization: robust, unbiased estimation in saturated communities. J. Veg. Sci. 23:2201–7 [Google Scholar]
  24. Brawand D, Wagner CE, Li YI, Malinsky M, Keller I. et al. 2014. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513:7518375–81 [Google Scholar]
  25. Brett JR. 1971. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka). Am. Zool. 11:199–113 [Google Scholar]
  26. Brown JH. 1984. On the relationship between abundance and distribution of species. Am. Nat. 124:2255–79 [Google Scholar]
  27. Buckley LB, Huey RB. 2016. How extreme temperatures impact organisms and the evolution of their thermal tolerance. Integr. Comp. Biol. 56:198–109 [Google Scholar]
  28. Case TJ. 1981. Niche packing and coevolution in competition communities. PNAS 78:85021–25 [Google Scholar]
  29. Chan W-P, Chen I-C, Colwell RK, Liu W-C, Huang C, Shen S-F. 2016. Seasonal and daily climate variation have opposite effects on species elevational range size. Science 351:62801437–39 [Google Scholar]
  30. Clavel J, Julliard R, Devictor V. 2011. Worldwide decline of specialist species: toward a global functional homogenization. Front. Ecol. Environ. 9:4222–28 [Google Scholar]
  31. Cody ML. 1974. Competition and the Structure of Bird Communities Princeton, NJ: Princeton Univ. Press [Google Scholar]
  32. Colles A, Liow LH, Prinzing A. 2009. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol. Lett. 12:8849–63 [Google Scholar]
  33. Colwell RK. 1986. Population structure and sexual selection for host fidelity in the speciation of hummingbird flower mites. Evolutionary Processes and Theory S Karlin, E Nevo 475–95 New York: Academic [Google Scholar]
  34. Colwell RK, Futuyma DJ. 1971. On the measurement of niche breadth and overlap. Ecology 52:4567–76 [Google Scholar]
  35. Conner JK. 2012. Quantitative genetic approaches to evolutionary constraint: how useful. Evolution 66:113313–20 [Google Scholar]
  36. Cooper VS, Lenski RE. 2000. The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407:6805736–39 [Google Scholar]
  37. Costa GC, Vitt LJ, Pianka ER, Mesquita DO, Colli GR. 2008. Optimal foraging constrains macroecological patterns: body size and dietary niche breadth in lizards. Glob. Ecol. Biogeogr. 17:5670–77 [Google Scholar]
  38. Coyne JA, Orr HA. 2004. Speciation. Sunderland, MA: Sinauer [Google Scholar]
  39. Curtin SJ, Tiffin P, Guhlin J, Trujillo DI, Burghardt LT. et al. 2017. Validating genome-wide association candidates controlling quantitative variation in nodulation. Plant Physiol 173:2921–31 [Google Scholar]
  40. Dall SRX, Cuthill IC. 1997. The information costs of generalism. Oikos 80:1197–202 [Google Scholar]
  41. Darwin C. 1859. On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life London: J. Murray [Google Scholar]
  42. Day EH, Hua X, Bromham L. 2016. Is specialization an evolutionary dead end? Testing for differences in speciation, extinction and trait transition rates across diverse phylogenies of specialists and generalists. J. Evol. Biol. 29:61257–67 [Google Scholar]
  43. de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S. et al. 2017. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol. 18:28 https://doi.org/10.1186/s13059-017-1151-0 [Crossref] [Google Scholar]
  44. Denny MW, Dowd WW. 2012. Biophysics, environmental stochasticity, and the evolution of thermal safety margins in intertidal limpets. J. Exp. Biol. 215:6934–47 [Google Scholar]
  45. Devictor V, Clavel J, Julliard R, Lavergne S, Mouillot D. et al. 2010. Defining and measuring ecological specialization. J. Appl. Ecol. 47:115–25Illustrates metrics of ecological specialization. [Google Scholar]
  46. Dieckmann U, Doebeli M. 1999. On the origin of species by sympatric speciation. Nature 400:354–57 [Google Scholar]
  47. Dolédec S, Chessel D, Gimaret-Carpentier C. 2000. Niche separation in community analysis: a new method. Ecology 81:102914–27 [Google Scholar]
  48. Donoghue MJ, Edwards EJ. 2014. Biome shifts and niche evolution in plants. Annu. Rev. Ecol. Evol. Syst. 45:1547–72 [Google Scholar]
  49. Ducatez S, Tingley R, Shine R. 2014. Using species co-occurrence patterns to quantify relative habitat breadth in terrestrial vertebrates. Ecosphere 5:121–12 [Google Scholar]
  50. Dyer LA, Singer MS, Lill JT, Stireman JO, Gentry GL. et al. 2007. Host specificity of Lepidoptera in tropical and temperate forests. Nature 448:7154696–99 [Google Scholar]
  51. Elton CS. 1927. Animal Ecology London: Sidgwick and Jackson [Google Scholar]
  52. Emery NC, Forrestel EJ, Jui G, Park MS, Baldwin BG, Ackerly DD. 2012. Niche evolution across spatial scales: climate and habitat specialization in California Lasthenia (Asteraceae). Ecology 93:8sS151–66 [Google Scholar]
  53. Etterson JR. 2004. Evolutionary potential of Chamaecrista fasciculata in relation to climate change. I. Clinal patterns of selection along an environmental gradient in the Great Plains. Evolution 58:71446–58 [Google Scholar]
  54. Feinsinger P, Spears EE, Poole RW. 1981. A simple measure of niche breadth. Ecology 62:127–32 [Google Scholar]
  55. Fisher-Reid MC, Kozak KH, Wiens JJ. 2012. How is the rate of climatic-niche evolution related to climatic-niche breadth. Evolution 66:123836–51 [Google Scholar]
  56. Forister ML, Dyer LA, Singer MS, Stireman JO, Lill JT. 2012. Revisiting the evolution of ecological specialization, with emphasis on insect-plant interactions. Ecology 93:5981–91 [Google Scholar]
  57. Foust CM, Preite V, Schrey AW, Alvarez M, Robertson MH. et al. 2016. Genetic and epigenetic differences associated with environmental gradients in replicate populations of two salt marsh perennials. Mol. Ecol. 25:81639–52 [Google Scholar]
  58. Fridley JD, Vandermast DB, Kuppinger DM, Manthey M, Peet RK. 2007. Co-occurrence based assessment of habitat generalists and specialists: a new approach for the measurement of niche width. J. Ecol. 95:4707–22 [Google Scholar]
  59. Fry JD. 1996. The evolution of host specialization: Are trade-offs overrated. Am. Nat. 148:S84–107 [Google Scholar]
  60. Futuyma DJ. 2010. Evolutionary constraint and ecological consequences. Evolution 64:71865–84 [Google Scholar]
  61. Futuyma DJ, Moreno G. 1988. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19:207–33Provides a comprehensive summary of historical hypotheses on the evolution of specialization and generalization. [Google Scholar]
  62. Gardiner A, Barker D, Butlin RK, Jordan WC, Ritchie MG. 2008. Drosophila chemoreceptor gene evolution: selection, specialization and genome size. Mol. Ecol. 17:71648–57 [Google Scholar]
  63. Gilchrist GW. 1995. Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. Am. Nat. 146:2252–70 [Google Scholar]
  64. Gómez-Rodríguez C, Baselga A, Wiens JJ. 2015. Is diversification rate related to climatic niche width. Glob. Ecol. Biogeogr. 24:4383–95 [Google Scholar]
  65. Griffith T, Sultan SE. 2012. Field-based insights to the evolution of specialization: plasticity and fitness across habitats in a specialist/generalist species pair. Ecol. Evol. 2:4778–91 [Google Scholar]
  66. Grinnell J. 1917. The niche-relationships of the California Thrasher. Auk 34:4427–33 [Google Scholar]
  67. Grossenbacher DL, Veloz SD, Sexton JP. 2014. Niche and range size patterns suggest that speciation begins in small, ecologically diverged populations in North American monkeyflowers (Mimulus spp.). Evolution 68:1270–80 [Google Scholar]
  68. Guisan A, Petitpierre B, Broennimann O, Daehler C, Kueffer C. 2014. Unifying niche shift studies: insights from biological invasions. Trends Ecol. Evol. 29:5260–69Proposed a framework for niche change with invasion, incorporating ideas of population- versus species-level niche dynamics. [Google Scholar]
  69. Guisan A, Thuiller W. 2005. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8:9993–1009 [Google Scholar]
  70. Hanski I, Kouki J, Halkka A. 1993. Three explanations of the positive relationship between distribution and abundance of species. Species Diversity in Ecological Communities: Historical and Geographical Perspectives RE Ricklefs, D Schluter 108–16 Chicago: Univ. Chicago Press [Google Scholar]
  71. Hardy NB, Otto SP. 2014. Specialization and generalization in the diversification of phytophagous insects: tests of the musical chairs and oscillation hypotheses. Proc. R. Soc. B 281:179520132960 [Google Scholar]
  72. Hargreaves AL, Samis KE, Eckert CG. 2014. Are species’ range limits simply niche limits writ large? A review of transplant experiments beyond the range. Am. Nat. 183:2157–73 [Google Scholar]
  73. Heino J. 2005. Positive relationship between regional distribution and local abundance in stream insects: a consequence of niche breadth or niche position. Ecography 28:3345–54 [Google Scholar]
  74. Herman JJ, Sultan SE. 2016. DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proc. R. Soc. B 283:183820160988 [Google Scholar]
  75. Herrera CM, Pozo MI, Bazaga P. 2012. Jack of all nectars, master of most: DNA methylation and the epigenetic basis of niche width in a flower-living yeast. Mol. Ecol. 21:112602–16 [Google Scholar]
  76. Hill MP, Chown SL, Hoffmann AA. 2013. A predicted niche shift corresponds with increased thermal resistance in an invasive mite, Halotydeus destructor. Glob. Ecol. Biogeogr. 22:8942–51 [Google Scholar]
  77. Hoffmann AA. 2010. Physiological climatic limits in Drosophila: patterns and implications. J. Exp. Biol. 213:6870–80 [Google Scholar]
  78. Hoffmann AA, Anderson A, Hallas R. 2002. Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol. Lett. 5:5614–18 [Google Scholar]
  79. Hoffmann AA, Chown SL, Clusella-Trullas S. 2013. Upper thermal limits in terrestrial ectotherms: How constrained are they?. Funct. Ecol. 27:4934–49 [Google Scholar]
  80. Hoffmann AA, Parsons PA. 1993. Selection for adult desiccation resistance in Drosophila melanogaster: fitness components, larval resistance and stress correlations. Biol. J. Linn. Soc. 48:143–54 [Google Scholar]
  81. Holt RD. 1996. Adaptive evolution in source-sink environments: direct and indirect effects of density-dependence on niche evolution. Oikos 75:2182–92 [Google Scholar]
  82. Holt RD, Gaines MS. 1992. Analysis of adaptation in heterogeneous landscapes: implications for the evolution of fundamental niches. Evol. Ecol. 6:5433–47 [Google Scholar]
  83. Houle D. 1992. Comparing evolvability and variability of quantitative traits. Genetics 130:1195–204 [Google Scholar]
  84. Huey RB, Hertz PE. 1984. Is a Jack-of-all-temperatures a master of none. Evolution 38:2441–44 [Google Scholar]
  85. Huey RB, Kingsolver JG. 1993. Evolution of resistance to high temperature in ectotherms. Am. Nat. 142:S21–46 [Google Scholar]
  86. Huey RB, Stevenson RD. 1979. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am. Zool. 19:1357–66 [Google Scholar]
  87. Hurlbert SH. 1978. The measurement of niche overlap and some relatives. Ecology 59:167–77 [Google Scholar]
  88. Hutchinson GE. 1957. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22:415–427 [Google Scholar]
  89. Ikeda DH, Max TL, Allan GJ, Lau MK, Shuster SM, Whitham TG. 2017. Genetically informed ecological niche models improve climate change predictions. Glob. Change Biol. 23:1164–76 [Google Scholar]
  90. Janz N, Nylin S. 2008. The oscillation hypothesis of host-plant range and speciation. Specialization, Speciation and Radiation: The Evolutionary Biology of Herbivorous Insects KJ Tilmon 203–15 Berkeley: Univ. California Press [Google Scholar]
  91. Kassen R. 2002. The experimental evolution of specialists, generalists, and the maintenance of diversity. J. Evol. Biol. 15:2173–90Review of experimental evolution studies addressing the effect of environmental variation on niche breadth. [Google Scholar]
  92. Kawecki TJ. 1994. Accumulation of deleterious mutations and the evolutionary cost of being a generalist. Am. Nat. 144:5833–38 [Google Scholar]
  93. Kawecki TJ. 2000. Adaptation to marginal habitats: contrasting influence of the dispersal rate on the fate of alleles with small and large effects. Proc. R. Soc. B 267:14501315–20 [Google Scholar]
  94. Kawecki TJ, Barton NH, Fry JD. 1997. Mutational collapse of fitness in marginal habitats and the evolution of ecological specialisation. J. Evol. Biol. 10:3407–29 [Google Scholar]
  95. Kellermann V, van Heerwaarden B, Sgro CM, Hoffmann AA. 2009. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325:1244–46 [Google Scholar]
  96. Ketola T, Mikonranta L, Zhang J, Saarinen K, Örmälä A-M. et al. 2013. Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments. Evolution 67:102936–44 [Google Scholar]
  97. Khaliq I, Hof C, Prinzinger R, Böhning-Gaese K, Pfenninger M. 2014. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. B 281:178920141097 [Google Scholar]
  98. Kleynhans EJ, Otto SP, Reich PB, Vellend M. 2016. Adaptation to elevated CO2 in different biodiversity contexts. Nat. Commun. 7:12358 [Google Scholar]
  99. Kozak KH, Wiens JJ. 2010. Accelerated rates of climatic-niche evolution underlie rapid species diversification. Ecol. Lett. 13:111378–89 [Google Scholar]
  100. Latta LC, Weider LJ, Colbourne JK, Pfrender ME. 2012. The evolution of salinity tolerance in Daphnia: a functional genomics approach. Ecol. Lett. 15:8794–802Shows the power of integrating phenotypic assays with functional genomics to detect potential cross-axis trade-offs. [Google Scholar]
  101. Lavergne S, Evans MEK, Burfield IJ, Jiguet F, Thuiller W. 2013. Are species’ responses to global change predicted by past niche evolution. Philos. Trans. R. Soc. B 368:161020120091 [Google Scholar]
  102. Lee-Yaw JA, Kharouba HM, Bontrager M, Mahony C, Csergő AM. et al. 2016. A synthesis of transplant experiments and ecological niche models suggests that range limits are often niche limits. Ecol. Lett. 19:6710–22 [Google Scholar]
  103. Levins R. 1962. Theory of fitness in a heterogeneous environment. I. The fitness set and adaptive function. Am. Nat. 96:891361–73 [Google Scholar]
  104. Levins R. 1965. Theory of fitness in a heterogeneous environment. V. Optimal genetic systems. Genetics 52:5891–904 [Google Scholar]
  105. Levins R. 1968. Evolution in Changing Environments Princeton, NJ: Princeton Univ. Press [Google Scholar]
  106. Levis NA, Pfennig DW. 2016. Evaluating ‘plasticity-first’ evolution in nature: key criteria and empirical approaches. Trends Ecol. Evol. 31:7563–74 [Google Scholar]
  107. Lin L-H, Wiens JJ. 2016. Comparing macroecological patterns across continents: evolution of climatic niche breadth in varanid lizards. Ecography https://doi.org/10.1111/ecog.02343 [Crossref] [Google Scholar]
  108. Litsios G, Kostikova A, Salamin N. 2014. Host specialist clownfishes are environmental niche generalists. Proc. R. Soc. B 281:179520133220 [Google Scholar]
  109. Luna B, Moreno JM. 2010. Range-size, local abundance and germination niche-breadth in Mediterranean plants of two life-forms. Plant Ecol 210:185–95 [Google Scholar]
  110. Lynch M, Gabriel W. 1987. Environmental tolerance. Am. Nat. 129:2283–303 [Google Scholar]
  111. MacArthur RH. 1972. Geographical Ecology: Patterns in the Distribution of Species Princeton, NJ: Princeton Univ. Press [Google Scholar]
  112. Martin RA, Pfennig DW. 2009. Disruptive selection in natural populations: the roles of ecological specialization and resource competition. Am. Nat. 174:2268–81 [Google Scholar]
  113. Mayr E. 1954. Change of genetic environment and evolution. Evolution as a Process J Huxley, AC Hardy, EB Ford 157–80 London: Allen and Unwin [Google Scholar]
  114. Moran EV, Alexander JM. 2014. Evolutionary responses to global change: lessons from invasive species. Ecol. Lett. 17:5637–49 [Google Scholar]
  115. Muchhala N, Brown Z, Armbruster WS, Potts MD. 2010. Competition drives specialization in pollination systems through costs to male fitness. Am. Nat. 176:6732–43 [Google Scholar]
  116. Nakazawa T. 2015. Ontogenetic niche shifts matter in community ecology: a review and future perspectives. Popul. Ecol. 57:2347–54 [Google Scholar]
  117. Nonaka E, Svanbäck R, Thibert-Plante X, Englund G, Brännström Å. 2015. Mechanisms by which phenotypic plasticity affects adaptive divergence and ecological speciation. Am. Nat. 186:5E126–43 [Google Scholar]
  118. Nyman T. 2010. To speciate, or not to speciate? Resource heterogeneity, the subjectivity of similarity, and the macroevolutionary consequences of niche-width shifts in plant-feeding insects. Biol. Rev. 85:2393–411 [Google Scholar]
  119. Ojeda Alayon DI, Tsui CKM, Feau N, Capron A, Dhillon B. et al. 2017. Genetic and genomic evidence of niche partitioning and adaptive radiation in mountain pine beetle fungal symbionts. Mol. Ecol. 26:72077–91 [Google Scholar]
  120. Olsson K, Stenroth P, Nyström P, Granéli W. 2009. Invasions and niche width: Does niche width of an introduced crayfish differ from a native crayfish. Freshw. Biol. 54:81731–40 [Google Scholar]
  121. Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A. 2012. Climatic niche shifts are rare among terrestrial plant invaders. Science 335:60741344–48 [Google Scholar]
  122. Pfennig KS, Kelly AL, Pierce AA. 2016. Hybridization as a facilitator of species range expansion. Proc. R. Soc. B. 283:183920161329 [Google Scholar]
  123. Poisot T, Bever JD, Nemri A, Thrall PH, Hochberg ME. 2011. A conceptual framework for the evolution of ecological specialisation. Ecol. Lett. 14:9841–51 [Google Scholar]
  124. Preston KL, Rotenberry JT, Redak RA, Allen MF. 2008. Habitat shifts of endangered species under altered climate conditions: importance of biotic interactions. Glob. Change Biol. 14:112501–15 [Google Scholar]
  125. Proulx SR. 1999. Matings systems and the evolution of niche breadth. Am. Nat. 154:189–98 [Google Scholar]
  126. Qiao H, Saupe EE, Soberón J, Peterson AT, Myers CE. 2016. Impacts of niche breadth and dispersal ability on macroevolutionary patterns. Am. Nat. 188:2149–62 [Google Scholar]
  127. Ravigné V, Dieckmann U, Olivieri I. 2009. Live where you thrive: Joint evolution of habitat choice and local adaptation facilitates specialization and promotes diversity. Am. Nat. 174:4E141–69 [Google Scholar]
  128. Remold S. 2012. Understanding specialism when the jack of all trades can be the master of all. Proc. R. Soc. B 279:17494861–69 [Google Scholar]
  129. Rey O, Danchin E, Mirouze M, Loot C, Blanchet S. 2016. Adaptation to global change: a transposable element-epigenetics perspective. Trends Ecol. Evol. 31:7514–26 [Google Scholar]
  130. Richardson JL, Urban MC, Bolnick DI, Skelly DK. 2014. Microgeographic adaptation and the spatial scale of evolution. Trends Ecol. Evol. 29:3165–76 [Google Scholar]
  131. Rieseberg L, Raymond O, Rosenthal D, Lai Z, Livingstone K. et al. 2003. Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:56371211–16 [Google Scholar]
  132. Rockman MV. 2012. The QTN program and the alleles that matter for evolution: All that's gold does not glitter. Evolution 66:11–17 [Google Scholar]
  133. Rolland J, Salamin N. 2016. Niche width impacts vertebrate diversification. Glob. Ecol. Biogeogr. 25:101252–63 [Google Scholar]
  134. Roughgarden J. 1972. Evolution of niche width. Am. Nat. 106:952683–718Provided a quantitative framework for thinking about the structure of the niche across different scales. [Google Scholar]
  135. Rueffler C, Van Dooren TJM, Metz JAJ. 2007. The interplay between behavior and morphology in the evolutionary dynamics of resource specialization. Am. Nat. 169:2E34–52 [Google Scholar]
  136. Sargent RD, Otto SP. 2006. The role of local species abundance in the evolution of pollinator attraction in flowering plants. Am. Nat. 167:167–80 [Google Scholar]
  137. Satterwhite RS, Cooper TF. 2015. Constraints on adaptation of Escherichia coli to mixed-resource environments increase over time. Evolution 69:82067–78 [Google Scholar]
  138. Schluter D. 2000. The Ecology of Adaptive Radiation Oxford, UK: Oxford Univ. Press [Google Scholar]
  139. Schluter D. 2009. Evidence for ecological speciation and its alternative. Science 323:5915737–41 [Google Scholar]
  140. Sexton JP, McIntyre PJ, Angert AL, Rice KJ. 2009. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40:415–36 [Google Scholar]
  141. Sheth SN, Angert AL. 2014. The evolution of environmental tolerance and range size: a comparison of geographically restricted and widespread Mimulus. Evolution 68:102917–31 [Google Scholar]
  142. Slatyer RA, Hirst M, Sexton JP. 2013. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16:81104–14 [Google Scholar]
  143. Smith TB, Skúlason S. 1996. Evolutionary significance of resource polymorphisms in fishes, amphibians, and birds. Annu. Rev. Ecol. Syst. 27:1111–33 [Google Scholar]
  144. Sultan S, Spencer H. 2002. Metapopulation structure favors plasticity over local adaptation. Am. Nat. 160:2271–83 [Google Scholar]
  145. Sunday JM, Bates AE, Dulvy NK. 2011. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278:17131823–30 [Google Scholar]
  146. Svanbäck R, Bolnick DI. 2005. Intraspecific competition affects the strength of individual specialization: an optimal diet theory method. Evol. Ecol. Res. 7:7993–1012 [Google Scholar]
  147. Svanbäck R, Bolnick DI. 2007. Intraspecific competition drives increased resource use diversity within a natural population. Proc. R. Soc. B 274:1611839–44 [Google Scholar]
  148. Svanbäck R, Persson L. 2004. Individual diet specialization, niche width and population dynamics: implications for trophic polymorphisms. J. Anim. Ecol. 73:5973–82 [Google Scholar]
  149. Svenning J-C, Skov F. 2004. Limited filling of the potential range in European tree species. Ecol. Lett. 7:7565–73 [Google Scholar]
  150. Taper ML, Chase TJ. 1985. Quantitative genetic models for the coevolution of character displacement. Ecology 66:2355–71 [Google Scholar]
  151. Ter Braak CJF. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:51167–79 [Google Scholar]
  152. Ter Braak CJF. 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Theory and Models in Vegetation Science: Proceedings of Symposium, Uppsala, July 8–13, 1985 IC Prentice, E van der Maarel 69–77 Dordrecht, Neth.: Springer [Google Scholar]
  153. Thuiller W, Brotons L, Araújo MB, Lavorel S. 2004. Effects of restricting environmental range of data to project current and future species distributions. Ecography 27:2165–72 [Google Scholar]
  154. Urbanski J, Mogi M, O'Donnell D, DeCotiis M, Toma T, Armbruster P. 2012. Rapid adaptive evolution of photoperiodic response during invasion and range expansion across a climatic gradient. Am. Nat. 179:4490–500 [Google Scholar]
  155. Van Valen L. 1965. Morphological variation and width of ecological niche. Am. Nat. 99:908377–90 [Google Scholar]
  156. Vrba ES. 1987. Ecology in relation to speciation rates: some case histories of Miocene-Recent mammal clades. Evol. Ecol. 1:4283–300 [Google Scholar]
  157. Wasof S, Lenoir J, Aarrestad PA, Alsos IG, Armbruster WS. et al. 2015. Disjunct populations of European vascular plant species keep the same climatic niches. Glob. Ecol. Biogeogr. 24:121401–12 [Google Scholar]
  158. West-Eberhard MJ. 2003. Developmental Plasticity and Evolution Oxford, UK: Oxford Univ. Press [Google Scholar]
  159. Whitlock MC. 1996. The red queen beats the jack-of-all-trades: the limitations on the evolution of phenotypic plasticity and niche breadth. Am. Nat. 148:S65–77One of the first models to specifically consider how niche breadth might evolve in the absence of trade-offs. [Google Scholar]
  160. Wiens JJ, Kozak KH, Silva N. 2013. Diversity and niche evolution along aridity gradients in North American lizards (Phrynosomatidae). Evolution 67:61715–28 [Google Scholar]
  161. Willett CS. 2010. Potential fitness trade-offs for thermal tolerance in the intertidal copepod Tigriopus californicus. Evolution 64:92521–34 [Google Scholar]
  162. Wilson DS, Yoshimura J. 1994. On the coexistence of specialists and generalists. Am. Nat. 144:4692–707 [Google Scholar]
  163. Yassin A, Debat V, Bastide H, Gidaszewski N, David JR, Pool JE. 2016. Recurrent specialization on a toxic fruit in an island Drosophila population. PNAS 113:174771–76 [Google Scholar]
  164. Yona AH, Frumkin I, Pilpel Y. 2015. A relay race on the evolutionary adaptation spectrum. Cell 163:3549–59 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110316-023003
Loading
/content/journals/10.1146/annurev-ecolsys-110316-023003
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error