1932

Abstract

Density-dependent selection, which promotes contrasting patterns of trait means at different population densities, has a long history in population genetics and ecology. The unifying principle from theory is that density-dependent selection operates on phenotypic traits whose values counter the effects of whatever ecological agent is limiting population growth, be it resource competition, predators, or pathogens. However, the complexity inherent in density dependence means that the same selective process can generate multiple outcomes, depending upon the details of how population density affects vital rates and the age or size structure of a population. Failure to appreciate the potential for multiple outcomes confounded many early studies of the process. Nonetheless, careful empirical work in laboratory studies, long-term field studies, and studies of sexual selection demonstrates the wide reach of density-dependent selection. The inconsistent outcomes observed in these studies call for renewed research into how the details of density dependence channel adaptive responses.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110321-055345
2023-11-02
2024-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/54/1/annurev-ecolsys-110321-055345.html?itemId=/content/journals/10.1146/annurev-ecolsys-110321-055345&mimeType=html&fmt=ahah

Literature Cited

  1. Anaya-Rojas JM, Bassar RD, Potter T, Blanchette A, Callahan S et al. 2021. The evolution of size-dependent competitive interactions promotes species coexistence. J. Anim. Ecol. 90:2704–17
    [Google Scholar]
  2. Anderson WW. 1971. Genetic equilibrium and population growth under density-regulated selection. Am. Nat. 105:489–98
    [Google Scholar]
  3. Antonovics J, Levin DA. 1980. The ecological and genetic consequences of density-dependent regulation in plants. Annu. Rev. Ecol. Syst. 11:411–52
    [Google Scholar]
  4. Arnqvist G. 1989. Sexual selection in a water strider: the function, mechanism of selection and heritability of a male grasping apparatus. Oikos 56:344–50
    [Google Scholar]
  5. Aronsen T, Berglund A, Mobley KB, Ratikainen II, Rosenqvist G. 2013. Sex ratio and density affect sexual selection in a sex-role reversed fish. Evolution 67:3243–57
    [Google Scholar]
  6. Bashey F. 2006. Cross-generational environmental effects and the evolution of offspring size in the Trinidadian guppy Poecilia reticulata. Evolution 60:348–61
    [Google Scholar]
  7. Bedhomme S, Agnew P, Sidobre C, Michalakis Y. 2003. Sex-specific reaction norms to intraspecific larval competition in the mosquito Aedes aegypti. J. Evol. Biol. 16:721–30
    [Google Scholar]
  8. Bell DA, Kovach RP, Robinson ZL, Whiteley AR, Reed TE. 2021. The ecological causes and consequences of hard and soft selection. Ecol. Lett. 24:1505–21
    [Google Scholar]
  9. Bennington CC, Stratton DA. 1998. Field tests of density- and frequency-dependent selection in Erigeron annuus (Compositae). Am. J. Bot. 85:540–45
    [Google Scholar]
  10. Bierbaum TJ, Mueller LD, Ayala FJ. 1989. Density-dependent evolution of life-history traits in Drosophila melanogaster. Evolution 43:382–92
    [Google Scholar]
  11. Bitume EV, Bonte D, Ronce O, Olivieri I, Nieberding CM. 2014. Dispersal distance is influenced by parental and grand-parental density. Proc. R. Soc. B 281:20141061
    [Google Scholar]
  12. Blanckenhorn WU. 1998. Adaptive phenotypic plasticity in growth, development, and body size in the yellow dung fly. Evolution 52:1394–407
    [Google Scholar]
  13. Bonenfant C, Gaillard JM, Coulson T, Festa-Bianchet M, Loison A et al. 2009. Empirical evidence of density-dependence in populations of large herbivores. Adv. Ecol. Res. 41:313–57
    [Google Scholar]
  14. Bouffet-Halle A, Meriguet J, Carmignac D, Agostini S, Millot A et al. 2021. Density-dependent natural selection mediates harvest-induced trait changes. Ecol. Lett. 24:648–57
    [Google Scholar]
  15. Boyce MS. 1984. Restitution of r-selection and K-selection as a model of density-dependent natural selection Annu. . Rev. Ecol. Syst. 15:427–47
    [Google Scholar]
  16. Bradshaw WE, Holzapfel CM. 1989. Life-historical consequences of density-dependent selection in the pitcher-plant mosquito, Wyeomyia smithii. Am. Nat. 133:869–87
    [Google Scholar]
  17. Bulmer MG. 1974. Density-dependent selection and character displacement. Am. Nat. 108:45–58
    [Google Scholar]
  18. Buzatto BA, Roberts JD, Simmons LW. 2015. Sperm competition and the evolution of precopulatory weapons: Increasing male density promotes sperm competition and reduces selection on arm strength in a chorusing frog. Evolution 69:2613–24
    [Google Scholar]
  19. Calsbeek R, Smith TB. 2007. Probing the adaptive landscape using experimental islands: density-dependent natural selection on lizard body size. Evolution 61:1052–61
    [Google Scholar]
  20. Charlesworth B. 1994. Evolution in Age-Structured Populations New York: Cambridge Univ. Press. , 2nd ed..
    [Google Scholar]
  21. Charlesworth B, Giesel JT. 1972. Selection in populations with overlapping generations. II. Relations between gene frequency and demographic variables. Am. Nat. 106:388–401
    [Google Scholar]
  22. Childs DZ, Rees M, Rose KE, Grubb PJ, Ellner SP. 2004. Evolution of size-dependent flowering in a variable environment: construction and analysis of a stochastic integral projection model. Proc. R. Soc. B 271:425–34
    [Google Scholar]
  23. Chitty D. 1967. The natural selection of self-regulatory behavior in animal populations. Proc. Ecol. Soc. Aust. 2:51–78
    [Google Scholar]
  24. Clark AG, Feldman MW. 1981. Density-dependent fertility selection in experimental populations of Drosophila melanogaster. Genetics 98:849–69
    [Google Scholar]
  25. Clarke B. 1973. Mutation and population size. Heredity 31:367–79
    [Google Scholar]
  26. Conner J. 1989. Density-dependent sexual selection in the fungus beetle, Bolitotherus cornutus. Evolution 43:1378–86
    [Google Scholar]
  27. Coulson T, Catchpole EA, Albon SD, Morgan BJT, Pemberton JM et al. 2001. Age, sex, density, winter weather, and population crashes in Soay sheep. Science 292:1528–31
    [Google Scholar]
  28. Coulson T, Felmy A, Potter T, Passione G, Montgomery RA et al. 2022. Density-dependent environments can select for extremes of body size. Peer Commun. Evol. Biol. 2:e49
    [Google Scholar]
  29. Coulson T, Tuljapurkar S, Childs DZ. 2010. Using evolutionary demography to link life history theory, quantitative genetics and population ecology. J. Anim. Ecol. 79:1226–40
    [Google Scholar]
  30. Coulson TN, Albon SD, Pemberton JM, Slate J, Guinness FE, Clutton-Brock TH. 1998. Genotype by environment interactions in winter survival in red deer. J. Anim. Ecol. 67:434–45
    [Google Scholar]
  31. de Roos AM. 2021. Dynamic population stage structure due to juvenile–adult asymmetry stabilizes complex ecological communities. PNAS 118:e2023709118
    [Google Scholar]
  32. Donohue K, Messiqua D, Pyle EH, Heschel MS, Schmitt J. 2000. Evidence of adaptive divergence in plasticity: density- and site-dependent selection on shade-avoidance responses in Impatiens capensis. Evolution 54:1956–68
    [Google Scholar]
  33. Donohue K, Polisetty CR, Wender NJ. 2005. Genetic basis and consequences of niche construction: plasticity-induced genetic constraints on the evolution of seed dispersal in Arabidopsis thaliana. Am. Nat. 165:537–50
    [Google Scholar]
  34. Donohue K, Pyle EH, Messiqua D, Heschel MS, Schmitt J. 2001. Adaptive divergence in plasticity in natural populations of Impatiens capensis and its consequences for performance in novel habitats. Evolution 55:692–702
    [Google Scholar]
  35. Donohue K, Schmitt J. 1999. The genetic architecture of plasticity to density in Impatiens capensis. Evolution 53:1377–86
    [Google Scholar]
  36. Dudley SA, Schmitt J. 1996. Testing the adaptive plasticity hypothesis: density-dependent selection on manipulated stem length in Impatiens capensis. Am. Nat. 147:445–65
    [Google Scholar]
  37. Einum S, Robertsen G, Fleming IA. 2008. Adaptive landscapes and density-dependent selection in declining salmonid populations: going beyond numerical responses to human disturbance. Evol. Appl. 1:239–51
    [Google Scholar]
  38. Engen S, Wright J, Araya-Ajoy YG, Saether BE. 2020. Phenotypic evolution in stochastic environments: the contribution of frequency- and density-dependent selection. Evolution 74:1923–41
    [Google Scholar]
  39. Engqvist L. 2008. Genetic variance and genotype reaction norms in response to larval food manipulation for a trait important in scorpionfly sperm competition. Funct. Ecol. 22:127–33
    [Google Scholar]
  40. Farkas TE, Montejo-Kovacevich G. 2014. Density-dependent selection closes an eco-evolutionary feedback loop in the stick insect Timema cristinae. Biol. Lett. 10:20140896
    [Google Scholar]
  41. Fowler-Finn KD, Cruz DC, Rodriguez RL. 2017. Local population density and group composition influence the signal-preference relationship in Enchenopa treehoppers (Hemiptera: Membracidae). J. Evol. Biol. 30:13–25
    [Google Scholar]
  42. Gage MJG. 1995. Continuous variation in reproductive strategy as an adaptive response to population density in the moth Plodia interpunctella. Proc. R. Soc. B 261:25–30
    [Google Scholar]
  43. Grime JP. 1977. Evidence for existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111:1169–94
    [Google Scholar]
  44. Han CS, Brooks RC. 2015. The interaction between genotype and juvenile and adult density environment in shaping multidimensional reaction norms of behaviour. Funct. Ecol. 29:78–87
    [Google Scholar]
  45. Harrison JG, Shapiro AM, Espeset AE, Nice CC, Jahner JP, Forister ML. 2015. Species with more volatile population dynamics are differentially impacted by weather. Biol. Lett. 11:20140792
    [Google Scholar]
  46. Hayward AD, Pemberton JM, Berenos C, Wilson AJ, Pilkington JG, Kruuk LEB. 2018. Evidence for selection-by-environment but not genotype-by-environment interactions for fitness-related traits in a wild mammal population. Genetics 208:349–64
    [Google Scholar]
  47. Hoi H, Tost H, Griggio M. 2011. The effect of breeding density and male quality on paternity-assurance behaviours in the house sparrow, Passer domesticus. J. Ethol. 29:31–38
    [Google Scholar]
  48. Holland B, Rice WR. 1999. Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. PNAS 96:5083–88
    [Google Scholar]
  49. Holt RD, Bonsall MB. 2017. Apparent competition. Annu. Rev. Ecol. Evol. Syst. 48:447–71
    [Google Scholar]
  50. Holwell GI, Allen PJD, Goudie F, Duckett PE, Painting CJ. 2016. Male density influences mate searching speed and copulation duration in millipedes (Polydesmida: Gigantowales chisholmi). Behav. Ecol. Sociobiol. 70:1381–88
    [Google Scholar]
  51. Horth L, Travis J. 2002. Frequency-dependent numerical dynamics in mosquitofish. Proc. R. Soc. B 269:2239–47
    [Google Scholar]
  52. Horvath B, Kalinka AT. 2016. Effects of larval crowding on quantitative variation for development time and viability in Drosophila melanogaster. Ecol. Evol. 6:8460–73
    [Google Scholar]
  53. Hughes KA, Rodd FH, Reznick DN. 2005. Genetic and environmental effects on secondary sex traits in guppies (Poecilia reticulata). J. Evol. Biol. 18:35–45
    [Google Scholar]
  54. Kentie R, Clegg SM, Tuljapurkar S, Gaillard JM, Coulson T. 2020. Life-history strategy varies with the strength of competition in a food-limited ungulate population. Ecol. Lett. 23:811–20
    [Google Scholar]
  55. Kokko H, Brooks R. 2003. Sexy to die for? Sexual selection and the risk of extinction. Ann. Zool. Fenn. 40:207–19
    [Google Scholar]
  56. Kokko H, Rankin DJ. 2006. Lonely hearts or sex in the city? Density-dependent effects in mating systems. Philos. Trans. R. Soc. B 361:319–34
    [Google Scholar]
  57. Kustra MC, Kahrl AF, Reedy AM, Warner DA, Cox RM. 2019. Sperm morphology and count vary with fine-scale changes in local density in a wild lizard population. Oecologia 191:555–64
    [Google Scholar]
  58. Kvalnes T, Saether BE, Engen S, Roulin A. 2022. Density-dependent selection and the maintenance of colour polymorphism in barn owls. Proc. R. Soc. B 289:20220296
    [Google Scholar]
  59. Lande R, Engen S, Saether BE. 2009. An evolutionary maximum principle for density-dependent population dynamics in a fluctuating environment. Philos. Trans. R. Soc. B 364:1511–18
    [Google Scholar]
  60. Le Galliard JF, Paquet M, Mugabo M 2015. An experimental test of density-dependent selection on temperament traits of activity, boldness and sociability. J. Evol. Biol. 28:1144–55
    [Google Scholar]
  61. Leips J, Richardson JML, Rodd FH, Travis J. 2009. Adaptive maternal adjustments of offspring size in response to conspecific density in two populations of the least killifish, Heterandria formosa. Evolution 63:1341–47
    [Google Scholar]
  62. Leips J, Travis J, Rodd FH. 2000. Genetic influences on experimental population dynamics of the least killifish. Ecol. Monogr. 70:289–309
    [Google Scholar]
  63. Levitan DR. 2002. Density-dependent selection on gamete traits in three congeneric sea urchins. Ecology 83:464–79
    [Google Scholar]
  64. Lewis SM, Tigreros N, Fedina T, Ming QL. 2012. Genetic and nutritional effects on male traits and reproductive performance in Tribolium flour beetles. J. Evol. Biol. 25:438–51
    [Google Scholar]
  65. Lewontin RC. 1955. The effects of population density and composition on viability in Drosophila melanogaster. Evolution 9:27–41
    [Google Scholar]
  66. Lipkowski K, Plath M, Klaus S, Sommer-Trembo C 2019. Population density affects male mate choosiness and morphology in the mate-guarding amphipod Gammarus roeselii (Crustacea: Amphipoda). Biol. J. Linn. Soc. 126:899–911
    [Google Scholar]
  67. Luckinbill LS. 1978. r and K selection in experimental populations of Escherichia coli. Science 202:1201–3
    [Google Scholar]
  68. Luckinbill LS. 1979. Selection and the r/K continuum in experimental populations of protozoa. Am. Nat. 113:427–37
    [Google Scholar]
  69. Luckinbill LS. 1984. An experimental analysis of a life history theory. Ecology 65:1170–84
    [Google Scholar]
  70. Lupold S, de Boer RA, Evans JP, Tomkins JL, Fitzpatrick JL. 2020. How sperm competition shapes the evolution of testes and sperm: a meta-analysis. Philos. Trans. R. Soc. B 375:20200064
    [Google Scholar]
  71. MacArthur R. 1970. Species packing and competitive equilibrium for many species. Theor. Popul. Biol. 1:1–11
    [Google Scholar]
  72. MacArthur RH. 1962. Some generalized theorems of natural selection. PNAS 48:1893–97
    [Google Scholar]
  73. MacArthur RH, Wilson EO. 1967. The Theory of Island Biogeography Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  74. Mallet J. 2012. The struggle for existence: how the notion of carrying capacity, K, obscures the links between demography, Darwinian evolution, and speciation. Evol. Ecol. Res. 14:627–65
    [Google Scholar]
  75. Malthus TR. 1798 (1986). An essay on the principle of population. The Works of Thomas Robert Malthus EA Wrigley, D Souden 1–139. London: Pickering & Chatto
    [Google Scholar]
  76. Matthysen E. 2005. Density-dependent dispersal in birds and mammals. Ecography 28:403–16
    [Google Scholar]
  77. Mazer SJ, Schick CT. 1991. Constancy of population parameters for life-history and floral traits in Raphanus sativus L.1. Norms of reaction and the nature of genotype by environment interactions. Heredity 67:143–56
    [Google Scholar]
  78. McCullough EL, Buzatto BA, Simmons LW. 2018. Population density mediates the interaction between pre- and postmating sexual selection. Evolution 72:893–905
    [Google Scholar]
  79. McLain DK. 1992. Population density and the intensity of sexual selection on body length in spatially or temporally restricted natural populations of a seed bug. Behav. Ecol. Sociobiol. 30:347–56
    [Google Scholar]
  80. McNutt DW, Halpern SL, Barrows K, Underwood N. 2012. Intraspecific competition facilitates the evolution of tolerance to insect damage in the perennial plant Solanum carolinense. Oecologia 170:1033–44
    [Google Scholar]
  81. Metz JAJ, Geritz SAH, Meszena G, Jacobs FJA, van Heerwaarden JS. 1995. Adaptive Dynamics: A Geometrical Study of the Consequences of Nearly Faithful Reproduction Laxenburg, Austria: Int. Inst. Appl. Syst. Anal.
    [Google Scholar]
  82. Miller RE, Fowler NL. 1993. Variation in reaction norms among populations of the grass Bouteloua rigidiseta. Evolution 47:1446–55
    [Google Scholar]
  83. Morales-Mata JI, Potti J, Camacho C, Martinez-Padilla J, Canal D. 2022. Phenotypic selection on an ornamental trait is not modulated by breeding density in a pied flycatcher population. J. Evol. Biol. 35:610–20
    [Google Scholar]
  84. Mueller LD. 1988. Density-dependent population growth and natural selection in food-limited environments: the Drosophila model. Am. Nat. 132:786–809
    [Google Scholar]
  85. Mueller LD. 1997. Theoretical and empirical examination of density-dependent selection. Annu. Rev. Ecol. Syst. 28:269–88
    [Google Scholar]
  86. Mueller LD, Rauser CL, Rose MR. 2005. Population dynamics, life history, and demography: lessons from Drosophila. Adv. Ecol. Res. 37:77–99
    [Google Scholar]
  87. Nicolaus M, Tinbergen JM, Ubels R, Both C, Dingemanse NJ. 2016. Density fluctuations represent a key process maintaining personality variation in a wild passerine bird. Ecol. Lett. 19:478–86
    [Google Scholar]
  88. Palacio-Lopez K, King CM, Bloomberg J, Hovick SM. 2020. Natural selection on traits and trait plasticity in Arabidopsis thaliana varies across competitive environments. Sci. Rep. 10:21632
    [Google Scholar]
  89. Pennekamp F, Mitchell KA, Chaine A, Schtickzelle N. 2014. Dispersal propensity in Tetrahymena thermophila ciliates—a reaction norm perspective. Evolution 68:2319–30
    [Google Scholar]
  90. Perez A, Garcia C. 2002. Evolutionary responses of Drosophila melanogaster to selection at different larval densities: changes in genetic variation, specialization and phenotypic plasticity. J. Evol. Biol. 15:524–36
    [Google Scholar]
  91. Pianka ER. 1970. On r- and K-selection. Am. Nat. 104:592–97
    [Google Scholar]
  92. Potter T, King L, Travis J, Bassar RD. 2019. Competitive asymmetry and local adaptation in Trinidadian guppies. J. Anim. Ecol. 88:330–42
    [Google Scholar]
  93. Prati D, Schmid B. 2000. Genetic differentiation of life-history traits within populations of the clonal plant Ranunculus reptans. Oikos 90:442–56
    [Google Scholar]
  94. Radwan J. 1993. The adaptive significance of male polymorphism in the acarid mite Caloglyphus berlesei. Behav. Ecol. Sociobiol. 33:201–8
    [Google Scholar]
  95. Reznick DN, Bassar RD, Handelsman CA, Ghalambor CK, Arendt J et al. 2019. Eco-evolutionary feedbacks predict the time course of rapid life-history evolution. Am. Nat. 194:671–92
    [Google Scholar]
  96. Rittschof CC. 2010. Male density affects large-male advantage in the golden silk spider, Nephila clavipes. Behav. Chem. Ecol. 21:979–85
    [Google Scholar]
  97. Roughgarden J. 1971. Density-dependent natural selection. Ecology 52:453–68
    [Google Scholar]
  98. Saether BE, Visser ME, Grotan V, Engen S. 2016. Evidence for r- and K-selection in a wild bird population: a reciprocal link between ecology and evolution. Proc. R. Soc. B 283:20152411
    [Google Scholar]
  99. Sato Y, Sabelis MW, Egas M. 2014. Alternative male mating behaviour in the two-spotted spider mite: dependence on age and density. Anim. Behav. 92:125–31
    [Google Scholar]
  100. Schindler S, Gaillard JM, Gruning A, Neuhaus P, Traill LWet al. 2015. Sex-specific demography and generalization of the Trivers–Willard theory. Nature 526:249–52
    [Google Scholar]
  101. Schrader M, Jarrett BJM, Rebar D, Kilner RM. 2017. Adaptation to a novel family environment involves both apparent and cryptic phenotypic changes. Proc. R. Soc. B 284:20171295
    [Google Scholar]
  102. Semlitsch RD. 1993. Adaptive genetic variation in growth and development of tadpoles of the hybridogenetic Rana esculenta complex. Evolution 47:1805–18
    [Google Scholar]
  103. Sharp NP, Agrawal AF. 2008. Mating density and the strength of sexual selection against deleterious alleles in Drosophila melanogaster. Evolution 62:857–67
    [Google Scholar]
  104. Shaw RG. 1986. Response to density in a wild population of the perennial herb Salvia lyrata: variation among families. Evolution 40:492–505
    [Google Scholar]
  105. Shenoi VN, Ali SZ, Prasad NG. 2016. Evolution of increased adult longevity in Drosophila melanogaster populations selected for adaptation to larval crowding. J. Evol. Biol. 29:407–17
    [Google Scholar]
  106. Shuster SM. 1989. Male alternative reproductive strategies in a marine isopod crustacean (Paracerceis sculpta): the use of genetic markers to measure differences in fertilization success among α-males, β-males and γ-males. Evolution 43:1683–98
    [Google Scholar]
  107. Sinervo B, Svensson E, Comendant T. 2000. Density cycles and an offspring quantity and quality game driven by natural selection. Nature 406:985–88
    [Google Scholar]
  108. Soderquist L, Broberg A, Rosenberg V, Sletvold N. 2020. Predicting heterosis and inbreeding depression from population size and density to inform management efforts. J. Appl. Ecol. 57:1459–68
    [Google Scholar]
  109. Sugiyama S, Bazzaz FA. 1997. Plasticity of seed output in response to soil nutrients and density in Abutilon theophrasti: implications for maintenance of genetic variation. Oecologia 112:35–41
    [Google Scholar]
  110. Svensson E, Sinervo B. 2000. Experimental excursions on adaptive landscapes: density-dependent selection on egg size. Evolution 54:1396–403
    [Google Scholar]
  111. Thomas SC, Bazzaz FA. 1993. The genetic component in plant size hierarchies: norms of reaction to density in a Polygonum species. Ecol. Monogr. 63:231–49
    [Google Scholar]
  112. Tilman D. 1982. Resource Competition and Community Structure Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  113. Tomkins JL, Brown GS. 2004. Population density drives the local evolution of a threshold dimorphism. Nature 431:1099–103
    [Google Scholar]
  114. Travis J. 1983. Variation in development patterns of larval anurans in temporary ponds. I. Persistent variation within a Hyla gratiosa population. Evolution 37:496–512
    [Google Scholar]
  115. Tucic N, Milosevic M, Gliksman I, Milanovic D, Aleksic I. 1991. The effects of larval density on genetic variation and covariation among life-history traits in the bean weevil (Acanthoscelides obtectus Say). Funct. Ecol. 5:525–34
    [Google Scholar]
  116. Tuljapurkar S. 1990. Population Dynamics in Variable Environments Berlin: Springer Verlag
    [Google Scholar]
  117. Tuljapurkar SD, Orzack SH. 1980. Population dynamics in variable environments. I. Long-run growth rates and extinction. Theor. Popul. Biol. 18:314–42
    [Google Scholar]
  118. Turchin P. 2003. Complex Population Dynamics Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  119. Van Kleunen M, Fischer M. 2001. Adaptive evolution of plastic foraging responses in a clonal plant. Ecology 82:3309–19
    [Google Scholar]
  120. Venkitachalam S, Das S, Deep A, Joshi A. 2022. Density-dependent selection in Drosophila: evolution of egg size and hatching time. J. Genet. 101:13
    [Google Scholar]
  121. Verhulst P-F. 1838. Notice sur la loi que la population poursuit dans son accroissement. Corresp. Math. Phys. 10:113–21
    [Google Scholar]
  122. Via S. 1991. Variation between strains of the flour beetle Tribolium castaneum in relative performance on five flours. Entomol. Exp. Appl. 60:173–82
    [Google Scholar]
  123. Wacker S, Mobley K, Forsgren E, Myhre LC, de Jong K, Amundsen T. 2013. Operational sex ratio but not density affects sexual selection in a fish. Evolution 67:1937–49
    [Google Scholar]
  124. Wallace B. 1975. Hard and soft selection revisited. Evolution 29:465–73
    [Google Scholar]
  125. Walsh MR, Reznick DN. 2008. Interactions between the direct and indirect effects of predators determine life history evolution in a killifish. PNAS 105:594–99
    [Google Scholar]
  126. Webber QMR, Vander Wal E. 2018. An evolutionary framework outlining the integration of individual social and spatial ecology. J. Anim. Ecol. 87:113–27
    [Google Scholar]
  127. Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK et al. 2006. A framework for community and ecosystem genetics: from genes to ecosystems. Nat. Rev. Genet. 7:510–23
    [Google Scholar]
  128. Whitlock MC. 2000. Fixation of new alleles and the extinction of small populations: drift load, beneficial alleles, and sexual selection. Evolution 54:1855–61
    [Google Scholar]
  129. Wigby S, Chapman T. 2005. Sex peptide causes mating costs in female Drosophila melanogaster. Curr. Biol. 15:316–21
    [Google Scholar]
  130. Zhou YH, Kuster HK, Pettis JS, Danka RG, Gleason JM, Greenfield MD. 2008. Reaction norm variants for male calling song in populations of Achroia grisella (Lepidoptera: Pyralidae): toward a resolution of the lek paradox. Evolution 62:1317–34
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110321-055345
Loading
/content/journals/10.1146/annurev-ecolsys-110321-055345
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error