1932

Abstract

Terrestrial ecosystems encompass a vast and vital component of Earth's biodiversity and ecosystem services. The effect of increased anthropogenic dominance on terrestrial communities defines major challenges for ecosystem conservation, including habitat destruction and fragmentation, climate change, species invasions and extinctions, and disease spread. Here, we integrate fossil, historical, and present-day organismal and ecological data to investigate how conservation paleobiology provides deep-time perspectives on terrestrial organisms, populations, communities, and ecosystems impacted by anthropogenic processes. We relate research tools to conservation outputs and highlight gaps that currently limit conservation paleobiology from reaching its full impact on conservation practice and management. In doing so, we also highlight how the colonial legacies of conservation biology and paleobiology confound our understanding of present-day biodiversity, ecosystem processes, and conservation outlooks, and we make recommendations for more inclusive and ethical practices moving forward.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110421-101343
2023-11-02
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/54/1/annurev-ecolsys-110421-101343.html?itemId=/content/journals/10.1146/annurev-ecolsys-110421-101343&mimeType=html&fmt=ahah

Literature Cited

  1. Allentoft ME, Heller R, Oskam CL, Lorenzen ED, Hale ML et al. 2014. Extinct New Zealand megafauna were not in decline before human colonization. PNAS 111:134922–27
    [Google Scholar]
  2. Baca M, Popović D, Baca K, Lemanik A, Doan K et al. 2020. Diverse responses of common vole (Microtus arvalis) populations to Late Glacial and Early Holocene climate changes – evidence from ancient DNA. Quat. Sci. Rev. 233:106239
    [Google Scholar]
  3. Badgley C, Smiley TM, Terry R, Davis EB, DeSantis LRG et al. 2017. Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends Ecol. Evol. 32:3211–26
    [Google Scholar]
  4. Barnosky A, Hadly E, Gonzalez P, Head J, Polly P et al. 2017. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355:6325eaah4787
    [Google Scholar]
  5. Baumann C, Bocherens H, Drucker DG, Conard NJ. 2020. Fox dietary ecology as a tracer of human impact on Pleistocene ecosystems. PLOS ONE 15:7e0235692
    [Google Scholar]
  6. Beaulieu JM, O'Meara BC 2023. Fossils do not substantially improve, and may even harm, estimates of diversification rate heterogeneity. Syst. Biol. 72:150–61
    [Google Scholar]
  7. Bell CJ, Mead JI. 2014. Not enough skeletons in the closet: collections-based anatomical research in an age of conservation conscience. Anat. Rec. 297:3344–48
    [Google Scholar]
  8. Bochaton C, Bailon S, Herrel A, Grouard S, Ineich I et al. 2017. Human impacts reduce morphological diversity in an insular species of lizard. Proc. R. Soc. B 284: 1857.20170921
    [Google Scholar]
  9. Bourgon N, Jaouen K, Bacon A-M, Jochum KP, Dufour E et al. 2020. Zinc isotopes in Late Pleistocene fossil teeth from a Southeast Asian cave setting preserve paleodietary information. PNAS 117:94675–81
    [Google Scholar]
  10. Buckley M. 2018. Zooarchaeology by mass spectrometry (ZooMS) collagen fingerprinting for the species identification of archaeological bone fragments. Zooarchaeology in Practice: Case Studies in Methodology and Interpretation in Archaeofaunal Analysis, ed. CM Giovas, MJ LeFebvre 227–47. Cham, Switz: Springer Int. Publ.
    [Google Scholar]
  11. Buckley M, Harvey VL, Orihuela J, Mychajliw AM, Keating JN et al. 2020. Collagen sequence analysis reveals evolutionary history of extinct West Indies Nesophontes (island-shrews). Mol. Biol. Evol. 37:102931–43
    [Google Scholar]
  12. Burney DA, James HF, Burney LP, Olson SL, Kikuchi W et al. 2001. Fossil evidence for a diverse biota from Kaua‘i and its transformation since human arrival. Ecol. Monogr. 71:4615–41
    [Google Scholar]
  13. Butler MA, King AA. 2004. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am. Nat. 164:6683–95
    [Google Scholar]
  14. Cadotte MW, Carscadden K, Mirotchnick N. 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48:51079–87
    [Google Scholar]
  15. Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Emonds ORP et al. 2005. Multiple causes of high extinction risk in large mammal species. Science 309:57381239–41
    [Google Scholar]
  16. Clarke CL, Edwards ME, Gielly L, Ehrich D, Hughes PDM et al. 2019. Persistence of arctic-alpine flora during 24,000 years of environmental change in the Polar Urals. Sci. Rep. 9:119613
    [Google Scholar]
  17. Clementz MT. 2012. New insight from old bones: stable isotope analysis of fossil mammals. J. Mammal. 93:2368–80
    [Google Scholar]
  18. Condamine FL, Nagalingum NS, Marshall CR, Morlon H. 2015. Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating. BMC Evol. Biol. 15:165
    [Google Scholar]
  19. Condamine FL, Rolland J, Morlon H. 2013. Macroevolutionary perspectives to environmental change. Ecol. Lett. 16:72–85
    [Google Scholar]
  20. Cooke R, Mancini F, Boyd RJ, Evans KL, Shaw A et al. 2023. Protected areas support more species than unprotected areas in Great Britain, but lose them equally rapidly. Biol. Conserv. 278:109884
    [Google Scholar]
  21. Cooke SB, Dávalos LM, Mychajliw AM, Turvey ST, Upham NS. 2017. Anthropogenic extinction dominates Holocene declines of West Indian mammals. Annu. Rev. Ecol. Evol. Syst. 48:301–27
    [Google Scholar]
  22. Cordova CE, Johnson WC. 2019. An 18 ka to present pollen- and phytolith-based vegetation reconstruction from Hall's Cave, south-central Texas, USA. Quat. Res. 92:2497–518
    [Google Scholar]
  23. Crisp MD, Cook LG. 2011. Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. New Phytol 192:4997–1009
    [Google Scholar]
  24. Crockford SJ. 2022. Polar bear fossil and archaeological records from the Pleistocene and Holocene in relation to sea ice extent and open water polynyas. Open Quat 8:7
    [Google Scholar]
  25. Crowley BE, Godfrey LR. 2019. Strontium isotopes support small home ranges for extinct lemurs. Front. Ecol. Evol. 7:490
    [Google Scholar]
  26. Davis EB, McGuire JL, Orcutt JD. 2014. Ecological niche models of mammalian glacial refugia show consistent bias. Ecography 37:111133–38
    [Google Scholar]
  27. Day EH, Hua X, Bromham L. 2016. Is specialization an evolutionary dead end? Testing for differences in speciation, extinction and trait transition rates across diverse phylogenies of specialists and generalists. J. Evol. Biol. 29:61257–67
    [Google Scholar]
  28. Dietl GP, Flessa KW. 2011. Conservation paleobiology: putting the dead to work. Trends Ecol. Evol. 26:130–37
    [Google Scholar]
  29. Dillon EM, Pier JQ, Smith JA, Raja NB, Dimitrijević D et al. 2022. What is conservation paleobiology? Tracking 20 years of research and development. Front. Ecol. Evol. 10:1031483
    [Google Scholar]
  30. Dinerstein E, Olson D, Joshi A, Vynne C, Burgess ND et al. 2017. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67:6534–45
    [Google Scholar]
  31. Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJ, Collen B 2014. Defaunation in the Anthropocene. Science 345:6195401–6
    [Google Scholar]
  32. Domínguez L, Luoma C. 2020. Decolonising conservation policy: how colonial land and conservation ideologies persist and perpetuate indigenous injustices at the expense of the environment. Land 9:365
    [Google Scholar]
  33. Eichler L, Baumeister D. 2021. Settler colonialism and the US conservation movement: contesting histories, indigenizing futures. Ethics Policy Environ 24:3209–34
    [Google Scholar]
  34. Ellis EC, Ramankutty N. 2008. Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ. 6:8439–47
    [Google Scholar]
  35. Eronen JT, Polly PD, Fred M, Damuth J, Frank DC et al. 2010. Ecometrics: the traits that bind the past and present together. Integr. Zool. 5:288–101
    [Google Scholar]
  36. Fannin LD, Yeakel JD, Venkataraman VV, Seyoum C, Geraads D et al. 2021. Carbon and strontium isotope ratios shed new light on the paleobiology and collapse of Theropithecus, a primate experiment in graminivory. Palaeogeogr. Palaeoclimatol. Palaeoecol. 572:110393
    [Google Scholar]
  37. Fox K, Hawks J. 2019. Use ancient remains more wisely. Nature 572:7771581–83
    [Google Scholar]
  38. Fraser D, Villaseñor A, Tóth AB, Balk MA, Eronen JT et al. 2022. Late quaternary biotic homogenization of North American mammalian faunas. Nat. Commun. 13:13940
    [Google Scholar]
  39. Fricke EC, Hsieh C, Middleton O, Gorczynski D, Cappello CD et al. 2022. Collapse of terrestrial mammal food webs since the Late Pleistocene. Science 377:66091008–11
    [Google Scholar]
  40. Galetti M, Guevara R, Côrtes MC, Fadini R, Von Matter S et al. 2013. Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:61361086–90
    [Google Scholar]
  41. Garcia-Porta J, Irisarri I, Kirchner M, Rodríguez A, Kirchhof S et al. 2019. Environmental temperatures shape thermal physiology as well as diversification and genome-wide substitution rates in lizards. Nat. Commun. 10:14077
    [Google Scholar]
  42. García-Rodríguez A, Martínez PA, Oliveira BF, Velasco JA, Pyron RA, Costa GC. 2021. Amphibian speciation rates support a general role of mountains as biodiversity pumps. Am. Nat. 198:3E68–79
    [Google Scholar]
  43. Gibson LM, Mychajliw AM, Leon Y, Rupp E, Hadly EA. 2019. Using the past to contextualize anthropogenic impacts on the present and future distribution of an endemic Caribbean mammal. Conserv. Biol. 33:3500–10
    [Google Scholar]
  44. Gill JL, Williams JW, Jackson ST, Lininger KB, Robinson GS. 2009. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326:59561100–3
    [Google Scholar]
  45. Giovas CM, LeFebvre MJ, Fitzpatrick SM. 2012. New records for prehistoric introduction of Neotropical mammals to the West Indies: evidence from Carriacou, Lesser Antilles. J. Biogeogr. 39:3476–87
    [Google Scholar]
  46. Graham RW, Lundelius EL, Graham MA, Schroeder EK, Toomey RS et al. 1996. Spatial response of mammals to late quaternary environmental fluctuations. Science 272:52681601–6
    [Google Scholar]
  47. Grosberg RK, Vermeij GJ, Wainwright PC. 2012. Biodiversity in water and on land. Curr. Biol. 22:21R900–3
    [Google Scholar]
  48. Gutiérrez-García TA, Vázquez-Domínguez E, Arroyo-Cabrales J, Kuch M, Enk J et al. 2014. Ancient DNA and the tropics: a rodent's tale. Biol. Lett. 10:620140224
    [Google Scholar]
  49. Hansen TF. 1997. Stabilizing selection and the comparative analysis of adaptation. Evolution 51:51341–51
    [Google Scholar]
  50. Hendlin YH. 2014. From terra nullius to terra communis: reconsidering wild land in an era of conservation and indigenous rights. Environ. Philos. 11:2141–74
    [Google Scholar]
  51. Hulme-Beaman A, Dobney K, Cucchi T, Searle JB. 2016. An ecological and evolutionary framework for commensalism in anthropogenic environments. Trends Ecol. Evol. 31:8633–45
    [Google Scholar]
  52. Hunt G, Slater G. 2016. Integrating paleontological and phylogenetic approaches to macroevolution. Annu. Rev. Ecol. Evol. Syst. 47:189–213
    [Google Scholar]
  53. IUCN (Int. Union. Conserv. Nat.) 2022. The IUCN Red List of Threatened Species. Version 2022–2 Int. Union Conserv. Nat. https://www.iucnredlist.org
    [Google Scholar]
  54. Jiang H, Wu W, Wang J, Yang W, Gao Y et al. 2021. Mapping global value of terrestrial ecosystem services by countries. Ecosyst. Serv. 52:101361
    [Google Scholar]
  55. Jones CG, Lawton JH, Shachak M. 1994. Organisms as ecosystem engineers. Oikos 69:373–86
    [Google Scholar]
  56. Kearns AM, Joseph L, White LC, Austin JJ, Baker C et al. 2016. Norfolk Island Robins are a distinct endangered species: Ancient DNA unlocks surprising relationships and phenotypic discordance within the Australo-Pacific Robins. Conserv. Genet. 17:2321–35
    [Google Scholar]
  57. Keenan TF, Williams CA. 2018. The terrestrial carbon sink. Annu. Rev. Environ. Resour. 43:219–43
    [Google Scholar]
  58. Kemp ME, Mychajliw AM, Wadman J, Goldberg A. 2020. 7000 years of turnover: historical contingency and human niche construction shape the Caribbean's Anthropocene biota. Proc. R. Soc. B 2871927:20200447
    [Google Scholar]
  59. Kemp ME. 2023. Defaunation and species introductions alter long-term functional trait diversity in insular reptiles. PNAS 120:7e2201944119
    [Google Scholar]
  60. Klymiuk AA. 2021. Addressing unconscious coloniality and decolonizing practice in geoscience. Nat. Rev. Earth Environ. 2:11745–46
    [Google Scholar]
  61. Koch PL 2007. Isotopic study of the biology of modern and fossil vertebrates. Stable Isotopes in Ecology and Environmental Science R Michener, K Lajtha 99–154. Oxford, UK: Blackwell Publ. Ltd.
    [Google Scholar]
  62. Lamsdell JC, Congreve CR, Hopkins MJ, Krug AZ, Patzkowsky ME. 2017. Phylogenetic paleoecology: tree-thinking and ecology in deep time. Trends Ecol. Evol. 32:6452–63
    [Google Scholar]
  63. Larsson P, von Seth J, Hagen IJ, Götherström A, Androsov S et al. 2019. Consequences of past climate change and recent human persecution on mitogenomic diversity in the arctic fox. Philos. Trans. R. Soc. B 374:178820190212
    [Google Scholar]
  64. Lawing AM. 2021. The geography of phylogenetic paleoecology: integrating data and methods to better understand biotic response to climate change. Paleobiology 47:2178–97
    [Google Scholar]
  65. Lawing AM, Eronen JT, Blois JL, Graham CH, Polly PD. 2016. Community functional trait composition at the continental scale: the effects of non-ecological processes. Ecography 40:5651–63
    [Google Scholar]
  66. Lawing AM, Head JJ, Polly PD. 2012. The ecology of morphology: the ecometrics of locomotion and macroenvironment in North American snakes. Paleontology in Ecology and Conservation J Louys 117–46. Berlin, Heidelberg: Springer
    [Google Scholar]
  67. Lawing AM, Polly PD. 2011. Pleistocene climate, phylogeny, and climate envelope models: an integrative approach to better understand species’ response to climate change. PLOS ONE 6:12e28554
    [Google Scholar]
  68. Lindqvist C, Rajora OP, eds. 2019. Paleogenomics: Genome-Scale Analysis of Ancient DNA Cham, Switz.: Springer Int. Publ.
  69. Liow LH, Uyeda J, Hunt G. 2022. Cross-disciplinary information for understanding macroevolution. Trends Ecol. Evol. 38:3250–60
    [Google Scholar]
  70. Louca S, Pennell MW. 2020. Extant timetrees are consistent with a myriad of diversification histories. Nature 580:7804502–5
    [Google Scholar]
  71. Louys J. 2012. Paleontology in ecology and conservation: an introduction. Paleontology in Ecology and Conservation J Louys 1–7. Berlin, Heidelberg: Springer
    [Google Scholar]
  72. Lundgren EJ, Ramp D, Rowan J, Middleton O, Schowanek SD et al. 2020. Introduced herbivores restore Late Pleistocene ecological functions. PNAS 117:147871–78
    [Google Scholar]
  73. Maddison WP, Midford PE, Otto SP. 2007. Estimating a binary character's effect on speciation and extinction. Syst. Biol. 56:5701–10
    [Google Scholar]
  74. Martin JE, Tacail T, Balter V. 2017. Non-traditional isotope perspectives in vertebrate palaeobiology. Palaeontology 60:4485–502
    [Google Scholar]
  75. Martin JE, Tacail T, Cerling TE, Balter V. 2018. Calcium isotopes in enamel of modern and Plio-Pleistocene East African mammals. Earth Planet. Sci. Lett. 503:227–35
    [Google Scholar]
  76. Maxwell SL, Cazalis V, Dudley N, Hoffmann M, Rodrigues ASL et al. 2020. Area-based conservation in the twenty-first century. Nature 586:7828217–27
    [Google Scholar]
  77. McDermott F. 2004. Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quat. Sci. Rev. 23:7–8901–18
    [Google Scholar]
  78. Merceron G, Berlioz E, Vonhof H, Green D, Garel M, Tütken T. 2021. Tooth tales told by dental diet proxies: an alpine community of sympatric ruminants as a model to decipher the ecology of fossil fauna. Palaeogeogr. Palaeoclimatol. Palaeoecol. 562:110077
    [Google Scholar]
  79. Milton K, May ML. 1976. Body weight, diet and home range area in primates. Nature 259:5543459–62
    [Google Scholar]
  80. Mittermeier RA, Robles-Gil P, Hoffmann M, Pilgrim JD, Brooks TB et al. 2004. Hotspots Revisited: Earth's Biologically Richest and Most Endangered Ecoregions Mexico City: CEMEX
  81. Mohammed RS, Turner G, Fowler K, Pateman M, Nieves-Colón MA et al. 2022. Colonial legacies influence biodiversity lessons: how past trade routes and power dynamics shape present-day scientific research and professional opportunities for Caribbean scientists. Am. Nat. 200:1140–55
    [Google Scholar]
  82. Monarrez PM, Zimmt JB, Clement AM, Gearty W, Jacisin JJ et al. 2022. Our past creates our present: a brief overview of racism and colonialism in Western paleontology. Paleobiology 48:2173–85
    [Google Scholar]
  83. Moroz M, Jackson ISC, Ramirez D, Kemp ME. 2021. Divergent morphological responses to millennia of climate change in two species of bats from Hall's Cave, Texas, USA. PeerJ 9:e10856
    [Google Scholar]
  84. Nieves-Colón MA, Pestle WJ, Reynolds AW, Llamas B, de la Fuente C et al. 2020. Ancient DNA reconstructs the genetic legacies of precontact Puerto Rico communities. Mol. Biol. Evol. 37:3611–26
    [Google Scholar]
  85. Nolte D, Boutaud E, Kotze DJ, Schuldt A, Assmann T. 2019. Habitat specialization, distribution range size and body size drive extinction risk in carabid beetles. Biodivers. Conserv. 28:51267–83
    [Google Scholar]
  86. Oswald JA, Allen JM, Witt KE, Folk RA, Albury NA et al. 2019. Ancient DNA from a 2,500-year-old Caribbean fossil places an extinct bird (Caracara creightoni) in a phylogenetic context. Mol. Phylogenet. Evol. 140:106576
    [Google Scholar]
  87. Owen PR, Bell CJ, Mead EM. 2000. Fossils, diet, and conservation of black-footed ferrets (Mustela nigripes). J. Mammal. 81:2422–33
    [Google Scholar]
  88. Pereira HM, Navarro LM, Martins IS. 2012. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37:25–50
    [Google Scholar]
  89. Peterson AT, Soberón J. 2012. Species distribution modeling and ecological niche modeling: getting the concepts right. Nat. Conserv. 10:2102–7
    [Google Scholar]
  90. Polly PD, Head JJ. 2015. Measuring Earth-life transitions: ecometric analysis of functional traits from Late Cenozoic vertebrates. Paleontol. Soc. Pap. 21:21–46
    [Google Scholar]
  91. Polly PD, Lawing AM, Eronen JT, Schnitzler J. 2016. Processes of ecometric patterning: modelling functional traits, environments, and clade dynamics in deep time. Biol. J. Linn. Soc. 118:139–63
    [Google Scholar]
  92. Polly PD, Sarwar S. 2014. Extinction, extirpation, and exotics: effects on the correlation between traits and environment at the continental level. Ann. Zool. Fenn. 51:1–2209–26
    [Google Scholar]
  93. Pyron RA, Pennell M. 2022. Macroevolutionary perspectives on Anthropocene extinction. Biol. Conserv. 274:109733
    [Google Scholar]
  94. Raja NB, Dunne EM, Matiwane A, Khan TM, Nätscher PS et al. 2022. Colonial history and global economics distort our understanding of deep-time biodiversity. Nat. Ecol. Evol. 6:2145–54
    [Google Scholar]
  95. Reed FA, Kontanis EJ, Kennedy KAR, Aquadro CF. 2003. Ancient DNA prospects from Sri Lankan highland dry caves support an emerging global pattern. Am. J. Phys. Anthropol. 121:2112–16
    [Google Scholar]
  96. Rödder D, Lawing AM, Flecks M, Ahmadzadeh F, Dambach J et al. 2013. Evaluating the significance of paleophylogeographic species distribution models in reconstructing quaternary range-shifts of Nearctic chelonians. PLOS ONE 8:10e72855
    [Google Scholar]
  97. Rodrigues ASL, Cazalis V. 2020. The multifaceted challenge of evaluating protected area effectiveness. Nat. Commun. 11:15147
    [Google Scholar]
  98. Sayol F, Cooke RSC, Pigot AL, Blackburn TM, Tobias JA et al. 2021. Loss of functional diversity through anthropogenic extinctions of island birds is not offset by biotic invasions. Sci. Adv. 7:46eabj5790
    [Google Scholar]
  99. Schwartz MW. 2012. Using niche models with climate projections to inform conservation management decisions. Biol. Conserv. 155:149–56
    [Google Scholar]
  100. Seersholm FV, Werndly DJ, Grealy A, Johnson T, Keenan Early EM et al. 2020. Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change. Nat. Commun. 11:12770
    [Google Scholar]
  101. Sherratt E, del Rosario Castañeda M, Garwood RJ, Mahler DL, Sanger TJ et al. 2015. Amber fossils demonstrate deep-time stability of Caribbean lizard communities. PNAS 112:329961–66
    [Google Scholar]
  102. Short RA, Lawing AM. 2021. Geography of artiodactyl locomotor morphology as an environmental predictor. Divers. Distrib. 27:91818–31
    [Google Scholar]
  103. Shukla PR, Skeag J, Calvo Buendia E, Masson-Delmotte V, Pörtner H-O et al., eds. 2019. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Cambridge, UK: Cambridge Univ. Press https://doi.org/10.1017/9781009157988
  104. Slater GJ, Harmon LJ, Alfaro ME. 2012. Integrating fossils with molecular phylogenies improves inference of trait evolution: fossils, phylogenies, and models of trait evolution. Evolution 66:123931–44
    [Google Scholar]
  105. Smith AD, Kamiński MJ, Kanda K, Sweet AD, Betancourt JL et al. 2021. Recovery and analysis of ancient beetle DNA from subfossil packrat middens using high-throughput sequencing. Sci. Rep. 11:112635
    [Google Scholar]
  106. Soto-Centeno JA, Steadman DW. 2015. Fossils reject climate change as the cause of extinction of Caribbean bats. Sci. Rep. 5:17971
    [Google Scholar]
  107. Stephens L, Fuller D, Boivin N, Rick T, Gauthier N et al. 2019. Archaeological assessment reveals Earth's early transformation through land use. Science 365:6456897–902
    [Google Scholar]
  108. Stone AC, Ozga AT. 2019. Ancient DNA in the study of ancient disease. Ortner's Identification of Pathological Conditions in Human Skeletal Remains JE Buikstra 183–210. London: Academic
    [Google Scholar]
  109. Sutherland WJ, Adams WM, Aronson RB, Aveling R, Blackburn TM et al. 2009. One hundred questions of importance to the conservation of global biological diversity. Conserv. Biol. 23:3557–67
    [Google Scholar]
  110. Svenning J-C, Fløjgaard C, Marske KA, Nógues-Bravo D, Normand S 2011. Applications of species distribution modeling to paleobiology. Quat. Sci. Rev. 30:21–222930–47
    [Google Scholar]
  111. Tomé CP, Lyons SK, Newsome SD, Smith FA. 2022. The sensitivity of Neotoma to climate change and biodiversity loss over the late Quaternary. Quat. Res. 105:49–63
    [Google Scholar]
  112. UNEP-WCMC (UN Env. Prog. World Conserv. Monit. Cent.), IUCN (Int. Union. Conserv. Nat.) 2023. Protected Planet: The World Database on Protected Areas (WDPA) and The World Database on Other Effective Area-based Conservation Measures (WD-OECM), Cambridge, UK, updated Jun. http://www.protectedplanet.net
  113. van der Valk T, Pečnerová P, Díez-del-Molino D, Bergström A, Oppenheimer J et al. 2021. Million-year-old DNA sheds light on the genomic history of mammoths. Nature 591:7849265–69
    [Google Scholar]
  114. Vermillion WA, Polly PD, Head JJ, Eronen JT, Lawing AM 2018. Ecometrics: a trait-based approach to paleoclimate and paleoenvironmental reconstruction. Methods in Paleoecology DA Croft, DF Su, SW Simpson 373–94. Cham, Switz: Springer Int. Publ.
    [Google Scholar]
  115. Vigne J-D, Zazzo A, Saliège J-F, Poplin F, Guilaine J, Simmons A. 2009. Pre-Neolithic wild boar management and introduction to Cyprus more than 11,400 years ago. PNAS 106:3816135–38
    [Google Scholar]
  116. Villavicencio NA, Lindsey EL, Martin FM, Borrero LA, Moreno PI et al. 2016. Combination of humans, climate, and vegetation change triggered Late Quaternary megafauna extinction in the Última Esperanza region, southern Patagonia, Chile. Ecography 39:2125–40
    [Google Scholar]
  117. Wake DB, Vredenburg VT. 2008. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. PNAS 105:Suppl. 111466–73
    [Google Scholar]
  118. Wright AM, Bapst DW, Barido-Sottani J, Warnock RCM. 2022. Integrating fossil observations into phylogenetics using the fossilized birth–death model. Annu. Rev. Ecol. Evol. Syst. 53:251–73
    [Google Scholar]
  119. Yanes Y, Yapp CJ, Ibáñez M, Alonso MR, De-la-Nuez J et al. 2011. Pleistocene–Holocene environmental change in the Canary Archipelago as inferred from the stable isotope composition of land snail shells. Quat. Res. 75:3658–69
    [Google Scholar]
  120. Yessoufou K, Daru BH, Tafirei R, Elansary HO, Rampedi I. 2017. Integrating biogeography, threat and evolutionary data to explore extinction crisis in the taxonomic group of cycads. Ecol. Evol. 7:82735–46
    [Google Scholar]
  121. Žliobaitė I, Rinne J, Tóth AB, Mechenich M, Liu L et al. 2016. Herbivore teeth predict climatic limits in Kenyan ecosystems. PNAS 113:4512751–56
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110421-101343
Loading
/content/journals/10.1146/annurev-ecolsys-110421-101343
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error