1932

Abstract

The origin of life entails a continuum from simple prebiotic chemistry to cells with genes and molecular machines. Using life as a guide to this continuum, we consider how selection could promote increased complexity before the emergence of genes. Structured, far-from-equilibrium environments such as hydrothermal systems drive the reaction between CO and H to form organics that self-organize into protocells. CO fixation within protocells generates a reaction network with a topology that prefigures the universal core of metabolism. Positive feedback loops amplify flux through this network, giving a metabolic heredity that promotes growth. Patterns in the genetic code show that genes and proteins arose through direct biophysical interactions between amino acids and nucleotides in this protometabolic network. Random genetic sequences template nonrandom peptides, producing selectable function in growing protocells. This context-dependent emergence of information gives rise seamlessly to an autotrophic last universal common ancestor.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110421-101509
2023-11-02
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/54/1/annurev-ecolsys-110421-101509.html?itemId=/content/journals/10.1146/annurev-ecolsys-110421-101509&mimeType=html&fmt=ahah

Literature Cited

  1. Agmon N. 1995. The Grotthuss mechanism. Chem. Phys. Lett. 244:456–62
    [Google Scholar]
  2. Amend JP, LaRowe DE, McCollom TM, Shock EL. 2013. The energetics of organic synthesis inside and outside the cell. Philos. Trans. R. Soc. B 368:20120255
    [Google Scholar]
  3. Amend JP, McCollom TM. 2009. Energetics of biomolecule synthesis on early earth. ACS Symp. Ser. 1025:63–94
    [Google Scholar]
  4. Arndt NT, Nisbet EG. 2012. Processes on the young Earth and the habitats of early life. Annu. Rev. Earth Planet. Sci. 40:521–49
    [Google Scholar]
  5. Barge LM, Flores E, Baum MM, Velde DGV, Russell MJ. 2019. Redox and pH gradients drive amino acid synthesis in iron oxyhydroxide mineral systems. PNAS 116:114828–33
    [Google Scholar]
  6. Barge LM, Krause FC, Jones JP, Billings K, Sobron P. 2018. Geoelectrodes and fuel cells for simulating hydrothermal vent environments. Astrobiology 18:91147–58
    [Google Scholar]
  7. Barile CJ, Tse ECM, Li Y, Gewargis JP, Kirchschlager NA et al. 2016. The flip-flop diffusion mechanism across lipids in a hybrid bilayer membrane. Biophys. J. 110:112451–62
    [Google Scholar]
  8. Baumann U, Oro J. 1993. Three stages in the evolution of the genetic code. Biosystems 29:133–41
    [Google Scholar]
  9. Berkemer SJ, McGlynn SE. 2021. A new analysis of archaea–bacteria domain separation: variable phylogenetic distance and the tempo of early evolution. Mol. Biol. Evol. 37:82332–40
    [Google Scholar]
  10. Black AJ, Bourrat P, Rainey PB. 2020. Ecological scaffolding and the evolution of individuality. Nat. Ecol. Evol. 4:3426–36
    [Google Scholar]
  11. Bonfio C, Valer L, Scintilla S, Shah S, Evans DJ et al. 2017. UV-light-driven prebiotic synthesis of iron–sulfur clusters. Nat. Chem. 9:121229–34
    [Google Scholar]
  12. Boyd ES, Amenabar MJ, Poudel S, Templeton AS. 2020. Bioenergetic constraints on the origin of autotrophic metabolism. Philos. Trans. R. Soc. A 378:216520190151
    [Google Scholar]
  13. Braakman R, Smith E. 2012. The emergence and early evolution of biological carbon-fixation. PLOS Comput. Biol. 8:4e1002455
    [Google Scholar]
  14. Branscomb E, Russell MJ. 2013. Turnstiles and bifurcators: the disequilibrium converting engines that put metabolism on the road. Biochim. Biophys. Acta Bioenerg. 1827:262–78
    [Google Scholar]
  15. Brown RF, Andrews CT, Elcock AH. 2015. Stacking free energies of all DNA and RNA nucleoside pairs and dinucleoside-monophosphates computed using recently revised AMBER parameters and compared with experiment. J. Chem. Theory Comput. 11:52315–28
    [Google Scholar]
  16. Brunaldi K, Miranda MA, Abdulkader F, Curi R, Procopio J. 2005. Fatty acid flip-flop and proton transport determined by short-circuit current in planar bilayers. J. Lipid Res. 46:2245–51
    [Google Scholar]
  17. Buckel W, Thauer RK. 2013. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim. Biophys. Acta Bioenerg. 1827:182794–113
    [Google Scholar]
  18. Caldararo F, di Giulio M. 2022. The genetic code is very close to a global optimum in a model of its origin taking into account both the partition energy of amino acids and their biosynthetic relationships. Biosystems 214:104613
    [Google Scholar]
  19. Camprubi E, Harrison SA, Jordan SF, Bonnel J, Pinna S, Lane N. 2022. Do soluble phosphates direct the formose reaction towards pentose sugars?. Astrobiology 22:8981–91
    [Google Scholar]
  20. Camprubi E, Jordan SF, Vasiliadou R, Lane N. 2017. Iron catalysis at the origin of life. IUBMB Life 69:6373–81
    [Google Scholar]
  21. Chakrabarti P, Pal D. 1997. An electrophile-nucleophile interaction in metalloprotein structures. Protein Sci. 6:4851–59
    [Google Scholar]
  22. Chu XY, Zhang HY. 2020. Cofactors as molecular fossils to trace the origin and evolution of proteins. ChemBioChem 21:223161–68
    [Google Scholar]
  23. Cody GD, Boctor NZ, Brandes JA, Filley TR, Hazen RM, Yoder HS. 2004. Assaying the catalytic potential of transition metal sulfides for abiotic carbon fixation. Geochim. Cosmochim. Acta. 68:102185–96
    [Google Scholar]
  24. Coleman GA, Pancost RD, Williams TA, Dagan T. 2019. Investigating the origins of membrane phospholipid biosynthesis genes using outgroup-free rooting. Genome Biol. Evol. 11:3883–98
    [Google Scholar]
  25. Copley SD, Smith E, Morowitz HJ. 2005. A mechanism for the association of amino acids with their codons and the origin of the genetic code. PNAS 102:4442–47
    [Google Scholar]
  26. Crapitto AJ, Campbell A, Harris AJ, Goldman AD. 2022. A consensus view of the proteome of the last universal common ancestor. Ecol. Evol. 12:6e8930
    [Google Scholar]
  27. di Sabato G, Jencks WP. 1961. Mechanism and catalysis of reactions of acyl phosphates. I. Nucleophilic reactions. J. Am. Chem. Soc. 83:4393–400
    [Google Scholar]
  28. Fuchs G. 2011. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life?. Annu. Rev. Microbiol. 65:631–58
    [Google Scholar]
  29. Godfrey-Smith P. 2011. Darwinian populations and transitions in individuality. The Major Transitions in Evolution Revisited. ed. B Calcott, K Sterelny 65–81. Cambridge, MA: MIT Press
    [Google Scholar]
  30. Halpern A, Bartsch LR, Ibrahim K, Harrison SA, Ahn M et al. 2023. Biophysical interactions underpin the emergence of information in the genetic code. Life 13:51129
    [Google Scholar]
  31. Hanczyc MM, Mansy SS, Szostak JW. 2007. Mineral surface directed membrane assembly. Origins Life Evol. Biospheres 37:67–82
    [Google Scholar]
  32. Hanczyc MM, Szostak JW. 2004. Replicating vesicles as models of primitive cell growth and division. Curr. Opin. Chem. Biol. 8:660–64
    [Google Scholar]
  33. Harrison S, Lane N. 2018. Life as a guide to prebiotic nucleotide synthesis. Nat. Commun. 9:5176
    [Google Scholar]
  34. Harrison SA, Palmeira RN, Halpern A, Lane N. 2022. A biophysical basis for the emergence of the genetic code in protocells. Biochim. Biophys. Acta Bioenerg. 1863:8148597
    [Google Scholar]
  35. Harrison SA, Webb WL, Rammu H, Lane N. 2023. Prebiotic synthesis of aspartate using life's metabolism as a guide. Life 13:51177
    [Google Scholar]
  36. Hartman H. 1975. Speculations on the origin and evolution of metabolism. J. Mol. Evol. 4:359–70
    [Google Scholar]
  37. Hassenkam T, Damer B, Mednick G, Deamer D. 2020. AFM images of viroid-sized rings that self-assemble from mononucleotides through wet–dry cycling: implications for the origin of life. Life 10:12321
    [Google Scholar]
  38. He D, Wang X, Yang Y, He R, Zhong H et al. 2021. Hydrothermal synthesis of long-chain hydrocarbons up to C24 with NaHCO3-assisted stabilizing cobalt. PNAS 118:51e2115059158
    [Google Scholar]
  39. Horowitz NH. 1945. On the evolution of biochemical syntheses. PNAS 31:153–57
    [Google Scholar]
  40. Huber C, Wächtershäuser G. 1997. Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science 276:5310245–47
    [Google Scholar]
  41. Huber C, Wächtershäuser G. 2003. Primordial reductive amination revisited. Tetrahedron Lett. 44:81695–97
    [Google Scholar]
  42. Hudson R, de Graaf R, Rodina MS, Ohno A, Lane N et al. 2020. CO2 reduction driven by a pH gradient. PNAS 117:3722873–79
    [Google Scholar]
  43. Jerome CA, Kim HJ, Mojzsis SJ, Benner SA, Biondi E. 2022. Catalytic synthesis of polyribonucleic acid on prebiotic rock glasses. Astrobiology 22:6629–36
    [Google Scholar]
  44. Jordan SF, Ioannou I, Rammu H, Halpern A, Bogart LK et al. 2021. Spontaneous assembly of redox-active iron-sulfur clusters at low concentrations of cysteine. Nat. Commun. 12:15925
    [Google Scholar]
  45. Jordan SF, Nee E, Lane N. 2019a. Isoprenoids enhance the stability of fatty acid membranes at the emergence of life potentially leading to an early lipid divide. Interface Focus 9:620190067
    [Google Scholar]
  46. Jordan SF, Rammu H, Zheludev IN, Hartley AM, Maréchal A, Lane N. 2019b. Promotion of protocell self-assembly from mixed amphiphiles at the origin of life. Nat. Ecol. Evol. 3:121705–14
    [Google Scholar]
  47. Kappock TJ, Ealick SE, Stubbe JA. 2000. Modular evolution of the purine biosynthetic pathway. Curr. Opin. Chem. Biol. 4:5567–72
    [Google Scholar]
  48. Keller MA, Kampjut D, Harrison SA, Ralser M. 2017. Sulfate radicals enable a non-enzymatic Krebs cycle precursor. Nat. Ecol. Evol. 1:March0083
    [Google Scholar]
  49. Keller MA, Turchyn AV, Ralser M. 2014. Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean. Mol. Syst. Biol. 10:4725
    [Google Scholar]
  50. Kirschning A. 2021. Coenzymes and their role in the evolution of life. Angew. Chem. Int. Ed. Engl. 60:126242–69
    [Google Scholar]
  51. Kitadai N, Nakamura R, Yamamoto M, Takai K, Yoshida N, Oono Y. 2019. Metals likely promoted protometabolism in early ocean alkaline hydrothermal systems. Sci. Adv. 5:eaav7848
    [Google Scholar]
  52. Koonin EV. 2003. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat. Rev. Microbiol. 1:2127–36
    [Google Scholar]
  53. Kurkin S, Meuer J, Koch J, Hedderich R, Albracht SPJ. 2002. The membrane-bound [NiFe]-hydrogenase (Ech) from Methanosarcina barkeri: unusual properties of the iron-sulphur clusters. Eur. J. Biochem. 269:246101–11
    [Google Scholar]
  54. Lane N. 2014. Bioenergetic constraints on the evolution of complex life. Cold Spring Harb. Perspect. Biol. 6:5a015982
    [Google Scholar]
  55. Lane N. 2017. Proton gradients at the origin of life. BioEssays 39:61600217
    [Google Scholar]
  56. Lane N. 2022. Transformer: The Deep Chemistry of Life and Death New York: W.W. Norton & Co.
  57. Lane N, Allen JF, Martin W. 2010. How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays 32:4271–80
    [Google Scholar]
  58. Lane N, Martin WF. 2012. The origin of membrane bioenergetics. Cell 151:71406–16
    [Google Scholar]
  59. Lazcano A, Miller SL. 1999. On the origin of metabolic pathways. J. Mol. Evol. 49:424–31
    [Google Scholar]
  60. Maden BEH. 2000. Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism. Biochem. J. 350:609–29. Erratum 2000. 352:3935–36
    [Google Scholar]
  61. Martin W, Baross J, Kelley D, Russell MJ. 2008. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6:11805–14
    [Google Scholar]
  62. Martin W, Russell MJ. 2003. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos. Trans. R. Soc. B 358:142959–85
    [Google Scholar]
  63. Martin W, Russell MJ. 2007. On the origin of biochemistry at an alkaline hydrothermal vent. Philos. Trans. R. Soc. B 362:14861887–925
    [Google Scholar]
  64. Martin WF. 2019. Carbon–metal bonds: rare and primordial in metabolism. Trends Biochem. Sci. 44:9807–18
    [Google Scholar]
  65. Martin WF. 2020. Older than genes: the acetyl CoA pathway and origins. Front Microbiol. 11:817
    [Google Scholar]
  66. Martin WF, Sousa FL, Lane N. 2014. Energy at life's origin. Science 344:61881092–93
    [Google Scholar]
  67. Maurer SE, Sørensen KT, Iqbal Z, Nicholas J, Quirion K et al. 2018. Vesicle self-assembly of monoalkyl amphiphiles under the effects of high ionic strength, extreme pH, and high temperature environments. Langmuir 34:5015560–68
    [Google Scholar]
  68. McCollom TM, Ritter G, Simoneit BRT. 1999. Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions. Origins Life Evol. Biosphere 29:153–66
    [Google Scholar]
  69. Messner CB, Driscoll PC, Piedrafita G, de Volder MFL, Ralser M. 2017. Nonenzymatic gluconeogenesis-like formation of fructose 1,6-bisphosphate in ice. PNAS 114:287403–7
    [Google Scholar]
  70. Milshteyn D, Damer B, Havig J, Deamer D. 2018. Amphiphilic compounds assemble into membranous vesicles in hydrothermal hot spring water but not in seawater. Life 8:11life8020011
    [Google Scholar]
  71. Mitchell P. 1959. The origin of life and the formation and organizing functions of natural membranes. Proceedings of the First International Symposium on the Origin of Life on the Earth, Held at Moscow, 19–24 August 1957 (I.U.B. Symposium Series) AI Oparin, AG Pasynskii, AE Braunshtein, TE Pavlovskaya 437–43. London: Pergamon
    [Google Scholar]
  72. Mitchell P. 1966. Chemiosmotic coupling of oxidative and photosynthetic phosphorylation. Biol. Rev. Camb. Philos. Soc. 41:445–502
    [Google Scholar]
  73. Mitchell P, Moyle J. 1967. Chemiosmotic hypothesis of oxidative phosphorylation. Nature 14:137–39
    [Google Scholar]
  74. Monnard P-A, Apel CL, Kanavarioti A, Deamer DW. 2002. Influence of ionic inorganic solutes on self-assembly and polymerization processes related to early forms of life: implications for a prebiotic aqueous medium. Astrobiology 2:2139–52
    [Google Scholar]
  75. Moody ERR, Mahendrarajah TA, Dombrowski N, Clark JW, Petitjean C et al. 2022. An estimate of the deepest branches of the tree of life from ancient vertically evolving genes. eLife 11:e66695
    [Google Scholar]
  76. Morowitz HJ, Heinz B, Deamer DW. 1988. The chemical logic of a minimum protocell. Origins Life Evol. Biosphere 18:3281–87
    [Google Scholar]
  77. Morowitz HJ, Kostelnik JD, Yang J, Cody GD. 2000. The origin of intermediary metabolism. PNAS 97:147704–8
    [Google Scholar]
  78. Muchowska KB, Varma SJ, Chevallot-Beroux E, Lethuillier-Karl L, Li G, Moran J. 2017. Metals promote sequences of the reverse Krebs cycle. Nat. Ecol. Evol. 1:111716–21
    [Google Scholar]
  79. Muchowska KB, Varma SJ, Moran J. 2019. Synthesis and breakdown of universal metabolic precursors promoted by iron. Nature 569:7754104–7
    [Google Scholar]
  80. Muchowska KB, Varma SJ, Moran J. 2020. Nonenzymatic metabolic reactions and life's origins. Chem. Rev. 120:157708–44
    [Google Scholar]
  81. Mühlbauer ME, Gamiz-Hernandez AP, Kaila VRI. 2021. Functional dynamics of an ancient membrane-bound hydrogenase. J. Am. Chem. Soc. 143:4920873–83
    [Google Scholar]
  82. Mulkidjanian AY, Galperin MY, Koonin EV. 2009. Co-evolution of primordial membranes and membrane proteins. Trends Biochem. Sci. 34:March206–15
    [Google Scholar]
  83. Müller F, Escobar L, Xu F, Węgrzyn E, Nainytė M et al. 2022. A prebiotically plausible scenario of an RNA–peptide world. Nature 605:7909279–84
    [Google Scholar]
  84. Mullins DW Jr., Senaratne N, Lacey JC. 1984. Aminoacyl-nucleotide reactions: studies related to the origin of the genetic code and protein synthesis. Orig. Life 14:597–604
    [Google Scholar]
  85. Narunsky A, Kessel A, Solan R, Alva V, Kolodny R, Ben-Tal N 2020. On the evolution of protein–adenine binding. PNAS 117:94701–9
    [Google Scholar]
  86. Nitschke W, McGlynn SE, Milner-White EJ, Russell MJ. 2013. On the antiquity of metalloenzymes and their substrates in bioenergetics. Biochim. Biophys. Acta Bioenerg. 1827:8–9871–81
    [Google Scholar]
  87. Nitschke W, Russell MJ. 2009. Hydrothermal focusing of chemical and chemiosmotic energy, supported by delivery of catalytic Fe, Ni, Mo/W, Co, S and Se, forced life to emerge. J. Mol. Evol. 69:5481–96
    [Google Scholar]
  88. Noda-Garcia L, Liebermeister W, Tawfik DS. 2018. Metabolite–enzyme coevolution: from single enzymes to metabolic pathways and networks. Annu. Rev. Biochem. 87:187–216
    [Google Scholar]
  89. Nunes Palmeira R, Colnaghi M, Harrison SA, Pomiankowski A, Lane N. 2022. The limits of metabolic heredity in protocells. Proc. R. Soc. B 2891986:20221469
    [Google Scholar]
  90. Piedrafita G, Varma SJ, Castro C, Messner CB, Szyrwiel L et al. 2021. Cysteine and iron accelerate the formation of ribose-5-phosphate, providing insights into the evolutionary origins of the metabolic network structure. PLOS Biol. 19:12e3001468
    [Google Scholar]
  91. Pinna S, Kunz C, Halpern A, Harrison SA, Jordan SF et al. 2022. A prebiotic basis for ATP as the universal energy currency. PLOS Biol. 20:10e3001437
    [Google Scholar]
  92. Poulton SW, Canfeld DE. 2011. Ferruginous conditions: a dominant feature of the ocean through Earth's history. Elements 7:2107–12
    [Google Scholar]
  93. Preiner M, Igarashi K, Muchowska KB, Yu M, Varma SJ et al. 2020. A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism. Nat. Ecol. Evol. 4:4534–42
    [Google Scholar]
  94. Raffaelli N 2011. Nicotinamide coenzyme synthesis: a case of ribonucleotide emergence or a byproduct of the RNA world?. Origins of Life: The Primal Self-Organization R Egel, D-H Lankenau, AY Mulkidjanian 185–208. Berlin: Springer
    [Google Scholar]
  95. Ralser M. 2018. An appeal to magic? The discovery of a non-enzymatic metabolism and its role in the origins of life. Biochem. J. 475:162577–92
    [Google Scholar]
  96. Russell M, Hall A, Turner D. 1989. In vitro growth of iron sulphide chimneys: possible culture chambers for origin-of-life experiments. Terra Nova 1:238–41
    [Google Scholar]
  97. Russell MJ. 2018. Green rust: the simple organizing ‘seed’ of all life?. Life 8:35
    [Google Scholar]
  98. Russell MJ, Arndt NT. 2005. Geodynamic and metabolic cycles in the Hadean. Biogeosciences 2:97–111
    [Google Scholar]
  99. Russell MJ, Barge LM, Bhartia R, Bocanegra D, Bracher PJ et al. 2014. The drive to life on wet and icy worlds. Astrobiology 14:4308–43
    [Google Scholar]
  100. Russell MJ, Daniel RM, Hall AJ, Sherringham JA. 1994. A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J. Mol. Evol. 39:3231–43
    [Google Scholar]
  101. Russell MJ, Hall AJ. 1997. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. London 154:3377–402
    [Google Scholar]
  102. Russell MJ, Martin W. 2004. The rocky roots of the acetyl-CoA pathway. Trends Biochem. Sci. 29:7358–63
    [Google Scholar]
  103. Sahai N, Kaddour H, Dalai P, Wang Z, Bass G, Gao M. 2017. Mineral surface chemistry and nanoparticle-aggregation control membrane self-assembly. Sci. Rep. 7:43418
    [Google Scholar]
  104. Schoelmerich MC, Müller V. 2020. Energy-converting hydrogenases: the link between H2 metabolism and energy conservation. Cell. Mol. Life Sci. 77:81461–81
    [Google Scholar]
  105. Shimizu M. 1995. Specific aminoacylation of C4N hairpin RNAs with the cognate aminoacyl-adenylates in the presence of a dipeptide: origin of the genetic code. J. Biochem. 117:23–26
    [Google Scholar]
  106. Sleep NH. 2010. The Hadean-Archaean environment. Cold Spring Harb. Perspect. Biol. 2:a002527
    [Google Scholar]
  107. Sleep NH. 2018. Geological and geochemical constraints on the origin and evolution of life. Astrobiology 18:91199–219
    [Google Scholar]
  108. Smith E, Morowitz HJ. 2004. Universality in intermediary metabolism. PNAS 101:3613168–73
    [Google Scholar]
  109. Smith E, Morowitz HJ. 2016. The Origin and Nature of Life on Earth Cambridge, UK: Cambridge Univ. Press
  110. Sojo V. 2015. On the biogenic origins of homochirality. Origins Life Evol. Biospheres 45:219–24
    [Google Scholar]
  111. Sojo V, Herschy B, Whicher A, Camprubí E, Lane N. 2016. The origin of life in alkaline hydrothermal vents. Astrobiology 16:2181–97
    [Google Scholar]
  112. Sojo V, Pomiankowski A, Lane N. 2014. A bioenergetic basis for membrane divergence in archaea and bacteria. PLOS Biol. 12:8e1001926
    [Google Scholar]
  113. Sousa FL, Thiergart T, Landan G, Nelson-Sathi S, Pereira IAC et al. 2013. Early bioenergetic evolution. Philos. Trans. R. Soc. B 368:162220130088
    [Google Scholar]
  114. Stetter KO. 2006. Hyperthermophiles in the history of life. Philos. Trans. R. Soc. B 361:Sept.1837–43
    [Google Scholar]
  115. Tamura K, Schimmel P. 2003. Peptide synthesis with a template-like RNA guide and aminoacyl phosphate adaptors. PNAS 100:8666–69
    [Google Scholar]
  116. Tawfik DS. 2020. Enzyme promiscuity and evolution in light of cellular metabolism. FEBS J. 287:71260–61
    [Google Scholar]
  117. Taylor FJR, Coates D. 1989. The code within the codons. Biosystems 22:177–87
    [Google Scholar]
  118. Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. 2008. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6:8579–91
    [Google Scholar]
  119. Varma SJ, Muchowska KB, Chatelain P, Moran J. 2018. Native iron reduces CO2 to intermediates and end-products of the acetyl-CoA pathway. Nat. Ecol. Evol. 2(61019–24
    [Google Scholar]
  120. Vasiliadou R, Dimov N, Szita N, Jordan SF, Lane N. 2019. Possible mechanisms of CO2 reduction by H2 via prebiotic vectorial electrochemistry. Interface Focus 9:620190073
    [Google Scholar]
  121. Villanueva L, von Meijenfeldt FAB, Westbye AB, Yadav S, Hopmans EC et al. 2021. Bridging the membrane lipid divide: Bacteria of the FCB group superphylum have the potential to synthesize archaeal ether lipids. ISME J. 15:1168–82
    [Google Scholar]
  122. Wachtershauser G. 1988. Before enzymes and templates: theory of surface metabolism. Microbiol. Rev. 52:4452–84
    [Google Scholar]
  123. Wachtershauser G. 1990. Evolution of the first metabolic cycles. PNAS 87:200–4
    [Google Scholar]
  124. Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M et al. 2016. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1:916116
    [Google Scholar]
  125. West T, Sojo V, Pomiankowski A, Lane N. 2017. The origin of heredity in protocells. Philos. Trans. R. Soc. B 372:173520160419
    [Google Scholar]
  126. Westall F, Hickman-Lewis K, Hinman N, Gautret P, Campbell KA et al. 2018. A hydrothermal-sedimentary context for the origin of life. Astrobiology 18:3259–93
    [Google Scholar]
  127. Whicher A, Camprubi E, Pinna S, Herschy B, Lane N. 2018. Acetyl phosphate as a primordial energy currency at the origin of life. Origins Life Evol. Biospheres 48:2159–79
    [Google Scholar]
  128. Wickramasinghe C, Hoyle F 1981. Evolution from Space: A Theory of Cosmic Creationism London: J.M. Dent & Sons
  129. Wimmer JLE, Xavier JC, Vieira AdN, Pereira DPH, Leidner J et al. 2021. Energy at origins: favorable thermodynamics of biosynthetic reactions in the last universal common ancestor (LUCA). Front Microbiol. 12:793664
    [Google Scholar]
  130. Woese C. 1969. Models for the evolution of codon assignments. J. Mol. Biol. 43:235–40
    [Google Scholar]
  131. Woese CR. 1965. On the evolution of the genetic code. PNAS 54:21546–52
    [Google Scholar]
  132. Woese CR. 1968a. The Genetic Code: The Molecular Basis for Genetic Expression New York: Harper & Row
  133. Woese CR. 1968b. The fundamental nature of the genetic code: prebiotic interactions between polynucleotides and polyamino acids or their derivatives. PNAS 59:110–17
    [Google Scholar]
  134. Wolthers M, van der Gaast SJ, Rickard D. 2003. The structure of disordered mackinawite. Am. Mineral. 881996:2007–15
    [Google Scholar]
  135. Wong TJ. 1975. A co-evolution theory of the genetic code. PNAS 72:51909–12
    [Google Scholar]
  136. Wong TJ, Ng SK, Mat WK, Hu T, Xue H. 2016. Coevolution theory of the genetic code at age forty: pathway to translation and synthetic life. Life 6:112
    [Google Scholar]
  137. Xavier JC, Hordijk W, Kauffman S, Steel M, Martin WF. 2020. Autocatalytic chemical networks at the origin of metabolism. Proc. R. Soc. B 287:20192377
    [Google Scholar]
  138. Xavier JC, Kauffman S. 2022. Small-molecule autocatalytic networks are universal metabolic fossils. Philos. Trans. R. Soc. A 380:222720210244
    [Google Scholar]
  139. Xu K, Sun B, Lin J, Wen W, Pei Y et al. 2014. ε-Iron carbide as a low-temperature Fischer–Tropsch synthesis catalyst. Nat. Commun. 5:5783
    [Google Scholar]
  140. Yi J, Kaur H, Kazöne W, Rauscher SA, Gravillier LA et al. 2022. A nonenzymatic analog of pyrimidine nucleobase biosynthesis. Angew. Chem. Int. Ed. Engl. 61:23e2021172111
    [Google Scholar]
  141. Yu H, Wu CH, Schut GJ, Haja DK, Zhao G et al. 2018. Structure of an ancient respiratory system. Cell 173:71636–49.e16
    [Google Scholar]
  142. Zhu TF, Szostak JW. 2009. Coupled growth and division of model protocell membranes. J. Am. Chem. Soc. 131:205705–13
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110421-101509
Loading
/content/journals/10.1146/annurev-ecolsys-110421-101509
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error