1932

Abstract

Following decades of intensive study, lizards have emerged as a biological model system. We review how new research on anoles has advanced our understanding of ecology and evolution, challenging long-standing paradigms and opening new areas of inquiry. Recent anole research reveals how changes in behavior can restructure ecological communities and can both stimulate and stymie evolution, sometimes simultaneously. Likewise, investigation of anoles as spatial or phylogenetic evolutionary experiments has documented evolutionary repeatability across spatiotemporal scales, while also illuminating its limits. Current research places anoles as a promising model for Anthropocene biology, with recent work illustrating how species respond as humans reconfigure natural habitats, alter the climate, and create novel environments and communities through urbanization and species introduction. Combined with ongoing methodological developments in genomics, phylogenetics, and ecology, the growing foundational knowledge of positions them as a powerful model system in ecology and evolution for years to come.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110421-103306
2023-11-02
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/54/1/annurev-ecolsys-110421-103306.html?itemId=/content/journals/10.1146/annurev-ecolsys-110421-103306&mimeType=html&fmt=ahah

Literature Cited

  1. Algar AC, Losos JB. 2011. Evolutionary assembly of island faunas reverses the classic island–mainland richness difference in Anolis lizards. J. Biogeogr. 38:1125–37
    [Google Scholar]
  2. Algar AC, Mahler DL, Glor RE, Losos JB. 2013. Niche incumbency, dispersal limitation and climate shape geographical distributions in a species-rich island adaptive radiation. Glob. Ecol. Biogeogr. 22:391–402
    [Google Scholar]
  3. Anderson CG, Poe S. 2019. Phylogeny, biogeography and island effect drive differential evolutionary signals in mainland and island lizard assemblages. Zool. J. Linn. Soc. 185:301–11
    [Google Scholar]
  4. Andrews RM. 1979. Evolution of life histories: a comparison of Anolis from matched island and mainland habitats. Breviora 454:1–51
    [Google Scholar]
  5. Andrews RM, Rand AS. 2022. Fifty years of observations on Anolis lizards at Barro Colorado Island, Panama. Herpetologica 78:145–53
    [Google Scholar]
  6. Arnold SJ, Pfraender ME, Jones AG. 2001. The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica 112/113:9–32
    [Google Scholar]
  7. Baeckens S, Temmerman M, Gorb SN, Neto C, Whiting MJ, Van Damme R. 2021. Convergent evolution of skin surface microarchitecture and increased skin hydrophobicity in semi-aquatic anole lizards. J. Exp. Biol. 224:jeb242939
    [Google Scholar]
  8. Barton NH, Mallet J, Clarke BC, Grant PR. 1998. Natural selection and random genetic drift as causes of evolution on islands. Philos. Trans. R. Soc. B 351:785–95
    [Google Scholar]
  9. Boccia CK, Swierk L, Ayala-Varela FP, Boccia J, Borges IL et al. 2021. Repeated evolution of underwater rebreathing in diving Anolis lizards. Curr. Biol. 31:2947–54
    [Google Scholar]
  10. Bodensteiner BL, Agudelo-Cantero GA, Arietta AZA, Gunderson AR, Muñoz MM et al. 2021. Thermal adaptation revisited: How conserved are thermal traits of reptiles of amphibians?. J. Exp. Zool. A 335:173–94
    [Google Scholar]
  11. Burress ED, Muñoz MM. 2022. Ecological opportunity from innovation, not islands, drove the anole lizard adaptive radiation. Syst. Biol. 71:93–104
    [Google Scholar]
  12. Bush JM, Simberloff D. 2018. A case for anole territoriality. Behav. Ecol. Sociobiol. 72:111
    [Google Scholar]
  13. Calsbeek RC, Bonneaud C, Prabhu S, Manoukis N, Smith TB. 2007. Multiple paternity and sperm storage lead to increased genetic diversity in Anolis lizards. Evol. Ecol. Res. 9:495–503
    [Google Scholar]
  14. Calsbeek RC, Cox RM. 2010. Experimentally assessing the relative importance of predation and competition as agents of selection. Nature 465:613–16
    [Google Scholar]
  15. Campbell-Staton SC, Cheviron ZA, Rochette N, Catchen J, Losos JB, Edwards SV 2017. Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. Science 357:495–98
    [Google Scholar]
  16. Campbell-Staton SC, Velotta JP, Winchell KM. 2021. Selection on adaptive and maladaptive gene expression plasticity during thermal adaptation to urban heat islands. Nat. Commun. 12:6195
    [Google Scholar]
  17. Campbell-Staton SC, Winchell KM, Rochette NC, Fredette J, Maayan I et al. 2020. Parallel selection on thermal physiology facilitates repeated adaptation of city lizards to urban heat islands. Nat. Ecol. Evol. 4:652–58
    [Google Scholar]
  18. Castañeda MdR, de Queiroz K. 2011. Phylogenetic relationships of the Dactyloa clade of Anolis lizards based on nuclear and mitochondrial DNA sequence data. Mol. Phylogenet. Evol. 61:784–800
    [Google Scholar]
  19. Chejanovski ZA, Avilés-Rodríguez KJ, Lapiedra O, Preisser EL, Kolbe JJ. 2017. An experimental evaluation of foraging decisions in urban and natural forest populations of Anolis lizards. Urban Ecosyst. 20:1011–18
    [Google Scholar]
  20. Culbertson KA, Herrmann NC. 2019. Asymmetric interference competition and niche partitioning between native and invasive Anolis lizards. Oecologia 190:811–20
    [Google Scholar]
  21. Dees A, Wilson K, Reali C, Pruett JE, Hall JM et al. 2020. Communal egg-laying behaviour and the consequences of egg aggregation in the brown anole (Anolis sagrei). Ethology 126:751–60
    [Google Scholar]
  22. Drury J, Clavel J, Manceau M, Morlon H. 2016. Estimating the effect of competition on trait evolution using maximum likelihood inference. Syst. Biol. 65:700–10
    [Google Scholar]
  23. Dufour CMS, Herrel A, Losos JB. 2017. Ecological character displacement between a native and an introduced species: the invasion of Anolis cristatellus in Dominica. Biol. J. Linn. Soc. 123:43–54
    [Google Scholar]
  24. Esquerré D, Keogh JS. 2016. Parallel selective pressures drive convergent diversification of phentoypes in pythons and boas. Ecol. Lett. 19:800–9
    [Google Scholar]
  25. Feiner N, Jackson IS, Munch KL, Radersma R, Uller T. 2020. Plasticity and evolutionary convergence in the locomotor skeleton of Greater Antillean Anolis lizards. eLife 9:e57468
    [Google Scholar]
  26. Feiner N, Jackson IS, Stanley EL, Uller T. 2021. Evolution of the locomotor skeleton in Anolis lizards reflects the interplay between ecological opportunity and phylogenetic inertia. Nat. Commun. 12:1525
    [Google Scholar]
  27. Figueira TJ, Kennedy-Gold S, Piantoni C, Screen RM, Wright AN. 2023. Head shape predicts isotopic diet in anoles and day geckos. Funct. Ecol. 37:1553–66
    [Google Scholar]
  28. Frishkoff LO, Gabot E, Sandler G, Marte C, Mahler DL. 2019. Elevation shapes the reassembly of Anthropocene lizard communities. Nat. Ecol. Evol. 3:638–46
    [Google Scholar]
  29. Frishkoff LO, Lertzman-Lepofsky G, Mahler DL. 2022. Evolutionary opportunity and the limits of community similarity in replicate radiations of island lizards. Ecol. Lett. 25:2384–96
    [Google Scholar]
  30. Gould SJ. 1989. Wonderful Life: The Burgess Shale and the Nature of History New York: Norton
    [Google Scholar]
  31. Gunderson AR, Mahler DL, Leal M. 2018. Thermal niche evolution across replicated Anolis lizard adaptive radiations. Proc. R. Soc. B 285:20172241
    [Google Scholar]
  32. Guyer C. 1988. Food supplementation in a tropical mainland anole, Norops humilis: demographic effects. Ecology 69:350–61
    [Google Scholar]
  33. Hagey TJ, Uyeda JC, Crandell KE, Cheney JA, Autumn K, Harmon LJ. 2017. Tempo and mode of performance evolution across multiple independent origins of adhesive toe pads in lizards. Evolution 71:2344–58
    [Google Scholar]
  34. Harrison A, Poe S. 2012. Evolution of an ornament, the dewlap, in females of the lizard genus Anolis. Biol. J. Linn. Soc. 106:191–201
    [Google Scholar]
  35. Helmus MR, Mahler DL, Losos JB. 2014. Island biogeography of the Anthropocene. Nature 513:543–46
    [Google Scholar]
  36. Huey RB, Hertz PE, Sinervo B. 2003. Behavioral drive versus behavioral inertia in evolution: a null model approach. Am. Nat. 161:357–66
    [Google Scholar]
  37. Huie JM, Prates I, Bell RC, de Queiroz K. 2021. Convergent patterns of adaptive radiation between island and mainland Anolis lizards. Biol. J. Linn. Soc. 134:85–110
    [Google Scholar]
  38. Ingram T, Giery ST, Losos JB. 2022. Hierarchical partitioning of multiple niche dimensions among ecomorphs, species and sexes in Puerto Rican anoles. J. Zool. 318:127–34
    [Google Scholar]
  39. Johnson MA, Kamath A, Kirby R, Fresquez CC, Wang S et al. 2021. What determines paternity in wild lizards? A spatiotemporal analysis of behavior and morphology. Integr. Comp. Biol. 61:634–42
    [Google Scholar]
  40. Kamath A, Losos J. 2017. The erratic and contingent progression of research on territoriality: a case study. Behav. Ecol. Sociobiol. 71:89
    [Google Scholar]
  41. Kamath A, Losos J. 2018a. Reconsidering territoriality is necessary for understanding Anolis mating systems. Behav. Ecol. Sociobiol. 72:106
    [Google Scholar]
  42. Kamath A, Losos JB. 2018b. Estimating encounter rates as the first step of sexual selection in the lizard Anolis sagrei. Proc. R. Soc. B 285:20172244
    [Google Scholar]
  43. Kartzinel TR, Pringle RM. 2015. Molecular detection of invertebrate prey in vertebrate diets: trophic ecology of Caribbean island lizards. Mol. Ecol. Resour. 15:903–14
    [Google Scholar]
  44. Kolbe JJ, Leal M, Schoener TW, Spiller DA, Losos JB. 2012. Founder effects persist despite adaptive differentiation: a field experiment with lizards. Science 335:1086–89
    [Google Scholar]
  45. Lande R. 1979. Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution 33:402–16
    [Google Scholar]
  46. Landis MJ, Quintero I, Muñoz MM, Zapata F, Donoghue MJ. 2022. Phylogenetic inference of where species spread or split across barriers. PNAS 119:e2116948119
    [Google Scholar]
  47. Lapiedra O, Schoener TW, Leal M, Losos JB, Kolbe JJ. 2018. Predator-driven natural selection on risk-taking behavior in anole lizards. Science 360:1017–20
    [Google Scholar]
  48. Latella IM, Poe S, Giermakowski JT. 2011. Traits associated with naturalization in Anolis lizards: comparison of morphological, distributional, anthropogenic, and phylogenetic models. Biol. Invasions 13:845–56
    [Google Scholar]
  49. Laundré JW, Hernandez L, Ripple WJ. 2010. The landscape of fear: ecological implications of being afraid. Open Ecol. J. 3:1–7
    [Google Scholar]
  50. Lewontin R. 1983. The organism as the subject and object of evolution. Scientia 118:63–82
    [Google Scholar]
  51. Licht P. 1974. Response of Anolis lizards to food supplementation in nature. Copeia 1974:215–21
    [Google Scholar]
  52. Lister BC. 1976. The nature of niche expansion in West Indian Anolis lizards. I: Ecological consequences of reduced competition. Evolution 30:659–76
    [Google Scholar]
  53. Logan ML, Cox RM, Calsbeek R. 2014. Natural selection on thermal performance in a novel thermal environment. PNAS 111:14165–69
    [Google Scholar]
  54. Logan ML, Fernandez SG, Calsbeek R. 2015. Abiotic constraints on the activity of tropical lizards. Funct. Ecol. 29:694–700
    [Google Scholar]
  55. Losos JB. 1994. Integrative approaches to evolutionary ecology: Anolis lizards as model systems. Annu. Rev. Ecol. Syst. 25:467–93
    [Google Scholar]
  56. Losos JB. 2009. Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles Berkeley: Univ. Calif. Press
    [Google Scholar]
  57. Losos JB, Pringle RM. 2011. Competition, predation and natural selection in island lizards. Nature 475:E1–2
    [Google Scholar]
  58. Losos JB, Schluter D. 2000. Analysis of an evolutionary species-area relationship. Nature 408:847–50
    [Google Scholar]
  59. Losos JB, Schoener TW, Langerhans RB, Spiller DA. 2006. Rapid temporal reversal in predator-driven natural selection. Science 314:1111
    [Google Scholar]
  60. Losos JB, Schoener TW, Spiller DA. 2004. Predator-induced behaviour shifts and natural selection in field-experimental lizard populations. Nature 432:505–8
    [Google Scholar]
  61. Losos JB, Warheitt KI, Schoener TW. 1997. Adaptive differentiation following experimental island colonization in Anolis lizards. Nature 387:70–73
    [Google Scholar]
  62. Losos JB, Woolley ML, Mahler DL, Torres-Carvajal O, Crandell KE et al. 2012. Notes on the natural history of the little-known Ecuadorian horned anole, Anolis proboscis. . Breviora 531:1–17
    [Google Scholar]
  63. MacArthur RH, Wilson EO. 1967. The Theory of Island Biogeography Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  64. Mahler DL, Ingram T, Revell LJ, Losos JB. 2013. Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341:292–95
    [Google Scholar]
  65. Mahler DL, Lambert SM, Geneva AJ, Ng J, Hedges SB et al. 2016. Discovery of a giant chameleon-like lizard (Anolis) on Hispaniola and its significance to understanding replicated adaptive radiations. Am. Nat. 188:357–64
    [Google Scholar]
  66. Mahler DL, Revell LJ, Glor RE, Losos JB. 2010. Ecological opportunity and the rate of morphological evolution in the diversification of Greater Antillean anoles. Evolution 64:2731–45
    [Google Scholar]
  67. Mayr E. 1963. Animal Species and Evolution Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  68. McGlothlin JW, Kobiela ME, Wright HV, Kolbe JJ, Losos JB, Brodie ED III. 2022. Conservation and convergence of genetic architecture in the adaptive radiation of Anolis lizards. Am. Nat. 200:E207–20
    [Google Scholar]
  69. McGlothlin JW, Kobiela ME, Wright HV, Mahler DL, Kolbe JJ et al. 2018. Adaptive radiation along a deeply conserved genetic line of least resistance in Anolis lizards. Evol. Lett. 2:310–22
    [Google Scholar]
  70. Méndez-Galeano MA, Paternina-Cruz RF, Calderón-Espinosa ML. 2020. The highest kingdom of Anolis: thermal biology of the Andean lizard Anolis heterodermus (Squamata: Dactyloidae) over an elevational gradient in the Eastern Cordillera of Colombia. J. Therm. Biol. 89:102498
    [Google Scholar]
  71. Miller AH, Stroud JT. 2021. Novel tests of the key innovation hypothesis: adhesive toepads in arboreal lizards. Syst. Biol. 71:139–52
    [Google Scholar]
  72. Moreno-Arias RA, Calderón-Espinosa ML. 2016. Patterns of morphological diversification of mainland Anolis lizards from northwestern South America. Zool. J. Linn. Soc. 176:632–47
    [Google Scholar]
  73. Muñoz MM. 2022. The Bogert effect, a factor in evolution. Evolution 76:49–66
    [Google Scholar]
  74. Muñoz MM, Bodensteiner BL. 2019. Janzen's hypothesis meets the Bogert effect: connecting climate variation, thermoregulatory behavior, and rates of physiological evolution. Integr. Org. Biol. 1:oby002
    [Google Scholar]
  75. Muñoz MM, Losos JB. 2018. Thermoregulatory behavior simultaneously promotes and forestalls evolution in a tropical lizard. Am. Nat. 191:E15–26
    [Google Scholar]
  76. Muñoz MM, Stimola MA, Algar AC, Conover A, Rodriguez AJ et al. 2014. Evolutionary stasis and lability in thermal physiology in a group of tropical lizards. Proc. R. Soc. B 281:20132433
    [Google Scholar]
  77. Myers EA, Mulcahy DG, Falk B, Johnson K, Carbi M, de Queiroz K. 2021. Interspecific gene flow and mitochondrial genome capture during the radiation of Jamaican Anolis lizards (Squamata; Iguanidae). Syst. Biol. 71:501–11
    [Google Scholar]
  78. Nicholson DJ, Knell RJ, McCrea RS, Neel LK, Curlis JD et al. 2022. Climate anomalies and competition reduce establishment success during island colonization. Ecol. Evol. 12:e9402
    [Google Scholar]
  79. Nicholson KE, Crother BI, Guyer C, Savage JM. 2012. It is time for a new classification of anoles (Squamata: Dactyloidae). Zootaxa 3477:1–108
    [Google Scholar]
  80. Nicholson KE, Glor RE, Kolbe JJ, Larson A, Hedges SB, Losos JB 2005. Mainland colonization by island lizards. J. Biogeogr. 32:929–38
    [Google Scholar]
  81. Ord TJ, Klomp DA, Garcia-Porta J, Hagman M. 2015. Repeated evolution of exaggerated dewlaps and other throat morphology in lizards. J. Evol. Biol. 28:1948–64
    [Google Scholar]
  82. Ord TJ, Klomp DA, Summers TC, Diesmos A, Ahmad N, Das I. 2021. Deep-time convergent evolution in animal communication presented by shared adaptations for coping with noise in lizards and other animals. Ecol. Lett. 24:1750–61
    [Google Scholar]
  83. Palmer MS, Gaynor KM, Becker JA, Abraham JO, Mumma MA, Pringle RM. 2022. Dynamic landscapes of fear: understanding spatiotemporal risk. Trends Ecol. Evol. 37:911–25
    [Google Scholar]
  84. Patton AH, Harmon LJ, Castañeda MdR, Frank HK, Donihue CM et al. 2021. When adaptive radiations collide: different evolutionary trajectories between and within island and mainland lizard clades. PNAS 118:e2024451118
    [Google Scholar]
  85. Pinto G, Mahler DL, Harmon LJ, Losos JB. 2008. Testing the island effect in adaptive radiation: rates and patterns of morphological diversification in Caribbean and mainland Anolis lizards. Proc. R. Soc. B 275:2749–57
    [Google Scholar]
  86. Poe S. 2014. Comparison of natural and nonnative two-species communities of Anolis lizards. Am. Nat. 184:132–40
    [Google Scholar]
  87. Poe S, Anderson CG. 2019. The existence and evolution of morphotypes in Anolis lizards: coexistence patterns, not adaptive radiations, distinguish mainland and island faunas. PeerJ 6:e6040
    [Google Scholar]
  88. Poe S, Nieto Montes de Oca A, Torres-Carvajal O, de Queiroz K, Velasco JA et al. 2017. A phylogenetic, biogeographic, and taxonomic study of all extant species of Anolis (Squamata; Iguanidae). Syst. Biol. 66:663–97
    [Google Scholar]
  89. Prates I, Melo-Sampaio PR, de Oliveira Drummond L, Teixeira M, Rodrigues MT, Carnaval AC. 2017. Biogeographic links between southern Atlantic Forest and western South America: rediscovery, re-description, and phylogenetic relationships of two rare montane anole lizards from Brazil. Mol. Phylogenet. Evol. 113:49–58
    [Google Scholar]
  90. Prates I, Melo-Sampaio PR, de Queiroz K, Carnaval AC, Rodrigues MT, de Oliveira Drummond L 2020. Discovery of a new species of Anolis lizards from Brazil and its implications for the historical biogeography of montane Atlantic Forest endemics. Amphibia-Reptilia 41:87–103
    [Google Scholar]
  91. Prates I, Rodrigues MT, Melo-Sampaio PR, Carnaval AC. 2015. Phylogenetic relationships of Amazonian anole lizards (Dactyloa): taxonomic implications, new insights about phenotypic evolution and the timing of diversification. Mol. Phylogenet. Evol. 82:258–68
    [Google Scholar]
  92. Pringle RM, Kartzinel TR, Palmer TM, Thurman TJ, Fox-Dobbs K et al. 2019. Predator-induced collapse of niche structure and species coexistence. Nature 570:58–64
    [Google Scholar]
  93. Pruett JE, Fargevieille A, Warner DA. 2020. Temporal variation in maternal nest choice and its consequences for lizard embryos. Behav. Ecol. 31:902–10
    [Google Scholar]
  94. Pruett JE, Hall JM, Tiatragul S, Warner DA. 2022. Nesting in Anolis lizards: an understudied topic in a well-studied clade. Front. Ecol. Evol. 10:821115
    [Google Scholar]
  95. Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP et al. 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526:569–73
    [Google Scholar]
  96. Reedy AM, Zaragoza D, Warner DA. 2013. Maternally chosen nest sites positively affect multiple components of offspring fitness in a lizard. Behav. Ecol. 24:39–46
    [Google Scholar]
  97. Rodrigues MT, Xavier V, Skuk G, Pavan D. 2002. New specimens of Anolis phyllorhinus (Squamata, Polychrotidae): the first female of the species and of proboscid anoles. Pap. Avulsos Zool. 42:363–80
    [Google Scholar]
  98. Roughgarden J. 1974. Niche width: biogeographic patterns among Anolis lizard populations. Am. Nat. 108:429–42
    [Google Scholar]
  99. Rummel JD, Roughgarden J. 1985. A theory of faunal buildup for competition communities. Evolution 39:1009–33
    [Google Scholar]
  100. Salazar JC, Castañeda MdR, Londoño GA, Bodensteiner BL, Muñoz MM. 2019. Physiological evolution during adaptive radiation: a test of the island effect in Anolis lizards. Evolution 73:1241–52
    [Google Scholar]
  101. Scarpetta SG, Gray LN, Nieto Montes de Oca A, Castañeda MdR, Herrel A et al. 2015. Morphology and ecology of the Mexican cave anole Anolis alvarezdeltoroi. Mesoam. Herpetol. 2:261–70
    [Google Scholar]
  102. Schluter D. 2000. The Ecology of Adaptive Radiation Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  103. Schoener TW. 1968. The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49:704–26
    [Google Scholar]
  104. Schoener TW. 1975. Presence and absence of habitat shift in some widespread lizard species. Ecol. Monogr. 45:233–58
    [Google Scholar]
  105. Schoener TW, Kolbe JJ, Leal M, Losos JB, Spiller DA. 2017. A multigenerational field experiment on eco-evolutionary dynamics of the influential lizard Anolis sagrei: a mid-term report. Copeia 105:543–49
    [Google Scholar]
  106. Sherratt E, Castañeda MdR, Garwood RJ, Mahler DL, Sanger TJ et al. 2015. Amber fossils demonstrate deep-time stability of Caribbean lizard communities. PNAS 112:9961–66
    [Google Scholar]
  107. Simpson GG. 1953. The Major Features of Evolution New York: Columbia Univ. Press
    [Google Scholar]
  108. Stamps JA. 2018. Polygynandrous anoles and the myth of the passive female. Behav. Ecol. Sociobiol. 72:107
    [Google Scholar]
  109. Stayton CT. 2006. Testing hypotheses of convergence with multivariate data: morphological and functional convergence among herbivorous lizards. Evolution 60:824–41
    [Google Scholar]
  110. Steinberg DS, Losos JB, Schoener TW, Spiller DA, Kolbe JJ, Leal M. 2014. Predation-associated modulation of movement-based signals by a Bahamian lizard. PNAS 111:9187–92
    [Google Scholar]
  111. Stroud JT, Losos JB. 2016. Ecological opportunity and adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 47:507–32
    [Google Scholar]
  112. Stuart YE, Campbell TS, Hohenlohe PA, Reynolds RG, Revell LJ, Losos JB. 2014. Rapid evolution of a native species following invasion by a congener. Science 346:463–66
    [Google Scholar]
  113. Stuart YE, Losos JB. 2013. Ecological character displacement: glass half full or half empty?. Trends Ecol. Evol. 28:P402–8
    [Google Scholar]
  114. Stuart YE, Losos JB, Algar AC. 2012. The island–mainland species turnover relationship. Proc. R. Soc. B 279:4071–77
    [Google Scholar]
  115. Thawley CJ, Kolbe JJ. 2020. Artificial light at night increases growth and reproductive output in Anolis lizards. Proc. R. Soc. B 287:20191682
    [Google Scholar]
  116. Thonis AE, Lister BC. 2019. Predicting climate-induced distributional shifts for Puerto Rican anoles. Copeia 107:262–69
    [Google Scholar]
  117. Thurman TJ, Palmer TM, Kolbe JJ, Askary AM, Gotanda KM et al. 2023. The difficulty of predicting evolutionary change in response to novel ecological interactions: a field experiment with Anolis lizards. Am. Nat. 201:537–56
    [Google Scholar]
  118. Tiatragul S, Hall JM, Warner DA. 2020. Nestled in the city heat: Urban nesting behavior enhances embryo development of an invasive lizard. J. Urban Ecol. 6:juaa001
    [Google Scholar]
  119. Tinius A, Russell AP, Jamniczky HA, Anderson JS. 2018. What is bred in the bone: ecomorphological associations of pelvic girdle form in Greater Antillean Anolis lizards. J. Morphol. 279:1016–30
    [Google Scholar]
  120. Tinius A, Russell AP, Jamniczky HA, Anderson JS. 2020. Ecomorphological associations of scapulocoracoid form in Greater Antillean Anolis lizards. Ann. Anat. 231:151527
    [Google Scholar]
  121. Wang IJ, Glor RE, Losos JB. 2013. Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol. Lett. 16:175–82
    [Google Scholar]
  122. Warner DA, Chapman MN. 2011. Does solitary incubation enhance egg water uptake and offspring quality in a lizard that produces single-egg clutches?. J. Exp. Zool. A 315:149–55
    [Google Scholar]
  123. Wegener JE, Gartner GEA, Losos JB. 2014. Lizard scales in an adaptive radiation: Variation in scale number follows climatic and structural habitat diversity in Anolis lizards. Biol. J. Linn. Soc. 113:570–79
    [Google Scholar]
  124. While GM, Halliwell B, Uller T. 2014. The evolutionary ecology of parental care in lizards. Reproductive Biology and Phylogeny of Lizards and Tuatara JL Rheubert, DS Siegel, SE Trauth 588–619. Boca Raton, FL: CRC
    [Google Scholar]
  125. Williams EE. 1969. The ecology of colonization as seen in the zoogeography of anoline lizards on small islands. Q. Rev. Biol. 44:345–89
    [Google Scholar]
  126. Williams EE 1983. Ecomorphs, faunas, island size, and diverse end points in island radiations of Anolis. Lizard Ecology: Studies of a Model Organism RB Huey, ER Pianka, TW Schoener 326–70. Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  127. Winchell KM, Campbell-Staton SC, Losos JB, Revell LJ, Verrelli BC, Geneva AJ. 2023. Genome-wide parallelism underlies contemporary adaptation in urban lizards. PNAS 120:e2216789120
    [Google Scholar]
  128. Winchell KM, Carlen EJ, Puente-Rolón AR, Revell LJ. 2018. Divergent habitat use of two urban lizard species. Ecol. Evol. 8:25–35
    [Google Scholar]
  129. Winchell KM, Reynolds RG, Prado-Irwin SR, Puente-Rolón AR, Revell LJ. 2016. Phenotypic shifts in urban areas in the tropical lizard Anolis cristatellus. Evolution 70:1009–22
    [Google Scholar]
  130. Winchell KM, Schliep KP, Mahler DL, Revell LJ. 2020. Phylogenetic signal and evolutionary correlates of urban tolerance in a widespread neotropical lizard clade. Evolution 74:1274–88
    [Google Scholar]
  131. Wogan GOU, Yuan ML, Mahler DL, Wang IJ. 2023. Hybridization and transgressive evolution generate diversity in an adaptive radiation of Anolis lizards. Syst. Biol. 72:874–84
    [Google Scholar]
  132. Wright AN, Piovia-Scott J, Spiller DA, Takimoto G, Yang LH, Schoener TW. 2013. Pulses of marine subsidies amplify reproductive potential of lizards by increasing individual growth rate. Oikos 122:1496–504
    [Google Scholar]
  133. Wright AN, Yang LH, Piovia-Scott J, Spiller DA, Schoener TW. 2020. Consumer responses to experimental pulsed subsidies in isolated versus connected habitats. Am. Nat. 196:369–81
    [Google Scholar]
  134. Yánez-Muñoz MH, Urgilés MA, Altamirano-Benavides M, Cáceres SR 2010. Redescripción de Anolis proboscis Peters & Orcés (Reptilia: Polychrotidae), con el descubrimiento de las hembras de la especie y comentarios sobre su distribución y taxonomía. ACI Av. Cienc. Ing 2:B7–15
    [Google Scholar]
  135. Yuan ML, Wake MH, Wang IJ. 2019. Phenotypic integration between claw and toepad traits promotes microhabitat specialization in the Anolis adaptive radiation. Evolution 73:231–44
    [Google Scholar]
  136. Yuan ML, Westeen EP, Wogan GOU, Wang IJ. 2022. Female dewlap ornaments are evolutionarily labile and associated with increased diversification rates in Anolis lizards. Proc. R. Soc. B 289:20221871
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110421-103306
Loading
/content/journals/10.1146/annurev-ecolsys-110421-103306
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error