1932

Abstract

The study of environmental DNA (eDNA) has the potential to revolutionize biodiversity science and conservation action by enabling the census of species on a global scale in near real time. To achieve this promise, technical challenges must be resolved. In this review, we explore the main uses of eDNA as well as the complexities introduced by its misuse. Current eDNA methods require refinement and improved calibration and validation along the entire workflow to lessen false positives/negatives. Moreover, there is great need for a better understanding of the “natural history” of eDNA—its origins, state, lifetime, and transportation—and for more detailed insights concerning the physical and ecological limitations of eDNA use. Although eDNA analysis can provide powerful information, particularly in freshwater and marine environments, its impact is likely to be less significant in terrestrial settings. The broad adoption of eDNA tools in conservation will largely depend on addressing current uncertainties in data interpretation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110617-062306
2018-11-02
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/es/49/1/annurev-ecolsys-110617-062306.html?itemId=/content/journals/10.1146/annurev-ecolsys-110617-062306&mimeType=html&fmt=ahah

Literature Cited

  1. Aardema BW, Lorenz MG, Krumbein WE 1983. Protection of sediment adsorbed transforming DNA against enzymatic inactivation. Appl. Environ. Microbiol. 46:417–20
    [Google Scholar]
  2. Andersen K, Bird KL, Rasmussen M, Haile J, Breuning-Madsen H et al. 2011. Meta-barcoding of ‘dirt’ DNA from soil reflects vertebrate biodiversity. Mol. Ecol. 21:1966–79
    [Google Scholar]
  3. Anderson-Carpenter LL, McLachlan JS, Jackson ST, Kuch M, Lumibao CY, Poinar HN 2011. Ancient DNA from lake sediments: bridging the gap between paleoecology and genetics. BMC Evol. Biol. 11:30
    [Google Scholar]
  4. Armstrong KF, Ball SL 2005. DNA barcodes for biosecurity: invasive species identification. Philos. Trans. R. Soc. B 360:1813–23
    [Google Scholar]
  5. Bailiff DM, Karl DM 1991. Dissolved and particulate DNA dynamics during a spring bloom in the Antarctic Peninsula region. Deep-Sea Res 38:1077–95
    [Google Scholar]
  6. Barnes MA, Turner CR 2016. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17:1–17
    [Google Scholar]
  7. Barnes MA, Turner CR, Jerde CL, Renshaw MA, Chadderton WL, Lodge DM 2014. Environmental conditions influence eDNA persistence in aquatic systems. Environ. Sci. Technol. 48:1819–27
    [Google Scholar]
  8. Beja-Pereira A, Oliveira R, Schwartz MK, Luikart G 2009. Advancing ecological understanding through technological transformation in noninvasive genetics. Mol. Ecol. Res. 9:1279–301
    [Google Scholar]
  9. Bienert R, de Danieli S, Miquel C, Coissac E, Poillot C et al. 2012. Tracking earthworm communities from soil DNA. Mol. Ecol. 21:2017–30
    [Google Scholar]
  10. Biggs J, Ewald N, Valentini A, Gaboriaud C, Dejean T et al. 2015. Using eDNA to develop a national citizen science-based monitoring program for the great crested newt (Triturus cristatus). Biol. Conserv. 183:19–28
    [Google Scholar]
  11. Birks HJB, Birks HH 2016. How have studies of ancient DNA from sediments contributed to the reconstruction of Quaternary floras. New Phytol 209:499–506
    [Google Scholar]
  12. Blaalid R, Carlsen T, Kumar S, Halvorsen R, Ugland KI et al. 2012. Changes in the root-associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing. Mol. Ecol. 21:1827–908
    [Google Scholar]
  13. Bohmann K, Evans A, Gilbert TP, Carvalho GR, Creer S et al. 2014. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29:358–67
    [Google Scholar]
  14. Breshears DD, Whicker JJ, Johansen MP, Pinder JE 2003. Wind and water erosion and transport in semi-arid shrubland, grassland and forest ecosystems: quantifying dominance of horizontal wind-driven transport. Earth Surf. Process. Landf. 28:1189–209
    [Google Scholar]
  15. Brown EA, Chain FJJ, Crease TJ, MacIsaac HJ, Cristescu ME 2015. Divergence thresholds and divergent biodiversity estimates: Can metabarcoding reliably describe zooplankton communities. Ecol. Evol. 5:2234–51
    [Google Scholar]
  16. Brown EA, Chain FJJ, Zhan A, MacIsaac HJ, Cristescu ME 2016. Early detection of aquatic invaders using metabarcoding reveals a high number of non-indigenous species in Canadian ports. Divers. Distrib. 22:1045–59
    [Google Scholar]
  17. Caesar RM, Sorensson M, Cognato AI 2006. Integrating DNA data and traditional taxonomy to streamline biodiversity assessment: an example from edaphic beetles in the Klamath ecoregion, California, USA. Divers. Distrib. 12:483–89
    [Google Scholar]
  18. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johanson AJA, Holmes SP 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13:581–83
    [Google Scholar]
  19. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings CV et al. 2012. Biodiversity loss and its impact on humanity. Nature 486:59–67
    [Google Scholar]
  20. Carr SM, Marshall HD, Duggan AT, Flynn SMC, Johnstone KA et al. 2008. Phylogeographic genomics of mitochondrial DNA: highly-resolved patterns of intraspecific evolution and a multi-species, microarray-based DNA sequencing strategy for biodiversity studies. Comp. Biochem. Physiol. D 3:11–11
    [Google Scholar]
  21. Chain FJJ, Brown EA, MacIsaac HJ, Cristescu ME 2016. Metabarcoding reveals strong spatial structure and temporal turnover of zooplankton communities among marine and freshwater ports. Divers. Distrib. 22:493–504
    [Google Scholar]
  22. Clare EL. 2014. Molecular detection of trophic interactions: emerging trends, distinct advantages, significant considerations and conservation applications. Evol. Appl. 7:1144–57
    [Google Scholar]
  23. Clare EL, Chain FJJ, Littlefair JE, Cristescu ME 2016. The effects of parameter choice on defining molecular operational taxonomic units and resulting ecological analysis of metabarcoding data. Genome 59:981–90
    [Google Scholar]
  24. Clarke LJ, Beard JM, Swadling KM, Deagle BE 2017. Effect of marker choice and thermal cycling protocol on zooplankton DNA metabarcoding studies. Ecol. Evol. 7:873–83
    [Google Scholar]
  25. Coissac E, Riaz T, Puillandre N 2012. Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol. Ecol. 21:1834–47
    [Google Scholar]
  26. Cordier T, Esling P, Lejzerowicz F, Visco J, Ouadahi A et al. 2017. Predicting the ecological quality status of marine environments from eDNA metabarcoding data using supervised machine learning. Environ. Sci. Technol. 51:9118–26
    [Google Scholar]
  27. Creer S, Deiner K, Frey S, Porazinska D, Taberlet P, Thomas WK et al. 2016. The ecologist's field guide to sequence-based identification of biodiversity. Methods Ecol. Evol. 7:1008–18
    [Google Scholar]
  28. Cristescu ME. 2014. From barcoding single individuals to metabarcoding biological communities: towards an integrative approach to the study of global biodiversity. Trends Ecol. Evol. 29:566–71
    [Google Scholar]
  29. Darling JA, Blum JJ 2007. DNA-based methods for monitoring invasive species: a review and prospectus. Biol. Invasions 9:751–65
    [Google Scholar]
  30. Darling JA, Mahon AR 2011. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environ. Res. 111:978–88
    [Google Scholar]
  31. Deagle BE, Kirkwood R, Jarman SN 2014. Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Mol. Ecol. 18:2022–38
    [Google Scholar]
  32. Deiner K, Altermatt F 2014. Transport distance of invertebrate environmental DNA in a natural river. PLOS ONE 9:e88786
    [Google Scholar]
  33. Deiner K, Bik HM, Machler E, Seymour M, Lacoursiere-Roussel A et al. 2017b. Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol. Ecol. 26:5872–95
    [Google Scholar]
  34. Deiner K, Fronhofer EA, Machler E, Walser J-C, Altermatt F 2016. Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nat. Commun. 7:12544
    [Google Scholar]
  35. Deiner K, Renshaw MA, Yiyuan LI, Olds BP, Lodge DM 2017a. Long-range PCR allows sequencing of mitochondrial genomes form environmental DNA. Methods Ecol. Evol. 8:1888–98
    [Google Scholar]
  36. Deiner K, Walser JC, Machler E, Altermatt F 2015. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biol. Conserv. 183:53–63
    [Google Scholar]
  37. Dejean T, Valentini A, Duparc A, Pellier-Cuit S, Pompanon F et al. 2011. Persistence of environmental DNA in freshwater ecosystems. PLOS ONE 6:e23398
    [Google Scholar]
  38. Dejean T, Valentini A, Miquel C, Taberlet P, Bellemain E, Miaud C 2012. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol 49:953–59
    [Google Scholar]
  39. Ficetola GF, Miaud C, Pompanon F, Taberlet P 2008. Species detection using environmental DNA from water samples. Biol. Lett. 4:423–25
    [Google Scholar]
  40. Ficetola GF, Pansu J, Bonin A, Coissac E, Giguet-Covex C et al. 2014. Replication levels, false presences and the estimation of the presence absence from eDNA metabarcoding data. Mol. Ecol. Res. 15:543–56
    [Google Scholar]
  41. Flynn JM, Brown EA, Chain FJJ, MacIsaac HJ, Cristescu ME 2015. Towards accurate molecular identification of species in complex environmental samples: testing the performance of sequence filtering and clustering methods. Ecol. Evol. 5:2252–66
    [Google Scholar]
  42. Foote A, Thomsen P, Sveegaard S, Wahlberg M, Kielgast J et al. 2012. Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals. PLOS ONE 7:e4178
    [Google Scholar]
  43. Franklin JF. 1993. Preserving biodiversity: species, ecosystems, or landscapes. Ecol. Appl. 3:202–5
    [Google Scholar]
  44. Freeland JR. 2017. The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA. Genome 60:358–74
    [Google Scholar]
  45. Fujiwara A, Matsuhashi S, Doi H, Yamamoto S, Minamoto T 2016. Use of environmental DNA to survey the distribution of an invasive submerged plant in ponds. Freshw. Sci. 35:748–54
    [Google Scholar]
  46. Gardham S, Hose GC, Stephenson S, Chariton AA 2014. DNA metabarcoding meets experimental ecotoxicology: advancing knowledge on the ecological effect of copper in freshwater ecosystems. Adv. Ecol. Res. 51:79–104
    [Google Scholar]
  47. Geml J, Laursen GA, Timling I, McFarland JM, Booth MG et al. 2009. Molecular phylogenetic biodiversity assessment of arctic and boreal ectomycorrhizal Lactarius Pers. (Russulales; Basidiomycota) in Alaska, based on soil and sporocarp DNA. Mol. Ecol. 18:2213–27
    [Google Scholar]
  48. Giguet-Covex C, Pansu J, Arnaud F, Rey PJ, Griggo C et al. 2014. Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nat. Commun. 5:32311
    [Google Scholar]
  49. Glenn TC. 2011. Field guide to next-generation DNA sequencing. Mol. Ecol. Resour. 11:759–69
    [Google Scholar]
  50. Goldberg CS, Pilliod DS, Arkle RS, Waits LP 2011. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders. PLOS ONE 6:e22746
    [Google Scholar]
  51. Goldberg CS, Turner CR, Deiner K, Klymus KE, Francis P et al. 2016. Critical consideration for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 7:1299–307
    [Google Scholar]
  52. Goodwin S, McPherson JD, McPherson JD, McCombie WR 2016. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17:333–51
    [Google Scholar]
  53. Haile J, Holdaway R, Oliver K, Bunce M, Nielsen R et al. 2007. Ancient DNA chronology within sediment deposits: Are paleobiological reconstructions possible and is DNA leaching a factor. Mol. Biol. Evol. 24:982–89
    [Google Scholar]
  54. Hajibabaei M, Singer GAC, Clare El, Hebert PDN 2007. Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring. BMC Biol 5:24
    [Google Scholar]
  55. Harris JD. 2003. Can you bank on GenBank. Trends Ecol. Evol. 18:317–19
    [Google Scholar]
  56. Hebert PDN, Cywinska A, Ball SL, deWaard JR 2003. Biological identifications through DNA barcodes. Proc. Biol. Sci. 270:313–21
    [Google Scholar]
  57. Hebert PDN, Hollingsworth PM, Hajibabaei M 2016. From writing to reading the encyclopedia of life. Phil. Trans. R. Soc. B 371:20150321
    [Google Scholar]
  58. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ et al. 2011. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83:8604–10
    [Google Scholar]
  59. Höss M, Jaruga P, Zastawny T, Dizdaroglu M, Pääbo S 1996. DNA damage and DNA sequence retrieval from ancient tissues. Nucleic Acids Res 24:1304–7
    [Google Scholar]
  60. Hunter ME, Dorazio RM, Butterfield JSS, Meigs-Friend G, Nico LG, Ferrante JA 2017. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA. Mol. Ecol. Res. 17:221–29
    [Google Scholar]
  61. Ibáñez de Aldecoa AL, Zafra O, Gonzalez-Pastyor JE 2017. Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities. Front. Microbiol. 8:1390
    [Google Scholar]
  62. Jerde CL, Chadderton WL, Mahon AR, Renshaw MA, Corush J et al. 2013. Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program. Can. J. Fish. Aquat. Sci. 70:522–26
    [Google Scholar]
  63. Jerde CL, Mahon AR, Chadderton WL, Lodge DM 2011. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conserv. Lett. 4:150–57
    [Google Scholar]
  64. Kelly RP, Port JA, Yamahara KM, Crowder LB 2014a. Using environmental DNA to census marine fishes in a large mesocosm. PLOS ONE 9:e86175
    [Google Scholar]
  65. Kelly RP, Port JA, Yamahara KM, Martone RG, Lowell N et al. 2014b. Harnessing DNA to improve environmental management. Science 344:1455–56
    [Google Scholar]
  66. Kirshtein JD, Anderson CW, Wood JS, Longcore JE, Voytek MA 2007. Quantitative PCR detection of Batrachochytrium dendrobatidis DNA from sediments and water. Dis. Aquat. Organ. 77:11–15
    [Google Scholar]
  67. Koski LB, Golding GB 2001. The closest BLAST hit is often not the nearest neighbor. J. Mol. Evol. 52:540–42
    [Google Scholar]
  68. Kraaijeveld K, De Wever LA, Ventayol Garcia M, Buermans H et al. 2015. Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing. Mol. Ecol. Res. 15:8–16
    [Google Scholar]
  69. Kunin V, Engelbrektson A, Ochman H, Hugenholtz P 2010. Wrinkles in the rare biosphere: Pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ. Microbiol. 12:118–23
    [Google Scholar]
  70. Lacoursiere-Roussel A, Rosebal M, Bertnatchez L 2016. Estimating fish abundance and biomass from eDNA concentrations: variability among capture methods and environmental conditions. Mol. Ecol. Res. 16:1401–14
    [Google Scholar]
  71. Laszlo AH, Derrington IM, Ross BC, Brinkerhoff H, Adey A et al. 2014. Decoding long nanopore sequencing reads of natural DNA. Nat. Biotechnol. 32:829–33
    [Google Scholar]
  72. Leray M, Knowlton N 2015. DNA barcoding and metabarcoding of standardized sampling reveal patterns of marine benthic diversity. PNAS 112:2076–81
    [Google Scholar]
  73. Lindahl T. 1993. Instability and decay of the primary structure of DNA. Nature 362:709–15
    [Google Scholar]
  74. Lodge DM, Turner CR, Jerde CL, Barnes MA, Chadderton L et al. 2012. Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA. Mol. Ecol. 21:2555–58
    [Google Scholar]
  75. Mahé F, Mayor J, Bunge J, Chi J, Siemensmeyer T, Stoeck T et al. 2015. Comparing high-throughput platforms for sequencing the V4 region of SSU-rDNA in environmental microbial eukaryotic diversity surveys. J. Eukaryot. Microbiol. 62:338–45
    [Google Scholar]
  76. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–80
    [Google Scholar]
  77. Martin J-L, Maris V, Simberloff DS 2016. The need to respect nature and its limit challenges society and conservation science. PNAS 113:6105–12
    [Google Scholar]
  78. Mermillod-Blonding F. 2011. The functional significance of bioturbation and biodeposition on biogeochemical processes at the water-sediment interface in freshwater and marine ecosystems. J. N. Am. Benthol. Soc. 30:770–78
    [Google Scholar]
  79. Mullis KB, Faloona F 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–50
    [Google Scholar]
  80. Naeem S. 2002. Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology 83:1537–52
    [Google Scholar]
  81. Nathan LM, Simmons M, Wegleitner BJ, Jerde CL, Mahon AR 2014. Quantifying environmental DNA signals for aquatic invasive species across multiple detection platforms. Environ. Sci. Technol. 48:12800–6
    [Google Scholar]
  82. Ogram A, Sayler GS, Barkay T 1987. The extraction and purification of microbial DNA from sediments. J. Microbiol. Methods 7:57–66
    [Google Scholar]
  83. Pace NR. 1997. A molecular view of microbial diversity and the biosphere. Science 276:734–40
    [Google Scholar]
  84. Pansu J, Giguet-Covex C, Ficetola GF, Gielly L, Boyer F et al. 2015. Reconstructing long-term human impacts on plant communities. An ecological approach based on lake sediment DNA. Mol. Ecol. 24:1485–98
    [Google Scholar]
  85. Paul JH, Jeffrey WH, DeFlaun MF 1987. Dynamics of extracellular DNA in the marine environment. Appl. Environ. Microbiol. 53:170–79
    [Google Scholar]
  86. Parameswaran P, Jalili R, Tao L, Shokralla S, Gharizadeh B, Ronaghi M et al. 2007. A pyrosequencing-tailored nucleotide barcode design unveils opportunities for large-scale sample multiplexing. Nucleic Acids Res 35:e130
    [Google Scholar]
  87. Parducci L, Matetovici I, Fontana S, Bennett KD, Suyama Y et al. 2013. Molecular- and pollen-based vegetation analysis in lake sediments from central Scandinavia. Mol. Ecol. 22:3511–24
    [Google Scholar]
  88. Pawlowski J, Lejzerowicz F, Apotheloz-Perret-Gentil L, Visco J, Esling P 2016. Protist metabarcoding and environmental biomonitoring: time for change. Eur. J. Protistol. 55:12–25
    [Google Scholar]
  89. Pfunder M, Holzgang O, Frey JE 2004. Development of microarray-based diagnostics of voles and shrews for use in biodiversity monitoring studies, and evaluation of mitochondrial cytochrome oxidase I versus cytochrome b as genetic markers. Mol. Ecol. 13:1277–86
    [Google Scholar]
  90. Pietramellara G, Ascher J, Borgogni F, Ceccherini MT, Guerri G, Nannipieri P 2009. Extracellular DNA in soil and sediment: fate and ecological relevance. Biol. Fertil. Soils 45:219–35
    [Google Scholar]
  91. Piggott MP. 2016. Evaluating the effects of laboratory protocols on eDNA detection probability for an endangered freshwater fish. Ecol. Evol. 6:2739–50
    [Google Scholar]
  92. Pilliod DS, Goldberg CS, Arkle RS, Waits LP 2013. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Can. J. Fish. Aquat. Sci. 70:1123–30
    [Google Scholar]
  93. Piñol J, Mir G, Gomez-Polo P, Agust N 2015. Universal and blocking primer mismatches limit the use of high-throughput DNA sequencing for the quantitative metabarcoding of arthropods. Mol. Ecol. Resour. 15:819–30
    [Google Scholar]
  94. Pochon X, Zaiko A, Fletcher LM, Laroche O, Wood SA 2017. Wanted dead or alive? Using metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity applications. PLOS ONE 12:e0187636
    [Google Scholar]
  95. Porter TM, Hajibabaei M 2018. Scaling up: a guide to high throughput genomic approaches for biodiversity analysis. Mol. Ecol. 27:313–38
    [Google Scholar]
  96. Ratnasingham S, Hebert PDN 2007. BOLD: the Barcode of Life Data System. Mol. Ecol. Res. 7:355–64
    [Google Scholar]
  97. Rees HC, Maddison BC, Middleditch DJ, Patmore JR, Gough KC 2014. The detection of aquatic animal species using environmental DNA—a review of eDNA as a survey tool in ecology. J. Appl. Ecol. 51:1450–59
    [Google Scholar]
  98. Roussel J-M, Paillisson J-M, Treguier A, Petit E 2015. The downside of eDNA as a survey tool in water bodies. J. Appl. Ecol. 52:823–26
    [Google Scholar]
  99. Sanger FS, Nicklen ARC 1977. DNA sequencing with chain-terminating inhibitors. PNAS 74:5463–67
    [Google Scholar]
  100. Sansom BJ, Sassoubre LM 2017. Environmental DNA (eDNA) shedding and decay rates to model freshwater mussel eDNA transport in a river. Environ. Sci. Technol. 51:14244–53
    [Google Scholar]
  101. Sawyer S, Krause J, Guschanski K, Savolainen V, Pääbo S 2012. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLOS ONE 7:e34131
    [Google Scholar]
  102. Schmelzle MC, Kinziger AP 2016. Using occupancy modelling to compare environmental DNA to traditional field methods for regional-scale monitoring of an endangered aquatic species. Mol. Ecol. Resour. 16:895–908
    [Google Scholar]
  103. Scott R, Zhan A, Brown EA, Chain FJJ, Cristescu ME et al. 2018. Optimization and performance testing of a sequence processing pipeline applied to detection of nonindigenous species. Evol. Appl. 11:891–905
    [Google Scholar]
  104. Scriver M, Marinich A, Wilson C, Freeland J 2015. Development of species-specific environmental DNA (eDNA) markers for invasive aquatic plants. Aquat. Bot. 122:27–31
    [Google Scholar]
  105. Shaw JL, Clarke LJ, Wedderburn SD, Barnes TC, Weyrich LS, Cooper A 2016. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biol. Conserv. 197:131–38
    [Google Scholar]
  106. Shokralla S, Spall JL, Gibson JF, Hajibabaei M 2012. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 21:1794–805
    [Google Scholar]
  107. Sigsgaard EE, Nielsen IB, Bach SS, Lorenzen ED, Robinson DP, Knudsen SW et al. 2016. Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA. Nat. Ecol. Evol. 1:0004
    [Google Scholar]
  108. Simberloff D. 2005. The politics of assessing risk for biological invasions: the USA as a case study. Trends Ecol. Evol. 20:216–22
    [Google Scholar]
  109. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM et al. 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere.”. PNAS 103:12115–20
    [Google Scholar]
  110. Sutherland WJ, Bardsley S, Clout M, Depledge MH, Dicks LV et al. 2013. A horizon scan of global conservation issues for 2013. Trends Ecol. Evol. 28:16–22
    [Google Scholar]
  111. Swank WT, Vanlear DH 1992. Multiple-use management: ecosystem perspectives of multiple-use management. Ecol. Appl. 2:219–20
    [Google Scholar]
  112. Taberlet P, Coissac E, Hajibabaei M, Rieseberg LH 2012. Environmental DNA. Mol. Ecol. 21:1789–93
    [Google Scholar]
  113. Teal LR, Bulling MT, Parker ER, Solan M 2008. Global patterns of bioturbation intensity and the mixed depth of marine soft sediments. Aquat. Biol. 2:207–18
    [Google Scholar]
  114. Thomsen PF, Kielgast J, Iversen LL, Wiuf C, Rasmussen M et al. 2012. Monitoring endangered freshwater biodiversity by environmental DNA. Mol. Ecol. 21:2565–73
    [Google Scholar]
  115. Thomsen PF, Willerslev E 2015. Environmental DNA—an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183:4–18
    [Google Scholar]
  116. Treguier A, Paillisson J-M, Dejean T, Valentini A, Schlaepfer MA, Rousell J-M 2014. Environmental DNA surveillance for invertebrate species: advantage and technical limitations to detect invasive crayfish Procambarus clarkii in freshwater ponds. J. Appl. Ecol 51:871–79
    [Google Scholar]
  117. Tremblay J, Singh K, Fern A, Kirton ES, He S et al. 2015. Primer and platform effects on 16S rRNA tag sequencing. Front. Microbiol. 6:771
    [Google Scholar]
  118. Turner CR, Uy KL, Everhart RC 2015. Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biol. Conserv. 183:93–102
    [Google Scholar]
  119. Valentini A, Taberlet P, Miaud C, Civade R, Herder J et al. 2016. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25:929–42
    [Google Scholar]
  120. Virgilio M, Backeljau T, Nevado B, De Meyer M 2010. Comparative performances of DNA barcoding across insect orders. BMC Bioinform 11:206
    [Google Scholar]
  121. Wilcox TM, McKelvey KS, Young MK, Sepulveda AJ, Shepard BB et al. 2016. Understanding environmental DNA detection probabilities: a case study using a stream-dwelling char Salvelinus fontinalis. Biol. Conserv 194:209–16
    [Google Scholar]
  122. Willerslev E, Hansen AJ, Binladen J, Brand TB, Gilbert MTP et al. 2003. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300:791–95
    [Google Scholar]
  123. Willerslev E, Hansen AJ, Poinar HN 2004. Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol. Evol. 19:141–47
    [Google Scholar]
  124. Wood SA, Smith KF, Banks JC, Tremblay LA, Rhodes L et al. 2013. Molecular genetic tools for environmental monitoring of New Zealand's aquatic habitats, past, present and the future. N.Z. J. Mar. Freshw. Res. 47:90–119
    [Google Scholar]
  125. Yeates DK, Seago A, Nelson L, Cameron SL, Joseph L, Trueman JWH 2010. Integrative taxonomy, or iterative taxonomy. Syst. Entomol. 36:209–17
    [Google Scholar]
  126. Yoccoz NG, Bråthen KA, Gielly L, Haile J, Eduards ME, Goslar T et al. 2012. DNA from soil mirrors plant taxonomic and growth form diversity. Mol. Ecol. 21:3647–55
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110617-062306
Loading
/content/journals/10.1146/annurev-ecolsys-110617-062306
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error