1932

Abstract

Coexisting species may be evolutionarily proximate or distant, resulting in phylogenetically poor or rich communities. This variation is often considered to result from present assembly processes. We argue that, under certain conditions, deep-past processes might control the phylogenetic diversity of communities. First, deep-past effects involve macroevolutionary processes, such as diversification rate, niche conservatism, or dispersal, in the lineages that constitute communities. Second, deep-past processes in the respective region or in the habitat type play a role, for instance, through age, area, stability, or connectivity. Third, the deep past may affect communities via trophic interactions (i.e., communities of enemies or mutualists or communities of hosts). We suggest that deep-past effects can be identified in local communities by measuring phylogenetic diversity in different species pools. We also show how community phylogenetic diversity results in positive or negative eco-evolutionary feedback, and we identify present-day conservation challenges that may profit from a deep-time perspective.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110617-062348
2018-11-02
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/es/49/1/annurev-ecolsys-110617-062348.html?itemId=/content/journals/10.1146/annurev-ecolsys-110617-062348&mimeType=html&fmt=ahah

Literature Cited

  1. Ackerly DD. 2003. Community assembly, niche conservatism, and adaptive evolution in changing environments. Int. J. Plant Sci. 164:S165–84
    [Google Scholar]
  2. Agrawal AA. 2000. Host‐range evolution: adaptation and trade‐offs in fitness of mites on alternative hosts. Ecology 81:500–8
    [Google Scholar]
  3. Anacker BL. 2011. Phylogenetic patterns of endemism and diversity. Serpentine: The Evolution and Ecology of a Model System49–70 Berkeley: Univ. Calif. Press
    [Google Scholar]
  4. Appanah S. 1993. Mass flowering of dipterocarp forests in the aseasonal tropics. J. Biosci. 18:457–74
    [Google Scholar]
  5. Bartish IV, Hennekens S, Aidoud A, Hennion F, Prinzing A 2010. Species pools along contemporary environmental gradients represent different levels of diversification. J. Biogeogr. 37:2317–31
    [Google Scholar]
  6. Bartish IV, Ozinga WA, Bartish MI, Wamelink GW, Hennekens SM, Prinzing A 2016. Different habitats within a region contain evolutionary heritage from different epochs depending on the abiotic environment. Glob. Ecol. Biogeogr. 25:274–85
    [Google Scholar]
  7. Bascompte J, Jordano P 2007. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38:567–93
    [Google Scholar]
  8. Bateman RM, Crane PR, DiMichele WA, Kenrick PR, Rowe NP et al. 1998. Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation. Annu. Rev. Ecol. Syst. 29:263–92
    [Google Scholar]
  9. Bennett JA, Lamb EG, Hall JC, Cardinal‐McTeague WM, Cahill JF 2013. Increased competition does not lead to increased phylogenetic overdispersion in a native grassland. Ecol. Lett. 16:1168–76
    [Google Scholar]
  10. Bond WJ, Slingsby P 1983. Seed dispersal by ants in shrublands of the Cape Province and its evolutionary implications. S. Afr. J. Sci. 79:231–33
    [Google Scholar]
  11. Brändle M, Brandl R 2001. Species richness of insects and mites on trees: expanding Southwood. J. Anim. Ecol. 70:491–504
    [Google Scholar]
  12. Bredenkamp GJ, Spada F, Kazmierczak E 2002. On the origin of northern and southern hemisphere grasslands. Plant Ecol 163:209–29
    [Google Scholar]
  13. Bromham L, Hua X, Lanfear R, Cowman PF 2015. Exploring the relationships between mutation rates, life history, genome size, environment, and species richness in flowering plants. Am. Nat. 185:507–24
    [Google Scholar]
  14. Brooks DR, McLennan DA 2002. The Nature of Diversity: An Evolutionary Voyage of Discovery Chicago: Univ. Chicago Press
    [Google Scholar]
  15. Butaye J, Jacquemyn H, Honnay O, Hermy M 2002. The species pool concept applied to forests in a fragmented landscape: dispersal limitation versus habitat limitation. J. Veg. Sci. 13:27–34
    [Google Scholar]
  16. Cadotte MW, Davies TJ 2016. Phylogenies in Ecology: A Guide to Concepts and Methods Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  17. Carlucci MB, Seger GD, Sheil D, Amaral IL, Chuyong GB et al. 2017. Phylogenetic composition and structure of tree communities shed light on historical processes influencing tropical rainforest diversity. Ecography 40:521–30
    [Google Scholar]
  18. Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW 2009. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12:693–715
    [Google Scholar]
  19. Connor EF, Faeth SH, Simberloff D, Opler PA 1980. Taxonomic isolation and the accumulation of herbivorous insects: a comparison of introduced and native trees. Ecol. Entomol. 5:205–11
    [Google Scholar]
  20. Cornell HV. 2013. Is regional species diversity bounded or unbounded. Biol. Rev. 88:140–65
    [Google Scholar]
  21. Costion CM, Edwards W, Ford AJ, Metcalfe DJ, Cross HB et al. 2015. Using phylogenetic diversity to identify ancient rain forest refugia and diversification zones in a biodiversity hotspot. Divers. Distrib. 21:279–89
    [Google Scholar]
  22. Crisp MD, Cook LG 2012. Phylogenetic niche conservatism: What are the underlying evolutionary and ecological causes. New Phytol 196:681–94
    [Google Scholar]
  23. Crisp MD, Cook L, Steane D 2004. Radiation of the Australian flora: What can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities. Philos. Trans. R. Soc. B 359:1551–71
    [Google Scholar]
  24. Davies TJ, Buckley LB 2012. Exploring the phylogenetic history of mammal species richness. Glob. Ecol. Biogeogr. 21:1096–105
    [Google Scholar]
  25. Davies TJ, Smith GF, Bellstedt DU, Boatwright JS, Bytebier B et al. 2011. Extinction risk and diversification are linked in a plant biodiversity hotspot. PLOS Biol 9:e1000620
    [Google Scholar]
  26. Deniau M, Jung V, Le Lann C, Kellner H, Béchade B et al. 2018. Janzen–Connell patterns can be induced by fungal-driven decomposition and compensated by ectomycorrhizal fungi accumulated under a closely related canopy. Funct. Ecol. 32:785–98
    [Google Scholar]
  27. DiMichele WA, Behrensmeyer AK, Olszewski TD, Labandeira CC, Pandolfi JM et al. 2004. Long-term stasis in ecological assemblages: evidence from the fossil record. Annu. Rev. Ecol. Evol. Syst. 35:285–322
    [Google Scholar]
  28. Djamali M, Baumel A, Brewer S, Jackson ST, Kadereit JW et al. 2012. Ecological implications of Cousinia Cass. (Asteraceae) persistence through the last two glacial–interglacial cycles in the continental Middle East for the Irano-Turanian flora. Rev. Palaeobot. Palynol. 172:10–20
    [Google Scholar]
  29. Duarte LDS, Bergamin RS, Marcilio-Silva V, Seger GDDS, Marques MCM 2014. Phylobetadiversity among forest types in the Brazilian Atlantic Forest complex. PLOS ONE 9:e105043
    [Google Scholar]
  30. Ebel ER, DaCosta JM, Sorenson MD, Hill RI, Briscoe AD et al. 2015. Rapid diversification associated with ecological specialization in Neotropical Adelpha butterflies. Mol. Ecol. 24:2392–405
    [Google Scholar]
  31. Ehrlich PR, Raven PH 1964. Butterflies and plants: a study in coevolution. Evolution 18:586–608
    [Google Scholar]
  32. Eiserhardt WL, Borchsenius F, Plum CM, Ordonez A, Svenning J-C 2015. Climate-driven extinctions shape the phylogenetic structure of temperate tree floras. Ecol. Lett. 18:263–72
    [Google Scholar]
  33. Eiserhardt WL, Couvreur TL, Baker WJ 2017. Plant phylogeny as a window on the evolution of hyperdiversity in the tropical rainforest biome. New Phytol 214:1408–22
    [Google Scholar]
  34. Emerson BC, Gillespie RG 2008. Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol. Evol. 23:619–30
    [Google Scholar]
  35. Farrell BD, Dussourd DE, Mitter C 1991. Escalation of plant defense: Do latex and resin canals spur plant diversification. Am. Nat. 138:881–900
    [Google Scholar]
  36. Feeny P. 1976. Plant apparency and chemical defense. Biochemical Interactions Between Plants and Insects JW Wallace, L Mansell 1–14 New York: Plenum
    [Google Scholar]
  37. Fine PVA. 2015. Ecological and evolutionary drivers of geographic variation in species diversity. Annu. Rev. Ecol. Evol. Syst. 46:369–92
    [Google Scholar]
  38. Fine PVA, Ree RH 2006. Evidence for a time-integrated species-area effect on the latitudinal gradient in tree diversity. Am. Nat. 168:796–804
    [Google Scholar]
  39. Francisco‐Ortega J, Barber JC, Santos‐Guerra A, Febles‐Hernández R, Jansen RK 2001. Origin and evolution of the endemic genera of Gonosperminae (Asteraceae: Anthemideae) from the Canary Islands: evidence from nucleotide sequences of the internal transcribed spacers of the nuclear ribosomal DNA. Am. J. Bot. 88:161–69
    [Google Scholar]
  40. Futuyma DJ. 2010. Evolutionary constraint and ecological consequences. Evolution 64:1865–84
    [Google Scholar]
  41. Gerhold P, Cahill JF, Winter M, Bartish IV, Prinzing A 2015. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct. Ecol. 29:600–14
    [Google Scholar]
  42. Gerhold P, Pärtel M, Tackenberg O, Hennekens SM, Bartish I et al. 2011. Phylogenetically poor plant communities receive more alien species, which more easily coexist with natives. Am. Nat. 177:668–80
    [Google Scholar]
  43. Goßner M, Chao A, Bailey R, Prinzing A 2009. Native fauna on exotic trees: phylogenetic conservatism and geographic contingency in two lineages of phytophages on two lineages of trees. Am. Nat. 173:599–614
    [Google Scholar]
  44. Grandcolas P, Trewick SA 2016. What is the meaning of extreme phylogenetic diversity? The case of phylogenetic relict species. Biodiversity Conservation and Phylogenetic Systematics R Pellens, P Grandcolas 99–115 New York: Springer Int.
    [Google Scholar]
  45. Guevara JE, Damasco G, Baraloto C, Fine PV, Peñuela MC et al. 2016. Low phylogenetic beta diversity and geographic neo-endemism in Amazonian white-sand forests. Biotropica 48:34–46
    [Google Scholar]
  46. Halloy SR, Mark AF 2003. Climate-change effects on alpine plant biodiversity: a New Zealand perspective on quantifying the threat. Arct. Antarct. Alp. Res. 35:248–54
    [Google Scholar]
  47. Horner-Devine MC, Bohannan BJM 2006. Phylogenetic clustering and overdispersion in bacterial communities. Ecology 87:S100–8
    [Google Scholar]
  48. Hughes C, Eastwood R 2006. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. PNAS 103:10334–39
    [Google Scholar]
  49. Jacobs BF, Kingston JD, Jacobs LL 1999. The origin of grass-dominated ecosystems. Ann. Mo. Bot. Gard. 86:590–643
    [Google Scholar]
  50. Janz N, Nylin S 2008. The oscillation hypothesis of host-plant range and speciation. Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects KJ Tilmon 203–15 Berkeley: Univ. Calif. Press
    [Google Scholar]
  51. Janzen DH. 1970. Herbivores and the number of tree species in tropical forests. Am. Nat. 104:501–8
    [Google Scholar]
  52. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O et al. 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–82
    [Google Scholar]
  53. Kissling WD, Eiserhardt WL, Baker WJ, Borchsenius F, Couvreur TL et al. 2012. Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. PNAS 109:7379–84
    [Google Scholar]
  54. Kooyman R, Rossetto M, Cornwell W, Westoby M 2011. Phylogenetic tests of community assembly across regional to continental scales in tropical and subtropical rain forests. Glob. Ecol. Biogeogr. 20:707–16
    [Google Scholar]
  55. Kooyman RM, Wilf P, Barreda VD, Carpenter RJ, Jordan GJ et al. 2014. Paleo-Antarctic rainforest into the modern Old World tropics: the rich past and threatened future of the “southern wet forest survivors. Am. J. Bot. 101:2121–35
    [Google Scholar]
  56. Latham RE, Ricklefs RE 1993. Continental comparisons of temperate-zone tree species diversity. Species Diversity in Ecological Communities: Historical and Geographical Perspectives Chicago: Univ. Chicago Press
    [Google Scholar]
  57. Leprieur F, Colosio S, Descombes P, Parravicini V, Kulbicki M et al. 2016. Historical and contemporary determinants of global phylogenetic structure in tropical reef fish faunas. Ecography 39:825–35
    [Google Scholar]
  58. Lessard JP, Belmaker J, Myers JA, Chase JM, Rahbek C 2012. Inferring local ecological processes amid species pool influences. Trends Ecol. Evol. 27:600–7
    [Google Scholar]
  59. Lewinsohn TM, Novotny V, Basset Y 2005. Insects on plants: diversity of herbivore assemblages revisited. Annu. Rev. Ecol. Evol. Syst. 36:597–620
    [Google Scholar]
  60. Liu X, Liang M, Etienne RS, Wang Y, Staehelin C, Yu S 2012. Experimental evidence for a phylogenetic Janzen-Connell effect in a subtropical forest. Ecol. Lett. 15:111–18
    [Google Scholar]
  61. Losos JB. 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11:995–1003
    [Google Scholar]
  62. Lososová Z, Šmarda P, Chytrý M, Purschke O, Pyšek P et al. 2015. Phylogenetic structure of plant species pools reflects habitat age on the geological time scale. J. Veg. Sci. 26:1080–89
    [Google Scholar]
  63. Mannion PD, Upchurch P, Benson RBJ, Goswami A 2014. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29:42–50
    [Google Scholar]
  64. Marten A, Braendle M, Brandl R 2006. Habitat type predicts genetic population differentiation in freshwater invertebrates. Mol. Ecol. 15:2643–51
    [Google Scholar]
  65. May R. 1978. The dynamics and diversity of insect faunas. Diversity of Insect Faunas LA Mound, N Waloff 188–204 London: Blackwell Sci.
    [Google Scholar]
  66. Mitter C, Brooks DR 1983. Phylogenetic aspects of coevolution. Coevolution DJ Futuyma, M Slatkin 65–98 Sunderland, MA: Sinauer
    [Google Scholar]
  67. Moen DS, Morlon H 2014. Why does diversification slow down. Trends Ecol. Evol. 29:190–97
    [Google Scholar]
  68. Moen DS, Smith SA, Wiens JJ 2009. Community assembly through evolutionary diversification and dispersal in Middle American treefrogs. Evolution 63:3228–47
    [Google Scholar]
  69. Mopper S. 1996. Adaptive genetic structure in phytophagous insect populations. Trends Ecol. Evol. 11:235–38
    [Google Scholar]
  70. Morley RJ. 2000. Origin and Evolution of Tropical Rain Forests Chichester, UK: Wiley
    [Google Scholar]
  71. Nyman T, Linder HP, Pena C, Malm T, Wahlberg N 2012. Climate-driven diversity dynamics in plants and plant-feeding insects. Ecol. Lett. 15:889–98
    [Google Scholar]
  72. Padayachee AL, Procheş Ş 2016. Patterns in the diversity and endemism of extant Eocene age lineages across southern Africa. Biol. J. Linn. Soc. 117:482–91
    [Google Scholar]
  73. Pigot AL, Etienne RS 2015. A new dynamic null model for phylogenetic community structure. Ecol. Lett. 18:153–63
    [Google Scholar]
  74. Pollock LJ, Thuiller W, Jetz W 2017. Large conservation gains possible for global biodiversity facets. Nature 546:141–44
    [Google Scholar]
  75. Pour MK, Bandehbahman S, Gras R, Cristescu ME 2017. An individual-based modeling approach to investigate sympatric speciation via specialized resource usage. Open J. Ecol. 7:222–69
    [Google Scholar]
  76. Prinzing A. 2016. On the opportunity of using phylogenetic information to ask evolutionary questions in functional community ecology. Folia Geobot 51:69–74
    [Google Scholar]
  77. Prinzing A, Ozinga W, Brändle M, Courty P-E, Hennion F et al. 2017. Benefits from living together? Clades whose species use similar habitats may persist as a result of eco‐evolutionary feedbacks. New Phytol 213:66–82
    [Google Scholar]
  78. Prinzing A, Powrie LW, Hennekens SM, Bartish IV, Ozinga WA 2016. ‘High‐co‐occurrence genera’: weak but consistent relationships with global richness, niche partitioning, hybridization and decline. Glob. Ecol. Biogeogr. 25:55–64
    [Google Scholar]
  79. Procheş Ş, Ramdhani S 2013. Eighty-three lineages that took over the world: a first review of terrestrial cosmopolitan tetrapods. J. Biogeogr. 40:1819–31
    [Google Scholar]
  80. Procheş Ş, Ramdhani S, Perera SJ, Ali JR, Gairola S 2015. Global hotspots in the present-day distribution of ancient animal and plant lineages. Sci. Rep. 5:15457
    [Google Scholar]
  81. Procheş Ş, Wilson JRU, Cowling RM 2006. How much evolutionary history in a 10×10 m plot. Proc. R. Soc. B 273:1143–48
    [Google Scholar]
  82. Qian H. 2014. Contrasting relationships between clade age and temperature along latitudinal versus elevational gradients for woody angiosperms in forests of South America. J. Veg. Sci. 25:1208–15
    [Google Scholar]
  83. Rabosky DL. 2009. Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. Ecol. Lett. 12:735–43
    [Google Scholar]
  84. Rathcke B. 1985. Slugs as generalist herbivores: tests of three hypotheses on plant choices. Ecology 66:828–36
    [Google Scholar]
  85. Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J et al. 2003. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci. 164:S143–64
    [Google Scholar]
  86. Reitalu T, Gerhold P, Poska A, Pärtel M, Väli V, Veski S 2015. Novel insights into post-glacial vegetation change: functional and phylogenetic diversity in pollen records. J. Veg. Sci. 26:911–22
    [Google Scholar]
  87. Rejmánek M, Thomsen CD, Peters ID 1991. Invasive vascular plants of California. Biogeography of Mediterranean Invasions RH Groves, F Di Castri 81–101 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  88. Richardson DM, Rejmánek M 2011. Trees and shrubs as invasive alien species—a global review. Div. Distrib. 17:788–809
    [Google Scholar]
  89. Ricklefs RE. 2006. Global variation in the diversification rate of passerine birds. Ecology 87:2468–78
    [Google Scholar]
  90. Ricklefs RE, Jønsson KA 2014. Clade extinction appears to balance species diversification in sister lineages of Afro-Oriental passerine birds. PNAS 111:11756–61
    [Google Scholar]
  91. Ricklefs RE, Schluter D 1993. Species Diversity in Ecological Communities: Historical and Geographical Perspectives Chicago: Univ. Chicago Press
    [Google Scholar]
  92. Rohde K. 1992. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65:514–27
    [Google Scholar]
  93. Roy K, Hunt G, Jablonski D, Krug AZ, Valentine JW 2009. A macroevolutionary perspective on species range limits. Proc. R. Soc. B 276:1485–93
    [Google Scholar]
  94. Sanderson MJ, Donoghue MJ 1994. Shifts in diversification rate with the origin of angiosperms. Science 264:1590–93
    [Google Scholar]
  95. Sargent RD, Kembel SW, Emery NC, Forrestel EJ, Ackerly DD 2011. Effect of local community phylogenetic structure on pollen limitation in an obligately insect-pollinated plant. Am. J. Bot. 98:283–89
    [Google Scholar]
  96. Savage JA, Cavender-Bares J 2012. Habitat specialization and the role of trait lability in structuring diverse willow (genus Salix) communities. Ecology 93:S138–50
    [Google Scholar]
  97. Selosse MA, Richard F, He X, Simard SW 2006. Mycorrhizal networks: des liaisons dangereuses. Trends Ecol. Evol. 21:621–28
    [Google Scholar]
  98. Sotomayor DA, Lortie CJ 2015. Indirect interactions in terrestrial plant communities: emerging patterns and research gaps. Ecosphere 6:1–23
    [Google Scholar]
  99. Stebbins GL. 1974. Flowering Plants: Evolution Above the Species Level Cambridge, MA: Belknap Press
    [Google Scholar]
  100. Strömberg CAE. 2011. Evolution of grasses and grassland ecosystems. Annu. Rev. Earth Planet. Sci. 39:517–44
    [Google Scholar]
  101. Thompson JN. 2005. The Geographic Mosaic of Coevolution Chicago: Chicago Univ. Press
    [Google Scholar]
  102. Thompson JN, Nuismer SL, Merg K 2004. Plant polyploidy and the evolutionary ecology of plant/animal interactions. Biol. J. Linn. Soc. 82:511–19
    [Google Scholar]
  103. Tolley KA, Tilbury CR, Measey GJ, Menegon M, Branch WR, Matthee CA 2011. Ancient forest fragmentation or recent radiation? Testing refugial speciation models in chameleons within an African biodiversity hotspot. J. Biogeogr. 38:1748–60
    [Google Scholar]
  104. Vamosi JC, Vamosi SM 2011. Factors influencing diversification in angiosperms: at the crossroads of intrinsic and extrinsic traits. Am. J. Bot. 98:460–71
    [Google Scholar]
  105. Veresoglou SD, Rillig MC 2014. Do closely related plants host similar arbuscular mycorrhizal fungal communities? A meta-analysis. Plant Soil 377:395–406
    [Google Scholar]
  106. Wagner DL, Liebherr JK 1992. Flightlessness in insects. Trends Ecol. Evol. 7:216–20
    [Google Scholar]
  107. Ward LK, Hackshaw A, Clarke RT 2003. Do food-plant preferences of modern families of phytophagous insects and mites reflect past evolution with plants. Biol. J. Linn. Soc. 78:51–83
    [Google Scholar]
  108. Ward LK, Spalding DF 1993. Phytophagous British insects and mites and their food-plant families: total numbers and polyphagy. Biol. J. Linn. Soc. 49:257–76
    [Google Scholar]
  109. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33:475–505
    [Google Scholar]
  110. Weber MG, Strauss SY 2016. Coexistence in close relatives: beyond competition and reproductive isolation in sister taxa. Annu. Rev. Ecol. Evol. Syst. 47:359–81
    [Google Scholar]
  111. Whitham TG, Young WP, Martinsen GD, Gehring CA, Schweitzer JA et al. 2003. Community and ecosystem genetics: a consequence of the extended phenotype. Ecology 84:559–73
    [Google Scholar]
  112. Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB et al. 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13:1310–24
    [Google Scholar]
  113. Wiens JJ, Donoghue MJ 2004. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19:639–44
    [Google Scholar]
  114. Wilf P, Cúneo NR, Escapa IH, Pol D, Woodburne MO 2013. Splendid and seldom isolated: the paleobiogeography of Patagonia. Annu. Rev. Earth Planet. Sci. 41:561–603
    [Google Scholar]
  115. Willis KJ, Bennett KD, Birks HJB 2009. Variability in thermal and UV-B energy fluxes through time and their influence on plant diversity and speciation. J. Biogeogr. 36:1630–44
    [Google Scholar]
  116. Wing SL, Herrera F, Jaramillo CA, Gómez-Navarro C, Wilf P, Labandeira CC 2009. Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest. PNAS 106:18627–32
    [Google Scholar]
  117. Winkler I, Mitter C 2008. The phylogenetic dimension of insect-plant interactions: a review of recent evidence. Specialization, Speciation, and Radiation KJ Tilmon 240–63 Berkeley: Univ. Calif. Press
    [Google Scholar]
  118. Yan Y, Yang X, Tang Z 2013. Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai-Tibetan Plateau. Ecol. Evol. 3:4584–95
    [Google Scholar]
  119. Yguel B, Bailey R, Everhart D, Vialatte A, Vasseur C et al. 2011. Phytophagy on phylogenetically isolated trees: why hosts should escape their relatives. Ecol. Lett. 14:1117–24
    [Google Scholar]
  120. Yguel B, Bailey RI, Villemant C, Brault A, Jactel H, Prinzing A 2014. Insect herbivores should follow plants escaping their relatives. Oecologia 176:521–32
    [Google Scholar]
  121. Yguel B, Jactel H, Pearse SI, Moen D, Winter M et al. 2016. The evolutionary legacy of diversification predicts ecosystem function. Am. Nat. 188:398–410
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110617-062348
Loading
/content/journals/10.1146/annurev-ecolsys-110617-062348
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error