1932

Abstract

Mesophotic coral reefs, currently defined as deep reefs between 30 and 150 m, are linked physically and biologically to their shallow water counterparts, have the potential to be refuges for shallow coral reef taxa such as coral and sponges, and might be a source of larvae that could contribute to the resiliency of shallow water reefs. Mesophotic coral reefs are found worldwide, but most are undescribed and understudied. Here, we review our current knowledge of mesophotic coral reefs and their functional ecology as it relates to their geomorphology, changes in the abiotic environment along depth gradients, trophic ecology, their reproduction, and their connectivity to shallow depths. Understanding the ecology of mesophotic coral reefs, and the connectivity between them and their shallow water counterparts, is now a primary focus for many reef studies as the worldwide degradation of shallow coral reefs, and the ecosystem services they provide, continues unabated.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110617-062423
2018-11-02
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/es/49/1/annurev-ecolsys-110617-062423.html?itemId=/content/journals/10.1146/annurev-ecolsys-110617-062423&mimeType=html&fmt=ahah

Literature Cited

  1. Alamaru A, Loya Y, Brokovich E, Yam R, Shemesh A 2009. Carbon and nitrogen utilization in two species of Red Sea corals along a depth gradient: insights from stable isotope analysis of total organic material and lipids. Geochim. Cosmochim. Acta 73:5333–42
    [Google Scholar]
  2. Andradi-Brown DA, Head CEI, Exton DA, Hunt CL, Hendrix A et al. 2017. Identifying zooplankton community changes between shallow and upper-mesophotic reefs on the Mesoamerican Barrier Reef, Caribbean. PeerJ 5:e2853
    [Google Scholar]
  3. Andradi-Brown DA, Macaya-Solis C, Exton DA, Gress E, Wright G et al. 2016. Assessing Caribbean shallow and mesophotic reef fish communities using baited-remote underwater video (BRUV) and diver-operated video (DOV) survey techniques. PLOS ONE 11:e0168235
    [Google Scholar]
  4. Aponte NE, Ballantine DL 2001. Depth distribution of algal species on the deep insular fore reef at Lee Stocking Island, Bahamas. Deep-Sea Res. Part I 48:2185–94
    [Google Scholar]
  5. Asher J, Williams ID, Harvey ES 2017. Mesophotic depth gradients impact reef fish assemblage composition and functional group partitioning in the Main Hawaiian Islands. Front. Mar. Sci. 4:98
    [Google Scholar]
  6. Avery WE, Liddell WD 1997. Sessile community recruitment patterns on Western Atlantic shallow and deep-reef hard substrata. Proc. 8th Int. Coral Reef Symp. 2:1179–84
    [Google Scholar]
  7. Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA et al. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10:257–63
    [Google Scholar]
  8. Banaszak AT, Lesser MP, Kuffner IB, Ondrusek M 1998. Relationship between ultraviolet (UV) radiation and mycosporine-like amino acids (MAAs) in marine organisms. Bull. Mar. Sci. 63:617–28
    [Google Scholar]
  9. Bednarz VN, Grover R, Maguer J-F, Fine M 2017. The assimilation of diazotroph-derived nitrogen by scleractinian corals depends on their metabolic status. mBio 8:e02058–16
    [Google Scholar]
  10. Bejarano I, Appeldoorn RS, Nemeth M 2014. Fishes associated with mesophotic coral ecosystems in La Parguera, Puerto Rico. Coral Reefs 33:313–28
    [Google Scholar]
  11. Benavides M, Bednarz VN, Ferrier-Pagès C 2017. Diazotrophs: overlooked key players within coral symbiosis and tropical reef ecosystems. Front. Mar. Sci. 4:10
    [Google Scholar]
  12. Bongaerts P, Carmichael M, Hay KB, Tonk L, Frade PR et al. 2015b. Prevalent endosymbiont zonation shapes the depth distributions of scleractinian coral species. R. Soc. Open Sci. 2:140297
    [Google Scholar]
  13. Bongaerts P, Frade PR, Hay KB, Englebert N, Latijnhouwers KRW et al. 2015a. Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community. Sci. Rep. 5:7652
    [Google Scholar]
  14. Bongaerts P, Frade PR, Ogier JJ, Kay KB, van Bleijswijk J et al. 2013. Sharing the slope: depth partitioning of agariciid corals and associated Symbiodinium across shallow and mesophotic habitats (2–60 m) on a Caribbean reef. BMC Evol. Biol. 13:205
    [Google Scholar]
  15. Bongaerts P, Ridgway T, Sampayo EM, Hoegh-Guldberg O 2010. Assessing the ‘deep reef refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–27
    [Google Scholar]
  16. Bongaerts P, Riginos C, Brunner R, Englebert N, Smith SR et al. 2017. Deep reefs are not universal refuges: reseeding potential varies among coral species. Sci. Adv. 3:e1602373
    [Google Scholar]
  17. Bongaerts P, Riginos C, Hay KB, van Oppen MJ, Hoegh-Guldberg O et al. 2011. Adaptive divergence in a scleractinian coral: physiological adaptation of Seriatopora hystrix to shallow and deep reef habitats. BMC Evol. Biol. 11:303
    [Google Scholar]
  18. Brakel WH. 1979. Small-scale spatial variation in light available to coral reef benthos: quantum irradiance measurements from a Jamaican reef. Bull. Mar. Sci. 29:406–13
    [Google Scholar]
  19. Brandtneris VW, Brandt ME, Glynn PW, Gyory J, Smith TB 2016. Seasonal variability in calorimetric energy content of two Caribbean mesophotic corals. PLOS ONE 11:e0151953
    [Google Scholar]
  20. Brazeau DA, Lesser MP, Slattery M 2013. Genetic structure in the coral, Montastraea cavernosa: assessing genetic differentiation among and within mesophotic reefs. PLOS ONE 8:e65845
    [Google Scholar]
  21. Bridge TCL, Fabricius KE, Bongaerts P, Wallace CC, Muir PR et al. 2012. Diversity of Scleractinia and Octocorallia in the mesophotic zone of the Great Barrier Reef, Australia. Coral Reefs 31:179–89
    [Google Scholar]
  22. Bridge TCL, Hughes TP, Guinotte JM, Bongaerts P 2013. Call to protect all coral reefs. Nat. Clim. Change 3:528–30
    [Google Scholar]
  23. Brokovich E, Ayalon I, Einbinder S, Segev N, Shaked Y et al. 2010. Grazing pressure on coral reefs decreases across a wide depth gradient in the Gulf of Aqaba, Red Sea. Mar. Ecol. Prog. Ser. 399:69–80
    [Google Scholar]
  24. Brokovich E, Einbinder S, Shashar N, Kiflawi M, Kark S 2008. Descending to the twilight-zone: changes in coral reef fish assemblages along a depth gradient down to 65 m. Mar. Ecol. Prog. Ser. 371:253–62
    [Google Scholar]
  25. Cooper TF, Ulstrup KE, Dandan SS, Heyward AJ, Kühl M et al. 2011. Niche specialization of reef-building corals in the mesophotic zone: metabolic trade-offs between divergent Symbiodinium types. Proc. Biol. Sci. 278:1840–50
    [Google Scholar]
  26. Crandall JB, Teece MA, Estes BA, Manfrino C, Ciesla JH 2016. Nutrient acquisition strategies in mesophotic hard corals using compound specific stable isotope analysis of sterols. J. Exp. Mar. Biol. Ecol. 474:133–41
    [Google Scholar]
  27. de Goeij JM, Lesser MP, Pawlik JR 2017. Nutrient fluxes and ecological functions of coral reef sponges in a changing ocean. Climate Change, Ocean Acidification and Sponges JL Carballo, JJ Bell 373–410 Cham, Switz.: Springer Int.
    [Google Scholar]
  28. Diaz MC, van Soest RWM, Gochfeld DJ, Olson JB, Slattery M et al. 2010. A checklist from shallow and mesophotic marine sponges from Little Cayman Island. Poster presented at the International Sponge Symposium, Girona, Spain, September 20–24, 2010
  29. Ducklow HW. 1990. The biomass, production, and fate of bacteria in coral reefs. Coral Reefs Z Dubinski 265–89 Amsterdam: Elsevier
    [Google Scholar]
  30. Einbinder S, Gruber DF, Salomon E, Liran O, Keren N et al. 2016. Novel adaptive photosynthetic characteristics of mesophotic symbiotic microalgae within the reef-building coral, Stylophora pistillata. Front. Mar. Sci. 3:195
    [Google Scholar]
  31. Einbinder S, Mass T, Brokovich E, Dubinsky Z, Erez J et al. 2009. Changes in morphology and diet of the coral Stylophora pistillata along a depth gradient. Mar. Ecol. Prog. Ser. 381:167–74
    [Google Scholar]
  32. Eyal G, Wiedenmann J, Grinblat M, D'Angelo C, Kramarsky-Winter E et al. 2015. Spectral diversity and regulation of coral fluorescence in a mesophotic reef habitat in the Red Sea. PLOS ONE 10:e0128697
    [Google Scholar]
  33. Eyal-Shaham L, Eyal G, Tamir R, Loya Y 2016. Reproduction, abundance and survivorship of two Alveopora spp. in the mesophotic reefs of Eilat, Red Sea. Sci. Rep. 6:20964
    [Google Scholar]
  34. Ezzat L, Fine M, Maguer J-F, Grover R, Ferrier-Pagès C 2017. Carbon and nitrogen acquisition in shallow and deep holobionts of the scleractinian coral S. pistillata. Sci. Rep 4:102
    [Google Scholar]
  35. Fabricius KE. 2005. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pol. Bull. 50:125–46
    [Google Scholar]
  36. Ferrier-Pagès C, Gattuso J-P 1998. Biomass, production and grazing rates of the pico-and nanoplankton in coral reef waters (Myako Island, Japan). Microb. Ecol. 35:46–57
    [Google Scholar]
  37. Frade PR, De Jongh F, Vermeulen F, Van Bleijswijk J, Bak RPM 2008. Variation in symbiont distribution between closely related coral species over large depth ranges. Mol. Ecol. 17:691–703
    [Google Scholar]
  38. Gilmore AM, Larkum AW, Salih A, Itoh S, Shibata Y et al. 2003. Simultaneous time resolution of the emission spectra of fluorescent proteins and zooxanthellar chlorophyll in reef-building corals. Photochem. Photobiol. 77:515–23
    [Google Scholar]
  39. Glasl B, Pongaerts P, Elisabeth NH, Hoegh-Guldberg, Herndl GJ et al. 2017. Microbiome variation in corals with distinct depth distribution ranges across a shallow–mesophotic gradient (15–85 m). Coral Reefs 36:447–52
    [Google Scholar]
  40. Goldstein ED, D'Alessandro EK, Reed J, Sponaugle S 2016b. Habitat availability and depth-driven population demographics regulate reproductive output of a coral reef fish. Ecosphere 7:e01542
    [Google Scholar]
  41. Goldstein ED, D'Alessandro EK, Sponaugle S 2016a. Demographic and reproductive plasticity across the depth distribution of a coral reef fish. Sci. Rep. 6:34077
    [Google Scholar]
  42. Grigg RW. 2006. Depth limit for reef building corals in the Au'au Channel, S.E. Hawaii. Coral Reefs 25:77–84
    [Google Scholar]
  43. Haas AF, Nelson CE, Rohwer F, Wegley-Kelly L, Quistad SD et al. 2013. Influence of coral and algal exudates on microbially mediated reef metabolism. PeerJ 1:e108
    [Google Scholar]
  44. Hentschel U, Piel J, Degnan SM, Talor MW 2012. Genomic insights into the marine sponge microbiome. Nat. Rev. Microbiol. 10:641–54
    [Google Scholar]
  45. Hernandez-Agreda A, Leggat W, Bongaerts P, Ainsworth T 2016. The microbial signature provides insights into the mechanistic basis of coral success across reef habitats. mBio 7:e00560
    [Google Scholar]
  46. Hoeksema B, Bongaerts P, Baldwin CC 2017. High coral cover at lower mesophotic depths: a dense Agaricia community at the leeward side of Curaçao, Dutch Caribbean. Mar. Biodiv. 47:67–70
    [Google Scholar]
  47. Holstein DM, Paris CB, Vaz AC, Smith TB 2016b. Modeling vertical coral connectivity and mesophotic refugia. Coral Reefs 35:23–57
    [Google Scholar]
  48. Holstein DM, Smith TB, Gyory J, Paris CB 2015. Fertile fathoms: deep reproductive refugia for threatened shallow corals. Sci. Rep. 5:12407
    [Google Scholar]
  49. Holstein DM, Smith TB, Paris CB 2016a. Depth-independent reproduction in the reef coral Porites astreoides from shallow and mesophotic zones. PLOS ONE 11:e0146068
    [Google Scholar]
  50. Hurley KKC, Timmer MA, Godwin LS, Copus JM, Skillings DJ et al. 2016. An assessment of shallow and mesophotic reef brachyuran crab assemblages on the south shore of O'ahu, Hawai‘i. Coral Reefs 35:103–12
    [Google Scholar]
  51. Kahng SE, Garcia-Sais JR, Spalding HL, Brokovich E, Wagner D et al. 2010. Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–75
    [Google Scholar]
  52. Kahng SE, Hochberg EJ, Apprill A, Wagner A, Luck DG et al. 2012. Efficient light harvesting in deep-water zooxanthellate corals. Mar. Ecol. Prog. Ser. 455:65–77
    [Google Scholar]
  53. Kahng SE, Kelley CD 2007. Vertical zonation of megabenthic taxa on a deep photosynthetic reef (50–140 m) in the Au'au Channel, Hawaii. Coral Reefs 26:679–87
    [Google Scholar]
  54. Laverick JH, Andradi-Brown DA, Rogers AD 2017. Using light-dependent scleractinia to define the upper boundary of mesophotic coral ecosystems on the reefs of Utila, Honduras. PLOS ONE 12:e0183075
    [Google Scholar]
  55. Leichter JJ, Genovese SJ 2006. Intermittent upwelling and subsidized growth of the sceractinian coral Madarcis mirabilis on the deep fore-reef slope of Discovery Bay, Jamaica. Mar. Ecol. Prog. Ser. 316:95–103
    [Google Scholar]
  56. Leichter JJ, Stewart HL, Miller SL 2003. Episodic nutrient transport to Florida coral reefs. Limnol. Oceanogr. 48:1394–407
    [Google Scholar]
  57. Lesser MP. 2006. Benthic–pelagic coupling on coral reefs: feeding and growth of Caribbean sponges. J. Exp. Mar. Biol. Ecol. 328:277–88
    [Google Scholar]
  58. Lesser MP. 2011. Coral bleaching: causes and mechanisms. Coral Reefs: An Ecosystem in Transition Z Dubinsky, N Stambler 405–20 Dordrecht, Neth.: Springer
    [Google Scholar]
  59. Lesser MP, Slattery M 2011. Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biol. Invasions 13:1855–68
    [Google Scholar]
  60. Lesser MP, Slattery M, Leichter JJ 2009. Ecology of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 375:1–8
    [Google Scholar]
  61. Lesser MP, Slattery M, Stat M, Ojimi M, Gates RD et al. 2010. Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91:990–1003
    [Google Scholar]
  62. Liddell WD, Avery WE 2000. Temporal change in hard substrate communities 10–250 m, the Bahamas. Proc. 10th Intl. Coral Reef Symp. 2:1053–58
    [Google Scholar]
  63. Liddell WD, Avery WE, Ohlhorst SL 1997. Patterns of benthic community structure, 10–250 m, the Bahamas. Proc. 8th Int. Coral Reef Symp. 1:437–42
    [Google Scholar]
  64. Liddell WD, Ohlhorst SL 1988. Hard substrata community patterns, 1–120 M, North Jamaica. Palaios 3:413–23
    [Google Scholar]
  65. Littler MM, Littler DS, Blair SM, Norris JN 1986. Deep-water plant communities from an uncharted seamount off San Salvador Island, Bahamas: distribution, abundance, and primary productivity. Deep-Sea Res. Part A 33:881–92
    [Google Scholar]
  66. Locker SD, Armstrong RA, Battista TA, Rooney JJ, Sherman C et al. 2010. Geomorphology of mesophotic coral ecosystems: current perspectives on morphology, distribution, and mapping strategies. Coral Reefs 29:329–45
    [Google Scholar]
  67. Loya Y, Eyal G, Trebitz T, Lesser MP, Appeldorn R 2016. Theme section on mesophotic coral ecosystems: advances in knowledge and future perspectives. Coral Reefs 35:1–9
    [Google Scholar]
  68. MacDonald C, Bridge TCL, Jones GP 2016. Depth, bay position and habitat structure as determinants of coral reef fish distributions: Are deep reefs a potential refuge. Mar. Ecol. Prog. Ser. 561:217–31
    [Google Scholar]
  69. Macintyre IG, Rutzler K, Norris JN, Smith KP, Cairns SD et al. 1991. An early Holocene reef in the Western Atlantic: submersible investigations of a deep relict reef off the west coast of Barbados, WI. Coral Reefs 10:167–74
    [Google Scholar]
  70. Mass T, Einbinder S, Brokovich E, Shashar N, Vago R et al. 2007. Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar. Ecol. Prog. Ser. 334:93–102
    [Google Scholar]
  71. Mass T, Kline D, Roopin M, Veal CJ, Cohen S et al. 2010. The spectral quality of light is a key driver of photosynthesis and photoadaptation in Stylophora pistillata colonies from different depths in the Red Sea. J. Exp. Biol. 213:4084–91
    [Google Scholar]
  72. Matz MV, Marshall NJ, Vorobyev CH 2006. Symposium in-print: green fluorescent protein and homologs. Are corals colorful. Photochem. Photobiol. 82:345–50
    [Google Scholar]
  73. Mazel CH, Lesser MP, Gorbunov MY, Barry TM, Farrell JH et al. 2003. Green-fluorescent proteins in Caribbean corals. Limnol. Oceanogr. 48:402–11
    [Google Scholar]
  74. McMahon KW, Thorrold SR, Houghton LA, Berumen ML 2016. Tracing carbon flow through coral reef food webs using compound-specific stable isotopic approach. Oecologia 180:809–21
    [Google Scholar]
  75. Mobley CD, Sundman LK 2003. Effects of optically shallow bottoms on upwelling radiances: Inhomogeneous and sloping bottoms. Limnol. Oceanogr. 48:239–336
    [Google Scholar]
  76. Montaggioni L. 2005. History of Indo-Pacific coral reef systems since the last glaciation: development patterns and controlling factors. Earth Sci. Rev. 71:1–75
    [Google Scholar]
  77. Morrow KM, Fiore C, Lesser M 2016. Environmental drivers of microbial community shifts in the giant barrel sponge, Xestospongia muta, over a shallow to mesophotic depth gradient. Environ. Microbiol. 18:2025–38
    [Google Scholar]
  78. Muscatine L, Porter J, Kaplan I 1989. Resource partitioning by reef corals as determined from stable isotope composition. Mar. Biol. 100:185–93
    [Google Scholar]
  79. Nir O, Gruber DF, Einbinder S, Kark S, Tchernov D 2011. Changes in scleractinian coral Seriotopora hystrix morphology and its endocellular Symbiodinium characteristics along a bathymetric gradient from shallow to mesophotic reef. Coral Reefs 30:1089–100
    [Google Scholar]
  80. Olson JB, Gao X 2013. Characterizing the bacterial associates of three Caribbean sponges along a gradient from shallow to mesophotic depths. FEMS Microbiol. Ecol. 85:74–84
    [Google Scholar]
  81. Olson JB, Kellogg CA 2010. Microbial ecology of corals, sponges, and algae in mesophotic coral environments. FEMS Microbiol. Ecol. 73:17–30
    [Google Scholar]
  82. Pinheiro HT, Goodbody-Gringley G, Jessup ME, Shephard B, Chequer AD et al. 2016. Upper and lower mesophotic coral reef fish communities evaluated by underwater visual census in two Caribbean locations. Coral Reefs 35:139–51
    [Google Scholar]
  83. Pochon X, Forsman ZH, Spalding HL, Padilla-Gamino JL, Smith CM et al. 2015. Depth specialization in mesophotic corals (Leptoseris spp.) and associated algal symbionts in Hawai‘i. R. Soc. Open Sci. 2:140351
    [Google Scholar]
  84. Prasetia R, Sinniger F, Harii S 2016. Gametogenesis and fecundity of Acropora tenella (Brook 1892) in a mesophotic coral ecosystem in Okinawa, Japan. Coral Reefs 35:53–62
    [Google Scholar]
  85. Prasetia R, Sinniger F, Hashizume K, Harii S 2017. Reproductive biology of the deep brooding coral Seriatopora hystrix: implications for shallow reef recovery. PLOS ONE 12:e0177034
    [Google Scholar]
  86. Pyle RL, Boland R, Bolick H, Bowen BW, Bradley CJ 2016. A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago. PeerJ 4:e2475
    [Google Scholar]
  87. Reaka ML, Altman S, Ballantine DL, Dowgiallo MJ, Felder DL et al. 2010. Biodiversity of mesophotic coral ecosystems. Coral Reefs 29:361–67
    [Google Scholar]
  88. Reed JK, Pomponi SA 1997. Biodiversity and distribution of deep and shallow water sponges in the Bahamas. Proc. 8th Int. Coral Reef Symp. 2:1387–92
    [Google Scholar]
  89. Ribes M, Coma R, Atkinson MJ, Kinzie RA III. 2003. Particle removal by coral reef communities: Picoplankton is a major source of nitrogen. Mar. Ecol. Prog. Ser. 257:13–23
    [Google Scholar]
  90. Ribes M, Coma R, Atkinson MJ, Kinzie RA III. 2005. Sponges and ascidians control removal of particulate organic nitrogen from coral reef water. Limnol. Oceanogr. 50:1480–89
    [Google Scholar]
  91. Rix L, de Goeij JM, van Oevelen D, Struck U, Al-Horani FA et al. 2017. Differential recycling of coral and algal dissolved organic matter via the sponge loop. Funct. Ecol. 31:778–89
    [Google Scholar]
  92. Rooney J, Donham E, Montgomery A, Spalding H, Parrish F et al. 2010. Mesophotic coral ecosystems in the Hawaiian Archipelago. Coral Reefs 29:361–67
    [Google Scholar]
  93. Roth MS, Padilla-Gamiño JL, Pochon X, Bidigare RR, Gates RD et al. 2015. Fluorescent proteins in dominant mesophotic reef-building corals. Mar. Ecol. Prog. Ser. 521:63–79
    [Google Scholar]
  94. Runcie JW, Gurgel CFD, Mcdermid KJ 2008. In situ photosynthetic rates of tropical marine macroalgae at their lower depth limit. Eur. J. Phycol. 43:377–88
    [Google Scholar]
  95. Schmidt GM, Wall M, Taylor M, Jantzen C, Richter C 2016. Large-amplitude internal waves sustain coral reef health during thermal stress. Coral Reefs 35:869–81
    [Google Scholar]
  96. Schlichter D, Fricke W, Weber W 1986. Light harvesting by wavelength transformation in a symbiotic coral of the Red Sea twilight zone. Mar. Biol. 91:403–7
    [Google Scholar]
  97. Schlichter D, Meier U, Fricke HW 1994. Improvement of photosynthesis in zooxanthellate corals by autofluorescent chromatophores. Oecologia 99:124–31
    [Google Scholar]
  98. Semmler RF, Hoot WC, Reaka ML 2017. Are mesophotic coral ecosystems distinct communities and can they serve as refugia for shallow reefs. Coral Reefs 36:433–44
    [Google Scholar]
  99. Serrano X, Baums IB, O'Reilly K, Smith TB, Jones RJ et al. 2014. Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol. Ecol. 23:4226–40
    [Google Scholar]
  100. Sherman C, Nemeth M, Ruíz H, Bejarano I, Appeldoorn R et al. 2010. Geomorphology and benthic cover of mesophotic coral ecosystems of the upper insular slope of southwest Puerto Rico. Coral Reefs 29:347–60
    [Google Scholar]
  101. Sherman C, Schmidt W, Appeldoorn R, Hutchinson Y, Ruiz H et al. 2016. Sediment dynamics and their potential influence on insular-slope mesophotic coral ecosystems. Cont. Shelf Res. 129:1–9
    [Google Scholar]
  102. Shlesinger T, Grinblat M, Rapuano H, Amit T, Loya Y 2018. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecology 99:421–37
    [Google Scholar]
  103. Slattery M, Gochfeld DJ, Diaz CM, Thacker RW, Lesser MP 2016. Variability in chemical defense across a shallow to mesophotic depth gradient in the Caribbean sponge Plakortis angulospiculatus. Coral Reefs 35:11–22
    [Google Scholar]
  104. Slattery M, Lesser MP 2012. Mesophotic coral reefs: a global model of community structure and function. Proc. 12th Intl. Coral Reef Symp. 1:9–13
    [Google Scholar]
  105. Slattery M, Lesser MP 2014. Allelopathy in the tropical alga Lobophora variegata (Phaeophyceae): mechanistic basis for a phase shift on mesophotic coral reefs. J. Phycol. 50:493–505
    [Google Scholar]
  106. Slattery M, Lesser MP 2015. Trophic ecology of sponges from shallow to mesophotic depths (3 to 150 m): comment on Pawlik et al. 2015. Mar. Ecol. Prog. Ser. 527:275–79
    [Google Scholar]
  107. Slattery M, Lesser MP 2019. The Bahamas and Cayman Islands. Mesophotic Coral Ecosystems Y Loya, K Puglise, T Bridge New York: Springer
    [Google Scholar]
  108. Slattery M, Lesser MP, Brazeau D, Stokes MD, Leichter JJ 2011. Connectivity and stability of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 408:32–41
    [Google Scholar]
  109. Smith EG, D'Angelo CD, Salih A, Wiedenmann J 2013. Screening by coral green fluorescent protein (GFP)-like chromoproteins supports a role in photoprotection of zooxanthellae. Coral Reefs 32:463–74
    [Google Scholar]
  110. Smith EG, D'Angelo C, Sharon Y, Tchernov D, Wiedenmann J 2017. Acclimatization of symbiotic corals to mesophotic light environments through wavelength transformation by fluorescent protein pigments. Proc. R. Soc. B 284:20170320
    [Google Scholar]
  111. Smith TB, Brandtneris VW, Canals M, Brandt ME, Martens J et al. 2016b. Potential structuring forces on a shelf edge upper mesophotic coral ecosystem in the US Virgin Islands. Front. Mar. Sci. 3:115
    [Google Scholar]
  112. Smith TB, Gyory J, Brandt ME, Miller WJ, Jossart J et al. 2016a. Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Glob. Change Biol. 22:2756–65
    [Google Scholar]
  113. Steinert G, Taylor MW, Deines P, Simister RL, de Voogd NJ et al. 2016. In four shallow and mesophotic tropical reef sponges from Guam the microbial community largely depends on host identity. PeerJ 4:e1936
    [Google Scholar]
  114. Tanaka Y, Miyajima T, Watanabe A et al. 2011. Distribution of dissolved organic carbon and nitrogen in a coral reef. Coral Reefs 30:533–41
    [Google Scholar]
  115. Tenggardjaja K, Bowen B, Bernardi G 2014. Vertical and horizontal genetic connectivity in Chromis verater, an endemic damselfish found on shallow and mesophotic reefs in the Hawaiian Archipelago and adjacent Johnston Atoll. PLOS ONE 9:e115493
    [Google Scholar]
  116. Torréton J-P, Pages J, Dufour P, Cauwet G 1997. Bacterioplankton carbon growth yield and DOC turnover in some coral reef lagoons. Proc. 8th Int. Coral Reef Symp. 1:947–52
    [Google Scholar]
  117. Turner JA, Babcock RC, Hovey R, Kendrick GA 2017. Deep thinking: a systematic review of mesophotic coral ecosystems. ICES J. Mar. Sci. 74:2309–20
    [Google Scholar]
  118. van Oppen MJH, Bongaerts P, Underwood JN, Peplow LM, Cooper TF 2011. The role of deep reefs in shallow reef recovery: an assessment of vertical connectivity in a brooding coral from west and east Australia. Mol. Ecol. 20:1647–60
    [Google Scholar]
  119. van Soest RWM, Boury-Esnault N, Vacelot J, Dohrmann M, Erpenbeck D et al. 2012. Global diversity of sponges. PLOS ONE 7:e35105
    [Google Scholar]
  120. Vermeij MJA, Bak RPM 2002. How are coral populations structured by light? Marine light regimes and the distribution of Madracis. Mar. Ecol. Prog. Ser 233:105–16
    [Google Scholar]
  121. Vize PD. 2006. Deepwater broadcast spawning by Montastraea cavernosa, Montastraea franksi, and Diploria strigosa at the Flower Garden Banks, Gulf of Mexico. Coral Reefs 25:169–71
    [Google Scholar]
  122. Wangpraseurt D, Larkum AWD, Ralph PJ, Kühl M 2012. Light gradients and optical microniches in coral tissues. Front. Microbiol. 3:316
    [Google Scholar]
  123. Warner ME, Suggett DJ 2016. The photobiology of Symbiodinium spp. linking physiological diversity to the implications of stress and resilience. The Cnidaria, Past, Present and Future S Goffredo, Z Dubinsky 489–509 Cham, Switz.: Springer Int.
    [Google Scholar]
  124. Weinstein DK, Smith TB, Klaus JS 2014. Mesophotic bioerosion: variability and structural impact on U.S. Virgin Island deep reefs. Geomorphology 222:14–24
    [Google Scholar]
  125. Wijgerde T, van Melis A, Silva CIF, Leal MC, Vogels L et al. 2014. Red light represses the photophysiology of the scleractinian coral Stylophora pistillata. PLOS ONE 9:e92781
    [Google Scholar]
  126. Wolanski E, Colin P, Naithani J, Deleersnijder E, Golbuu Y 2004. Large amplitude, leaky, island-generated, internal waves around Palau, Micronesia. Estuar. Coast. Shelf Sci. 60:705–16
    [Google Scholar]
  127. Ziegler M, Roder CM, Büchel C, Voolstra CR 2015. Mesophotic coral depth acclimatization is a function of host-specific symbiont physiology. Front. Mar. Sci. 2:4
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110617-062423
Loading
/content/journals/10.1146/annurev-ecolsys-110617-062423
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error