1932

Abstract

This review of metapopulation biology has a special focus on Professor Ilkka Hanski's (1953–2016) research. Hanski made seminal contributions to both empirical and theoretical metapopulation biology throughout his scientific career. Hanski's early research focused on ecological aspects of metapopulation biology, in particular how the spatial structure of a landscape influences extinction thresholds and how habitat loss and fragmentation can result in extinction debt. Hanski then used the Glanville fritillary system as a natural laboratory within which he studied genetic and evolutionary processes, such as the influence of inbreeding on extinction risk and variation in selection for dispersal traits generated by landscape variation. During the last years of his career, Hanski's work was in the forefront of the rapidly developing field of eco-evolutionary dynamics. Hanski was a pioneer in showing how molecular-level underpinnings of trait variation can explain why evolutionary change can occur rapidly in natural populations and how these changes can subsequently influence ecological dynamics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110617-062519
2018-11-02
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/es/49/1/annurev-ecolsys-110617-062519.html?itemId=/content/journals/10.1146/annurev-ecolsys-110617-062519&mimeType=html&fmt=ahah

Literature Cited

  1. Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S et al. 2003. The application of ‘least-cost’ modelling as a functional landscape model. Landsc. Urban Plan. 64:233–47
    [Google Scholar]
  2. Ahola V, Lehtonen R, Somervuo P, Salmela L, Koskinen P et al. 2014. The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nat. Commun. 5:4737
    [Google Scholar]
  3. Ajelli M, Goncalves B, Balcan D, Colizza V, Hu H et al. 2010. Comparing large-scale computational approaches to epidemic modeling: agent-based versus structured metapopulation models. BMC Infect. Dis. 10:190
    [Google Scholar]
  4. Amarasekare P, Nisbet RM 2001. Spatial heterogeneity, source-sink dynamics, and the local coexistence of competing species. Am. Nat. 158:572–84
    [Google Scholar]
  5. Baalsrud HT, Saether BE, Hagen IJ, Myhre AM, Ringsby TH et al. 2014. Effects of population characteristics and structure on estimates of effective population size in a house sparrow metapopulation. Mol. Ecol. 23:2653–68
    [Google Scholar]
  6. Baguette M. 2004. The classical metapopulation theory and the real, natural world: a critical appraisal. Basic Appl. Ecol. 5:213–24
    [Google Scholar]
  7. Bascompte J, Sole RV 1996. Habitat fragmentation and extinction thresholds in spatially explicit models. J. Anim. Ecol. 65:465–73
    [Google Scholar]
  8. Besbeas P, Freeman SN, Morgan BJT, Catchpole EA 2002. Integrating mark-recapture-recovery and census data to estimate animal abundance and demographic parameters. Biometrics 58:540–47
    [Google Scholar]
  9. Blanquart F, Gandon S, Nuismer SL 2012. The effects of migration and drift on local adaptation to a heterogeneous environment. J. Evol. Biol. 25:1351–63
    [Google Scholar]
  10. Clobert J, Le Galliard JF, Cote J, Meylan S, Massot M 2009. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12:197–209
    [Google Scholar]
  11. Colizza V, Vespignani A 2007. Invasion threshold in heterogeneous metapopulation networks. Phys. Rev. Lett. 99:14801
    [Google Scholar]
  12. Conradt L, Bodsworth EJ, Roper TJ, Thomas CD 2000. Non-random dispersal in the butterfly Maniola jurtina: implications for metapopulation models. Proc. R. Soc. B 267:1505–10
    [Google Scholar]
  13. Cornell SJ, Ovaskainen O 2008. Exact asymptotic analysis for metapopulation dynamics on correlated dynamic landscapes. Theor. Popul. Biol. 74:209–25
    [Google Scholar]
  14. Dail D, Madsen L 2011. Models for estimating abundance from repeated counts of an open metapopulation. Biometrics 67:577–87
    [Google Scholar]
  15. Dunham JB, Rieman BE 1999. Metapopulation structure of bull trout: influences of physical, biotic, and geometrical landscape characteristics. Ecol. Appl. 9:642–55
    [Google Scholar]
  16. Duplouy A, Ikonen S, Hanski I 2013. Life history of the Glanville fritillary butterfly in fragmented versus continuous landscapes. Ecol. Evol. 3:5141–56
    [Google Scholar]
  17. Dupre C, Ehrlen J 2002. Habitat configuration, species traits and plant distributions. J. Ecol. 90:796–805
    [Google Scholar]
  18. Ebert D, Haag C, Kirkpatrick M, Riek M, Hottinger JW, Pajunen VI 2002. A selective advantage to immigrant genes in a Daphnia metapopulation. Science 295:485–88
    [Google Scholar]
  19. Edelaar P, Bolnick DI 2012. Non-random gene flow: an underappreciated force in evolution and ecology. Trends Ecol. Evol. 27:659–65
    [Google Scholar]
  20. Elkin CM, Possingham HP 2008. The role of landscape-dependent disturbance and dispersal in metapopulation persistence. Am. Nat. 172:563–75
    [Google Scholar]
  21. Escobar JS, Nicot A, David P 2008. The different sources of variation in inbreeding depression, heterosis and outbreeding depression in a metapopulation of Physa acuta. Genetics 180:1593–608
    [Google Scholar]
  22. Fagan WF. 2002. Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology 83:3243–49
    [Google Scholar]
  23. Fahrig L. 2002. Effect of habitat fragmentation on the extinction threshold: a synthesis. Ecol. Appl. 12:346–53
    [Google Scholar]
  24. Fahrig L. 2003. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34:487–515
    [Google Scholar]
  25. Fahrig L. 2013. Rethinking patch size and isolation effects: the habitat amount hypothesis. J. Biogeogr. 40:1649–63
    [Google Scholar]
  26. Fahrig L. 2015. Just a hypothesis: a reply to Hanski. J. Biogeogr. 42:993–94
    [Google Scholar]
  27. Fleishman E, Ray C, Sjogren-Gulve P, Boggs CL, Murphy DD 2002. Assessing the roles of patch quality, area, and isolation in predicting metapopulation dynamics. Conserv. Biol. 16:706–16
    [Google Scholar]
  28. Fountain T, Husby A, Nonaka E, DiLeo M, Korhonen J et al. 2018. Inferring dispersal across a fragmented landscape using reconstructed families in the Glanville fritillary butterfly. Evol. Appl. 11:287–97
    [Google Scholar]
  29. Fountain T, Nieminen M, Siren J, Wong SC, Hanski I 2016. Predictable allele frequency changes due to habitat fragmentation in the Glanville fritillary butterfly. PNAS 113:2678–83
    [Google Scholar]
  30. Freckleton RP, Watkinson AR 2002. Large-scale spatial dynamics of plants: metapopulations, regional ensembles and patchy populations. J. Ecol. 90:419–34
    [Google Scholar]
  31. Fronhofer EA, Kubisch A, Hilker FM, Hovestadt T, Poethke HJ 2012. Why are metapopulations so rare. Ecology 93:1967–78
    [Google Scholar]
  32. Gandon S. 2002. Local adaptation and the geometry of host-parasite coevolution. Ecol. Lett. 5:246–56
    [Google Scholar]
  33. Gandon S, Michalakis Y 2002. Local adaptation, evolutionary potential and host-parasite coevolution: interactions between migration, mutation, population size and generation time. J. Evol. Biol. 15:451–62
    [Google Scholar]
  34. Gonzalez A, Lawton JH, Gilbert FS, Blackburn TM, Evans-Freke I 1998. Metapopulation dynamics, abundance, and distribution in a microecosystem. Science 281:2045–47
    [Google Scholar]
  35. Gotelli NJ. 1991. Metapopulation models: the rescue effect, the propagule rain, and the core-satellite hypothesis. Am. Nat. 138:768–76
    [Google Scholar]
  36. Grenfell B, Harwood J 1997. (Meta)population dynamics of infectious diseases. Trends Ecol. Evol. 12:395–99
    [Google Scholar]
  37. Gyllenberg M, Hanski I 1992. Single-species metapopulation dynamics: a structured model. Theor. Popul. Biol. 42:35–61
    [Google Scholar]
  38. Haag CR, Saastamoinen M, Marden JH, Hanski I 2005. A candidate locus for variation in dispersal rate in a butterfly metapopulation. Proc. R. Soc. B 272:2449–56
    [Google Scholar]
  39. Hamilton WD, May RM 1977. Dispersal in stable habitats. Nature 269:578–81
    [Google Scholar]
  40. Hanski I. 1982. Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38:210–21
    [Google Scholar]
  41. Hanski I. 1991. Single species metapopulation dynamics: concepts, models and observations. Biol. J. Linn. Soc. 42:17–38
    [Google Scholar]
  42. Hanski I. 1994. A practical model of metapopulation dynamics. J. Anim. Ecol. 63:151–62
    [Google Scholar]
  43. Hanski I. 1998. Metapopulation dynamics. Nature 396:41–49
    [Google Scholar]
  44. Hanski I. 1999. Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 87:209–19
    [Google Scholar]
  45. Hanski I. 2000. Extinction debt and species credit in boreal forests: modelling the consequences of different approaches to biodiversity conservation. Ann. Zool. Fenn. 37:271–80
    [Google Scholar]
  46. Hanski I. 2011. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly. PNAS 108:14397–404
    [Google Scholar]
  47. Hanski I. 2015. Habitat fragmentation and species richness. J. Biogeogr. 42:989–93
    [Google Scholar]
  48. Hanski I, Alho J, Moilanen A 2000. Estimating the parameters of survival and migration of individuals in metapopulations. Ecology 81:239–51
    [Google Scholar]
  49. Hanski I, Eralahti C, Kankare M, Ovaskainen O, Siren H 2004. Variation in migration propensity among individuals maintained by landscape structure. Ecol. Lett. 7:958–66
    [Google Scholar]
  50. Hanski I, Gaggiotti O 2004. Ecology, Genetics, and Evolution of Metapopulations Oxford, UK: Academic
  51. Hanski I, Gilpin M 1991. Metapopulation dynamics: brief history and conceptual domain. Biol. J. Linn. Soc. 42:3–16
    [Google Scholar]
  52. Hanski I, Gyllenberg M 1993. Two general metapopulation models and the core-satellite species hypothesis. Am. Nat. 142:17–41
    [Google Scholar]
  53. Hanski I, Gyllenberg M 1997. Uniting two general patterns in the distribution of species. Science 275:397–400
    [Google Scholar]
  54. Hanski I, Kuussaari M, Nieminen M 1994. Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology 75:747–62
    [Google Scholar]
  55. Hanski I, Moilanen A, Gyllenberg M 1996a. Minimum viable metapopulation size. Am. Nat. 147:527–41
    [Google Scholar]
  56. Hanski I, Moilanen A, Pakkala T, Kuussaari M 1996b. The quantitative incidence function model and persistence of an endangered butterfly metapopulation. Conserv. Biol. 10:578–90
    [Google Scholar]
  57. Hanski I, Mononen T, Ovaskainen O 2011. Eco-evolutionary metapopulation dynamics and the spatial scale of adaptation. Am. Nat. 177:29–43
    [Google Scholar]
  58. Hanski I, Ovaskainen O 2000. The metapopulation capacity of a fragmented landscape. Nature 404:755–58
    [Google Scholar]
  59. Hanski I, Ovaskainen O 2002. Extinction debt at extinction threshold. Conserv. Biol. 16:666–73
    [Google Scholar]
  60. Hanski I, Ovaskainen O 2003. Metapopulation theory for fragmented landscapes. Theor. Popul. Biol. 64:119–27
    [Google Scholar]
  61. Hanski I, Pakkala T, Kuussaari M, Lei GC 1995. Metapopulation persistence of an endangered butterfly in a fragmented landscape. Oikos 72:21–28
    [Google Scholar]
  62. Hanski I, Saastamoinen M, Ovaskainen O 2006. Dispersal-related life-history trade-offs in a butterfly metapopulation. J. Anim. Ecol. 75:91–100
    [Google Scholar]
  63. Hanski I, Saccheri I 2006. Molecular-level variation affects population growth in a butterfly metapopulation. PLOS Biol 4:719–26
    [Google Scholar]
  64. Hanski I, Schulz T, Wong SC, Ahola V, Ruokolainen A, Ojanen SP 2017. Ecological and genetic basis of metapopulation persistence of the Glanville fritillary butterfly in fragmented landscapes. Nat. Commun. 8:14504
    [Google Scholar]
  65. Hanski I, Singer MC 2001. Extinction-colonization dynamics and host-plant choice in butterfly metapopulations. Am. Nat. 158:341–53
    [Google Scholar]
  66. Hanski I, Thomas CD 1994. Metapopulation dynamics and conservation: a spatially explicit model applied to butterflies. Biol. Conserv. 68:167–80
    [Google Scholar]
  67. Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K et al. 2012. Environmental biodiversity, human microbiota, and allergy are interrelated. PNAS 109:8334–39
    [Google Scholar]
  68. Hanski I, Zurita GA, Bellocq MI, Rybicki J 2013. Species–fragmented area relationship. PNAS 110:12715–20
    [Google Scholar]
  69. Harrison PJ, Hanski I, Ovaskainen O 2011. Bayesian state-space modeling of metapopulation dynamics in the Glanville fritillary butterfly. Ecol. Monogr. 81:581–98
    [Google Scholar]
  70. Harrison S, Bruna E 1999. Habitat fragmentation and large-scale conservation: What do we know for sure. Ecography 22:225–32
    [Google Scholar]
  71. Harrison S, Hastings A 1996. Genetic and evolutionary consequences of metapopulation structure. Trends Ecol. Evol. 11:180–83
    [Google Scholar]
  72. Harrison S, Murphy DD, Ehrlich PR 1988. Distribution of the Bay checkerspot butterfly, Euphydryas editha bayensis: evidence for a metapopulation model. Am. Nat. 132:360–82
    [Google Scholar]
  73. Hassell MP, Comins HN, May RM 1991. Spatial structure and chaos in insect population dynamics. Nature 353:255–58
    [Google Scholar]
  74. Heino M, Hanski I 2001. Evolution of migration rate in a spatially realistic metapopulation model. Am. Nat. 157:495–511
    [Google Scholar]
  75. Helm A, Hanski I, Partel M 2006. Slow response of plant species richness to habitat loss and fragmentation. Ecol. Lett. 9:72–77
    [Google Scholar]
  76. Hess G. 1996. Disease in metapopulation models: implications for conservation. Ecology 77:1617–32
    [Google Scholar]
  77. Hill JK, Thomas CD, Lewis OT 1996. Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: implications for metapopulation structure. J. Anim. Ecol. 65:725–35
    [Google Scholar]
  78. Hodgson JA, Moilanen A, Thomas CD 2009. Metapopulation responses to patch connectivity and quality are masked by successional habitat dynamics. Ecology 90:1608–19
    [Google Scholar]
  79. Holyoak M, Lawler SP 1996. Persistence of an extinction-prone predator-prey interaction through metapopulation dynamics. Ecology 77:1867–79
    [Google Scholar]
  80. Husband BC, Barrett SCH 1996. A metapopulation perspective in plant population biology. J. Ecol. 84:461–69
    [Google Scholar]
  81. Jousimo J, Tack AJM, Ovaskainen O, Mononen T, Susi H et al. 2014. Disease ecology. Ecological and evolutionary effects of fragmentation on infectious disease dynamics. Science 344:1289–93
    [Google Scholar]
  82. Kaltz O, Shykoff JA 1998. Local adaptation in host–parasite systems. Heredity 81:361–70
    [Google Scholar]
  83. Kery M, Royle JA 2010. Hierarchical modelling and estimation of abundance and population trends in metapopulation designs. J. Anim. Ecol. 79:453–61
    [Google Scholar]
  84. Keymer JE, Marquet PA, Velasco-Hernandez JX, Levin SA 2000. Extinction thresholds and metapopulation persistence in dynamic landscapes. Am. Nat. 156:478–94
    [Google Scholar]
  85. Kritzer JP, Sale PF 2004. Metapopulation ecology in the sea: from Levins’ model to marine ecology and fisheries science. Fish Fish 5:131–40
    [Google Scholar]
  86. Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J et al. 2009. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24:564–71
    [Google Scholar]
  87. Kuussaari M, Nieminen M, Hanski I 1996. An experimental study of migration in the Glanville fritillary butterfly Melitaea cinxia. J. Anim. Ecol. 65:791–801
    [Google Scholar]
  88. Laine AL. 2008. Temperature-mediated patterns of local adaptation in a natural plant–pathogen metapopulation. Ecol. Lett. 11:327–37
    [Google Scholar]
  89. Laine AL, Burdon JJ, Dodds PN, Thrall PH 2011. Spatial variation in disease resistance: from molecules to metapopulations. J. Ecol. 99:96–112
    [Google Scholar]
  90. Laine AL, Hanski I 2006. Large-scale spatial dynamics of a specialist plant pathogen in a fragmented landscape. J. Ecol. 94:217–26
    [Google Scholar]
  91. Lamy T, Pointier JP, Jarne P, David P 2012. Testing metapopulation dynamics using genetic, demographic and ecological data. Mol. Ecol. 21:1394–410
    [Google Scholar]
  92. Lande R. 1987. Extinction thresholds in demographic models of territorial populations. Am. Nat. 130:624–35
    [Google Scholar]
  93. Lande R. 1988. Demographic models of the northern spotted owl (Strix occidentalis caurina). Oecologia 75:601–7
    [Google Scholar]
  94. Legrand D, Cote J, Fronhofer EA, Holt RD, Ronce O, Schtickzelle N, Travis JMJ, Clobert J 2017. Eco-evolutionary dynamics in fragmented landscapes. Ecography 40:9–25
    [Google Scholar]
  95. Lei GC, Hanski I 1997. Metapopulation structure of Cotesia melitaearum, a specialist parasitoid of the butterfly Melitaea cinxia. Oikos 78:91–100
    [Google Scholar]
  96. Levins R. 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 15:237–40
    [Google Scholar]
  97. Levins R. 1970. Extinction. Lect. Notes Math. 2:75–107
    [Google Scholar]
  98. Levins R, Culver D 1971. Regional coexistence of species and competition between rare species. PNAS 68:1246–48
    [Google Scholar]
  99. Lipcius RN, Eggleston DB, Schreiber SJ, Seitz RD, Shen J et al. 2008. Importance of metapopulation connectivity to restocking and restoration of marine species. Rev. Fish. Sci. 16:101–10
    [Google Scholar]
  100. MacKenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB 2003. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84:2200–7
    [Google Scholar]
  101. MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–55
    [Google Scholar]
  102. Marsh DM, Trenham PC 2001. Metapopulation dynamics and amphibian conservation. Conserv. Biol. 15:40–49
    [Google Scholar]
  103. Marvier M, Kareiva P, Neubert MG 2004. Habitat destruction, fragmentation, and disturbance promote invasion by habitat generalists in a multispecies metapopulation. Risk Anal 24:869–78
    [Google Scholar]
  104. Mattila ALK, Duplouy A, Kirjokangas M, Lehtonen R, Rastas P, Hanski I 2012. High genetic load in an old isolated butterfly population. PNAS 109:E2496–505
    [Google Scholar]
  105. May RM, Nowak MA 1994. Superinfection, metapopulation dynamics, and the evolution of diversity. J. Theor. Biol. 170:95–114
    [Google Scholar]
  106. McRae BH, Dickson BG, Keitt TH, Shah VB 2008. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–24
    [Google Scholar]
  107. Metz JAJ, Gyllenberg M 2001. How should we define fitness in structured metapopulation models? Including an application to the calculation of evolutionarily stable dispersal strategies. Proc. R. Soc. B 268:499–508
    [Google Scholar]
  108. Moilanen A. 1999. Patch occupancy models of metapopulation dynamics: efficient parameter estimation using implicit statistical inference. Ecology 80:1031–43
    [Google Scholar]
  109. Moilanen A. 2000. The equilibrium assumption in estimating the parameters of metapopulation models. J. Anim. Ecol. 69:143–53
    [Google Scholar]
  110. Moilanen A. 2002. Implications of empirical data quality to metapopulation model parameter estimation and application. Oikos 96:516–30
    [Google Scholar]
  111. Moilanen A, Hanski I 1998. Metapopulation dynamics: effects of habitat quality and landscape structure. Ecology 79:2503–15
    [Google Scholar]
  112. Moilanen A, Smith AT, Hanski I 1998. Long-term dynamics in a metapopulation of the American pika. Am. Nat. 152:530–42
    [Google Scholar]
  113. Nair A, Fountain T, Ikonen S, Ojanen SP, van Nouhuys S 2016. Spatial and temporal genetic structure at the fourth trophic level in a fragmented landscape. Proc. R. Soc. B 283:20160668
    [Google Scholar]
  114. Niitepõld K, Saastamoinen M 2017. A candidate gene in an ecological model species: Phosphoglucose isomerase (Pgi) in the Glanville fritillary butterfly (Melitaea cinxia). Ann. Zool. Fenn. 54:259–73
    [Google Scholar]
  115. Niitepõld K, Smith AD, Osborne JL, Reynolds DR, Carreck NL et al. 2009. Flight metabolic rate and Pgi genotype influence butterfly dispersal rate in the field. Ecology 90:2223–32
    [Google Scholar]
  116. O'Grady JJ, Brook BW, Reed DH, Ballou JD, Tonkyn DW, Frankham R 2006. Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol. Conserv. 133:42–51
    [Google Scholar]
  117. Ojanen SP, Nieminen M, Meyke E, Pöyry J, Hanski I 2013. Long-term metapopulation study of the Glanville fritillary butterfly (Melitaea cinxia): survey methods, data management, and long-term population trends. Ecol. Evol. 3:3713–37
    [Google Scholar]
  118. Olivieri I, Michalakis Y, Gouyon PH 1995. Metapopulation genetics and evolution of dispersal. Am. Nat. 146:202–28
    [Google Scholar]
  119. Orsini L, Corander J, Alasentie A, Hanski I 2008. Genetic spatial structure in a butterfly metapopulation correlates better with past than present demographic structure. Mol. Ecol. 17:2629–42
    [Google Scholar]
  120. Ostfeld RS, Glass GE, Keesing F 2005. Spatial epidemiology: an emerging (or re-emerging) discipline. Trends Ecol. Evol. 20:328–36
    [Google Scholar]
  121. Ovaskainen O, Hanski I 2001. Spatially structured metapopulation models: global and local assessment of metapopulation capacity. Theor. Popul. Biol. 60:281–302
    [Google Scholar]
  122. Ovaskainen O, Hanski I 2002. Transient dynamics in metapopulation response to perturbation. Theor. Popul. Biol. 61:285–95
    [Google Scholar]
  123. Ovaskainen O, Hanski I 2003a. Extinction threshold in metapopulation models. Ann. Zool. Fenn. 40:81–97
    [Google Scholar]
  124. Ovaskainen O, Hanski I 2003b. How much does an individual habitat fragment contribute to metapopulation dynamics and persistence. Theor. Popul. Biol. 64:481–95
    [Google Scholar]
  125. Ovaskainen O, Hanski I 2004. From individual behavior to metapopulation dynamics: unifying the patchy population and classic metapopulation models. Am. Nat. 164:364–77
    [Google Scholar]
  126. Ovaskainen O, Rekola H, Meyke E, Arjas E 2008a. Bayesian methods for analyzing movements in heterogeneous landscapes from mark-recapture data. Ecology 89:542–54
    [Google Scholar]
  127. Ovaskainen O, Sato K, Bascompte J, Hanski I 2002. Metapopulation models for extinction threshold in spatially correlated landscapes. J. Theor. Biol. 215:95–108
    [Google Scholar]
  128. Ovaskainen O, Smith AD, Osborne JL, Reynolds DR, Carreck NL et al. 2008b. Tracking butterfly movements with harmonic radar reveals an effect of population age on movement distance. PNAS 105:19090–95
    [Google Scholar]
  129. Pannell JR, Barrett SCH 1998. Baker's law revisited: reproductive assurance in a metapopulation. Evolution 52:657–68
    [Google Scholar]
  130. Pannell JR, Charlesworth B 1999. Neutral genetic diversity in a metapopulation with recurrent local extinction and recolonization. Evolution 53:664–76
    [Google Scholar]
  131. Pannell JR, Charlesworth B 2000. Effects of metapopulation processes on measures of genetic diversity. Philos. Trans. R. Soc. B 355:1851–64
    [Google Scholar]
  132. Prugh LR, Hodges KE, Sinclair ARE, Brashares JS 2008. Effect of habitat area and isolation on fragmented animal populations. PNAS 105:20770–75
    [Google Scholar]
  133. Richards CM. 2000. Inbreeding depression and genetic rescue in a plant metapopulation. Am. Nat. 155:383–94
    [Google Scholar]
  134. Ricketts TH. 2001. The matrix matters: effective isolation in fragmented landscapes. Am. Nat. 158:87–99
    [Google Scholar]
  135. Ronce O. 2007. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 38:231–53
    [Google Scholar]
  136. Ronce O, Olivieri I 1997. Evolution of reproductive effort in a metapopulation with local extinctions and ecological succession. Am. Nat. 150:220–49
    [Google Scholar]
  137. Ronce O, Perret F, Olivieri I 2000. Landscape dynamics and evolution of colonizer syndromes: interactions between reproductive effort and dispersal in a metapopulation. Evol. Ecol. 14:233–60
    [Google Scholar]
  138. Roulin AC, Mariadassou M, Hall MD, Walser JC, Haag C, Ebert D 2015. High genetic variation in resting-stage production in a metapopulation: Is there evidence for local adaptation. Evolution 69:2747–56
    [Google Scholar]
  139. Saastamoinen M, Bocedi G, Cote J, Legrand D, Guillaume F et al. 2018. Genetics of dispersal. Biol. Rev. 93:574–99
    [Google Scholar]
  140. Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I 1998. Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–94
    [Google Scholar]
  141. Smith AT, Peacock MM 1990. Conspecific attraction and the determination of metapopulation colonization rates. Conserv. Biol. 4:320–23
    [Google Scholar]
  142. Smith MA, Green DM 2005. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: Are all amphibian populations metapopulations. Ecography 28:110–28
    [Google Scholar]
  143. Snäll T, Ribeiro PJ, Rydin H 2003. Spatial occurrence and colonisations in patch-tracking metapopulations: local conditions versus dispersal. Oikos 103:566–78
    [Google Scholar]
  144. Somervuo P, Kvist J, Ikonen S, Auvinen P, Paulin L et al. 2014. Transcriptome analysis reveals signature of adaptation to landscape fragmentation. PLOS ONE 9:e101467
    [Google Scholar]
  145. Soubeyrand S, Laine AL, Hanski I, Penttinen A 2009. Spatiotemporal structure of host-pathogen interactions in a metapopulation. Am. Nat. 174:308–20
    [Google Scholar]
  146. Stacey PB, Taper M 1992. Environmental variation and the persistence of small populations. Ecol. Appl. 2:18–29
    [Google Scholar]
  147. Sultan SE, Spencer HG 2002. Metapopulation structure favors plasticity over local adaptation. Am. Nat. 160:271–83
    [Google Scholar]
  148. Tack AJM, Mononen T, Hanski I 2015. Increasing frequency of low summer precipitation synchronizes dynamics and compromises metapopulation stability in the Glanville fritillary butterfly. Proc. R. Soc. B 282:20150173
    [Google Scholar]
  149. Tero N, Aspi J, Siikamäki P, Jäkäläniemi A, Tuomi J 2003. Genetic structure and gene flow in a metapopulation of an endangered plant species, Silene tatarica. Mol. Ecol. 12:2073–85
    [Google Scholar]
  150. Thomas CD. 1994. Extinction, colonization, and metapopulations: environmental tracking by rare species. Conserv. Biol. 8:373–78
    [Google Scholar]
  151. Thomas CD, Harrison S 1992. Spatial dynamics of a patchily distributed butterfly species. J. Anim. Ecol. 61:437–46
    [Google Scholar]
  152. Thomas CD, Kunin WE 1999. The spatial structure of populations. J. Anim. Ecol. 68:647–57
    [Google Scholar]
  153. Thomas CD, Thomas JA, Warren MS 1992. Distributions of occupied and vacant butterfly habitats in fragmented landscapes. Oecologia 92:563–67
    [Google Scholar]
  154. Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ et al. 2001. The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc. R. Soc. B 268:1791–96
    [Google Scholar]
  155. Thrall PH, Burdon JJ 2003. Evolution of virulence in a plant host-pathogen metapopulation. Science 299:1735–37
    [Google Scholar]
  156. Tilman D. 1994. Competition and biodiversity in spatially structured habitats. Ecology 75:2–16
    [Google Scholar]
  157. Tilman D, May RM, Lehman CL, Nowak MA 1994. Habitat destruction and the extinction debt. Nature 371:65–66
    [Google Scholar]
  158. Travis JMJ, Dytham C 1999. Habitat persistence, habitat availability and the evolution of dispersal. Proc. R. Soc. B 266:723–28
    [Google Scholar]
  159. Turnbull LA, Crawley MJ, Rees M 2000. Are plant populations seed-limited? A review of seed sowing experiments. Oikos 88:225–38
    [Google Scholar]
  160. Urban D, Keitt T 2001. Landscape connectivity: a graph-theoretic perspective. Ecology 82:1205–18
    [Google Scholar]
  161. Van Dyck H, Baguette M 2005. Dispersal behaviour in fragmented landscapes: routine or special movements. Basic Appl. Ecol. 6:535–45
    [Google Scholar]
  162. van Nouhuys S, Hanski I 2002. Colonization rates and distances of a host butterfly and two specific parasitoids in a fragmented landscape. J. Anim. Ecol. 71:639–50
    [Google Scholar]
  163. Vandermeer J, Carvajal R 2001. Metapopulation dynamics and the quality of the matrix. Am. Nat. 158:211–20
    [Google Scholar]
  164. Vellend M, Verheyen K, Jacquemyn H, Kolb A, Van Calster H et al. 2006. Extinction debt of forest plants persists for more than a century following habitat fragmentation. Ecology 87:542–48
    [Google Scholar]
  165. Wang RJ, Ovaskainen O, Cao YD, Chen HQ, Zhou Y et al. 2011. Dispersal in the Glanville fritillary butterfly in fragmented versus continuous landscapes: comparison between three methods. Ecol. Entomol. 36:251–60
    [Google Scholar]
  166. Watson JR, Kendall BE, Siegel DA, Mitarai S 2012. Changing seascapes, stochastic connectivity, and marine metapopulation dynamics. Am. Nat. 180:99–112
    [Google Scholar]
  167. Wheat CW, Fescemyer HW, Kvist J, Tas E, Vera JC et al. 2011. Functional genomics of life history variation in a butterfly metapopulation. Mol. Ecol. 20:1813–28
    [Google Scholar]
  168. Wheat CW, Hagg CR, Marden JH, Hanski I, Frilander MJ 2010. Nucleotide polymorphism at a gene (Pgi) under balancing selection in a butterfly metapopulation. Mol. Biol. Evol. 27:267–81
    [Google Scholar]
  169. With KA, King AW 1999. Extinction thresholds for species in fractal landscapes. Conserv. Biol. 13:314–26
    [Google Scholar]
  170. Zheng CZ, Ovaskainen O, Hanski I 2009. Modelling single nucleotide effects in phosphoglucose isomerase on dispersal in the Glanville fritillary butterfly: coupling of ecological and evolutionary dynamics. Philos. Trans. R. Soc. B 364:1519–32
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110617-062519
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error