Theories of how species evolve in changing environments mostly consider single species in isolation or pairs of interacting species. Yet all organisms live in diverse communities containing many hundreds of species. This review discusses how species interactions influence the evolution of constituent species across whole communities. When species interactions are weak or inconsistent, evolutionary dynamics should be predictable by factors identified by single-species theory. Stronger species interactions, however, can alter evolutionary outcomes and either dampen or promote evolution of constituent species depending on the number of species and the distribution of interaction strengths across the interaction network. Genetic interactions, such as horizontal gene transfer, might also affect evolutionary outcomes. These evolutionary mechanisms in turn affect whole-community properties, such as the level of ecosystem functioning. Successful management of both ecosystems and focal species requires new understanding of evolutionary interactions across whole communities.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abrams PA. 2000. The evolution of predator-prey interactions: theory and evidence. Annu. Rev. Ecol. Syst. 31:79–105 [Google Scholar]
  2. Acuna R, Padilla BE, Florez-Ramos CP, Rubio JD, Herrera JC. et al. 2012. Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. PNAS 109:4197–202 [Google Scholar]
  3. Arnold ML, Ballerini ES, Brothers AN. 2012. Hybrid fitness, adaptation and evolutionary diversification: lessons learned from Louisiana irises. Heredity 108:159–66 [Google Scholar]
  4. Barnosky AD. 2001. Distinguishing the effects of the Red Queen and Court Jester on Miocene mammal evolution in the northern Rocky Mountains. J. Vertebr. Paleontol. 21:172–85 [Google Scholar]
  5. Barraclough TG, Balbi KJ, Ellis RJ. 2012. Evolving concepts of bacterial species. Evol. Biol. 39:148–57 [Google Scholar]
  6. Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK. et al. 2009. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461:1243–74 [Google Scholar]
  7. Barton N, Partridge L. 2000. Limits to natural selection. BioEssays 22:1075–84 [Google Scholar]
  8. Bell G. 2007. The evolution of trophic structure. Heredity 99:494–505 [Google Scholar]
  9. Bell G, Gonzalez A. 2011. Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration. Science 332:1327–30 [Google Scholar]
  10. Benkman CW. 2013. Biotic interaction strength and the intensity of selection. Ecol. Lett. 16:1054–60 [Google Scholar]
  11. Berg MP, Kiers ET, Driessen G, van der Heijden M, Kooi BW. et al. 2010. Adapt or disperse: understanding species persistence in a changing world. Glob. Change Biol. 16:587–98 [Google Scholar]
  12. Berlow EL, Dunne JA, Martinez ND, Stark PB, Williams RJ, Brose U. 2009. Simple prediction of interaction strengths in complex food webs. PNAS 106:187–91 [Google Scholar]
  13. Blount ZD, Barrick JE, Davidson CJ, Lenski RE. 2012. Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489:513–18 [Google Scholar]
  14. Bolnick DI, Amarasekare P, Araujo MS, Burger R, Levine JM. et al. 2011. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26:183–92 [Google Scholar]
  15. Bomar L, Maltz M, Colston S, Graf J. 2011. Directed culturing of microorganisms using metatranscriptomics. mBio 2:e00012–11 [Google Scholar]
  16. Boschetti C, Carr A, Crisp A, Eyres I, Wang-Koh Y. et al. 2012. Biochemical diversification through foreign gene expression in bdelloid rotifers. PLOS Genet. 8:e1003035 [Google Scholar]
  17. Boyle RA, Williams HTP, Lenton TM. 2012. Natural selection for costly nutrient recycling in simulated microbial metacommunities. J. Theor. Biol. 312:1–12 [Google Scholar]
  18. Bradwell K, Combe M, Domingo-Calap P, Sanjuan R. 2013. Correlation between mutation rate and genome size in riboviruses: mutation rate of bacteriophage Qβ. Genetics 195:243–51 [Google Scholar]
  19. Brand CL, Kingan SB, Wu LJ, Garrigan D. 2013. A selective sweep across species boundaries in Drosophila. Mol. Biol. Evol. 30:2177–86 [Google Scholar]
  20. Burger R, Lynch M. 1995. Evolution and extinction in a changing environment—a quantitative-genetic analysis. Evolution 49:151–63 [Google Scholar]
  21. Burt A, Bell G. 1987. Mammalian chiasma frequencies as a test of two theories of recombination. Nature 326:803–5 [Google Scholar]
  22. Caldarelli G, Higgs PG, McKane AJ. 1998. Modelling coevolution in multispecies communities. J. Theor. Biol. 193:345–58 [Google Scholar]
  23. Case TJ, Taper ML. 2000. Interspecific competition, environmental gradients, gene flow, and the coevolution of species' borders. Am. Nat. 155:583–605 [Google Scholar]
  24. Chen ZQ, Benton MJ. 2012. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat. Geosci. 5:375–83 [Google Scholar]
  25. Chevin L-M. 2013. Genetic constraints on adaptation to a changing environment. Evolution 67:708–21 [Google Scholar]
  26. Chevin L-M, Lande R, Mace GM. 2010. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLOS Biol. 8:e1000357 [Google Scholar]
  27. Christensen K, de Collobiano SA, Hall M, Jensen HJ. 2002. Tangled nature: a model of evolutionary ecology. J. Theor. Biol. 216:73–84 [Google Scholar]
  28. Chubiz LM, Lee MC, Delaney NF, Marx CJ. 2012. FREQ-Seq: a rapid, cost-effective, sequencing-based method to determine allele frequencies directly from mixed populations. PLOS ONE 7:e47959 [Google Scholar]
  29. Colegrave N. 2002. Sex releases the speed limit on evolution. Nature 420:664–66 [Google Scholar]
  30. Collins S. 2011. Competition limits adaptation and productivity in a photosynthetic alga at elevated CO2. Proc. R. Soc. B 278:247–55 [Google Scholar]
  31. de Mazancourt C, Johnson E, Barraclough TG. 2008. Biodiversity inhibits species' evolutionary responses to changing environments. Ecol. Lett. 11:380–88 [Google Scholar]
  32. Decaestecker E, Gaba S, Raeymaekers JAM, Stoks R, Van Kerckhoven L. et al. 2007. Host-parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450:870–73 [Google Scholar]
  33. Delzenne NM, Neyrinck AM, Backhed F, Cani PD. 2011. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat. Rev. Endocrinol. 7:639–46 [Google Scholar]
  34. Denef VJ, Banfield JF. 2012. In situ evolutionary rate measurements show ecological success of recently emerged bacterial hybrids. Science 336:462–66 [Google Scholar]
  35. Draghi JA, Turner PE. 2006. DNA secretion and gene-level selection in bacteria. Microbiology 152:2683–88 [Google Scholar]
  36. Draghi JA, Whitlock MC. 2012. Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution 66:2891–902 [Google Scholar]
  37. Elias M, Fontaine C, van Veen FJF. 2013. Evolutionary history and ecological processes shape a local multilevel antagonistic network. Curr. Biol. 23:1355–59 [Google Scholar]
  38. Evans AR, Jones D, Boyer AG, Brown JH, Costa DP. et al. 2012. The maximum rate of mammal evolution. PNAS 109:4187–90 [Google Scholar]
  39. Ezard THG, Aze T, Pearson PN, Purvis A. 2011. Interplay between changing climate and species' ecology drives macroevolutionary dynamics. Science 332:349–51 [Google Scholar]
  40. Fine PVA, Miller ZJ, Mesones I, Irazuzta S, Appel HM. et al. 2006. The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87:S150–62 [Google Scholar]
  41. Fisher RA. 1930. The Genetical Theory of Natural Selection Oxford, UK: Oxford Univ. Press [Google Scholar]
  42. Fowler CW, Macmahon JA. 1982. Selective extinction and speciation—their influence on the structure and functioning of communities and ecosystems. Am. Nat. 119:480–98 [Google Scholar]
  43. Freeland JR, Biss P, Conrad KF, Silvertown J. 2010. Selection pressures have caused genome-wide population differentiation of Anthoxanthum odoratum despite the potential for high gene flow. J. Evol. Biol. 23:776–82 [Google Scholar]
  44. Fussmann GF, Loreau M, Abrams PA. 2007. Eco-evolutionary dynamics of communities and ecosystems. Funct. Ecol. 21:465–77 [Google Scholar]
  45. Giraud A, Matic I, Tenaillon O, Clara A, Radman M. et al. 2001. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291:2606–8 [Google Scholar]
  46. Goddard MR, Godfray HCJ, Burt A. 2005. Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434:636–40 [Google Scholar]
  47. Gomez P, Buckling A. 2011. Bacteria-phage antagonistic coevolution in soil. Science 332:106–9 [Google Scholar]
  48. Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A. et al. 2011. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. PNAS 108:6252–57 [Google Scholar]
  49. Gossmann TI, Keightley PD, Eyre-Walker A. 2012. The effect of variation in the effective population size on the rate of adaptive molecular evolution in eukaryotes. Genome Biol. Evol. 4:658–67 [Google Scholar]
  50. Gravel D, Bell T, Barbera C, Bouvier T, Pommier T. et al. 2011. Experimental niche evolution alters the strength of the diversity-productivity relationship. Nature 469:89–92 [Google Scholar]
  51. Guimarães PR, Jordano P, Thompson JN. 2011. Evolution and coevolution in mutualistic networks. Ecol. Lett. 14:877–85 [Google Scholar]
  52. Haddrill PR, Halligan DL, Tomaras D, Charlesworth B. 2007. Reduced efficacy of selection in regions of the Drosophila genome that lack crossing over. Genome Biol. 8:R18 [Google Scholar]
  53. Haft RJF, Mittler JE, Traxler B. 2009. Competition favours reduced cost of plasmids to host bacteria. ISME J. 3:761–69 [Google Scholar]
  54. Harmon JP, Moran NA, Ives AR. 2009. Species response to environmental change: impacts of food web interactions and evolution. Science 323:1347–50 [Google Scholar]
  55. Harrison E, Brockhurst MA. 2012. Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol. 20:262–67 [Google Scholar]
  56. Hedrick PW. 2013. Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Mol. Ecol. 22:4606–18 [Google Scholar]
  57. Hekstra DR, Leibler S. 2012. Contingency and statistical laws in replicate microbial closed ecosystems. Cell 149:1164–73 [Google Scholar]
  58. Hendry AP, Kinnison MT. 1999. Perspective: The pace of modern life: measuring rates of contemporary microevolution. Evolution 53:1637–53 [Google Scholar]
  59. Herron MD, Doebeli M. 2013. Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. PLOS Biol. 11:e1001490 [Google Scholar]
  60. Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S. et al. 2005. Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl. Environ. Microbiol. 71:6590–99 [Google Scholar]
  61. Hughes C, Eastwood R. 2006. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. PNAS 103:10334–39 [Google Scholar]
  62. Johansson J. 2008. Evolutionary responses to environmental changes: How does competition affect adaptation?. Evolution 62:421–35 [Google Scholar]
  63. Ketola T, Mikonranta L, Zhang J, Saarinen K, Ormala A-M. et al. 2013. Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments. Evolution 67:2936–44 [Google Scholar]
  64. Lande R. 1979. Quantitative genetic analysis of multivariate evolution, applied to brain–body size allometry. Evolution 33:402–16 [Google Scholar]
  65. Lande R. 2009. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J. Evol. Biol. 22:1435–46 [Google Scholar]
  66. Lanfear R, Kokko H, Eyre-Walker A. 2014. Population size and the rate of evolution. Trends Ecol. Evol. 29:33–41 [Google Scholar]
  67. Lau JA, Shaw RG, Reich PB, Tiffin P. 2014. Indirect effects drive evolutionary responses to global change. New Phytol. 201:335–43 [Google Scholar]
  68. Lavergne S, Mouquet N, Thuiller W, Ronce O. 2010. Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu. Rev. Ecol. Evol. Syst. 41:321–50 [Google Scholar]
  69. Lawrence D, Fiegna F, Behrends V, Bundy JG, Phillimore AB. et al. 2012. Species interactions alter evolutionary responses to a novel environment. PLOS Biol. 10:e1001330 [Google Scholar]
  70. Lawrence JG, Ochman H. 1998. Molecular archaeology of the Escherichia coli genome. PNAS 95:9413–17 [Google Scholar]
  71. Leger EA, Espeland EK. 2010. Coevolution between native and invasive plant competitors: implications for invasive species management. Evol. Appl. 3:169–78 [Google Scholar]
  72. Lennon JT, Martiny JBH. 2008. Rapid evolution buffers ecosystem impacts of viruses in a microbial food web. Ecol. Lett. 11:1178–88 [Google Scholar]
  73. Levy R, Borenstein E. 2013. Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. PNAS 110:12804–9 [Google Scholar]
  74. Lewis HM, Law R. 2007. Effects of dynamics on ecological networks. J. Theor. Biol. 247:64–76 [Google Scholar]
  75. Liow LH, Van Valen L, Stenseth NC. 2011. Red Queen: from populations to taxa and communities. Trends Ecol. Evol. 26:349–58 [Google Scholar]
  76. Loeuille N. 2010. Influence of evolution on the stability of ecological communities. Ecol. Lett. 13:1536–45 [Google Scholar]
  77. Login FH, Balmand S, Vallier A, Vincent-Monegat C, Vigneron A. et al. 2011. Antimicrobial peptides keep insect endosymbionts under control. Science 334:362–65 [Google Scholar]
  78. Loreau M, Hector A. 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76 [Google Scholar]
  79. Lynch M. 1990. The rate of morphological evolution in mammals from the standpoint of the neutral expectation. Am. Nat. 136:727–41 [Google Scholar]
  80. Lynch M, Gabriel W. 1987. Environmental tolerance. Am. Nat. 129:283–303 [Google Scholar]
  81. Mahler DL, Revell LJ, Glor RE, Losos JB. 2010. Ecological opportunity and the rate of morphological evolution in the diversification of Greater Antillean anoles. Evolution 64:2731–45 [Google Scholar]
  82. Manier MK, Arnold SJ. 2006. Ecological correlates of population genetic structure: a comparative approach using a vertebrate metacommunity. Proc. R. Soc. B 273:3001–9 [Google Scholar]
  83. Matthews B, Narwani A, Hausch S, Nonaka E, Peter H. et al. 2011. Toward an integration of evolutionary biology and ecosystem science. Ecol. Lett. 14:690–701 [Google Scholar]
  84. Maynard Smith J. 1976. What determines the rate of evolution?. Am. Nat. 110:331–38 [Google Scholar]
  85. Minot S, Bryson A, Chehoud C, Wu GD, Lewis JD, Bushman DF. 2013. Rapid evolution of the human gut virome. PNAS 110:12450–55 [Google Scholar]
  86. Moran NA, Jarvik T. 2010. Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328:624–27 [Google Scholar]
  87. Munday PL, Warner RR, Monro K, Pandolfi JM, Marshall DJ. 2013. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16:1488–500 [Google Scholar]
  88. Neher RA, Shraiman BI, Fisher DS. 2010. Rate of adaptation in large sexual populations. Genetics 184:467–81 [Google Scholar]
  89. Niklas KJ, Midgley JJ, Rand RH. 2003. Size-dependent species richness: trends within plant communities and across latitude. Ecol. Lett. 6:631–36 [Google Scholar]
  90. Nogues-Bravo D. 2009. Predicting the past distribution of species climatic niches. Glob. Ecol. Biogeogr. 18:521–31 [Google Scholar]
  91. Norberg J, Urban MC, Vellend M, Klausmeier CA, Loeuille N. 2012. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Change 2:747–51 [Google Scholar]
  92. Northfield TD, Ives AR. 2013. Coevolution and the effects of climate change on interacting species. PLOS Biol. 11:e1001685 [Google Scholar]
  93. Novozhilov AS, Karev GP, Koonin EV. 2005. Mathematical modeling of evolution of horizontally transferred genes. Mol. Biol. Evol. 22:1721–32 [Google Scholar]
  94. Ochman H, Lawrence JG, Groisman EA. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304 [Google Scholar]
  95. Ormond CI, Rosenfeld JS, Taylor EB. 2011. Environmental determinants of threespine stickleback species pair evolution and persistence. Can. J. Fish. Aquat. Sci. 68:1983–97 [Google Scholar]
  96. Orr HA. 2000. Adaptation and the cost of complexity. Evolution 54:13–20 [Google Scholar]
  97. Osmond MM, de Mazancourt C. 2013. How competition affects evolutionary rescue. Philos. Trans. R. Soc. B 368:20120085 [Google Scholar]
  98. Ozgul A, Tuljapurkar S, Benton TG, Pemberton JM, Clutton-Brock TH, Coulson T. 2009. The dynamics of phenotypic change and the shrinking sheep of St. Kilda. Science 325:464–67 [Google Scholar]
  99. Pál C, Papp B, Lercher MJ. 2005. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat. Genet. 37:1372–75 [Google Scholar]
  100. Pantel JH, Leibold MA, Juenger TE. 2011. Population differentiation in Daphnia alters community assembly in experimental ponds. Am. Nat. 177:314–22 [Google Scholar]
  101. Papadopoulou A, Anastasiou I, Spagopoulou F, Stalimerou M, Terzopoulou S. et al. 2011. Testing the species-genetic diversity correlation in the Aegean archipelago: toward a haplotype-based macroecology?. Am. Nat. 178:241–55 [Google Scholar]
  102. Perron GG, Lee AEG, Wang Y, Huang WE, Barraclough TG. 2012. Bacterial recombination promotes the evolution of multi-drug-resistance in functionally diverse populations. Proc. R. Soc. B 279:1477–84 [Google Scholar]
  103. Peterson AT, Soberon J, Sanchez-Cordero V. 1999. Conservatism of ecological niches in evolutionary time. Science 285:1265–67 [Google Scholar]
  104. Pfeiffer T, Bonhoeffer S. 2004. Evolution of cross-feeding in microbial populations. Am. Nat. 163:E126–35 [Google Scholar]
  105. Post DM, Palkovacs EP. 2009. Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Philos. Trans. R. Soc. B 364:1629–40 [Google Scholar]
  106. Price TD, Qvarnstrom A, Irwin DE. 2003. The role of phenotypic plasticity in driving genetic evolution. Proc. R. Soc. B 270:1433–40 [Google Scholar]
  107. Schluter D. 1996. Adaptive radiation along genetic lines of least resistance. Evolution 50:1766–74 [Google Scholar]
  108. Schoener TW. 2011. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331:426–29 [Google Scholar]
  109. Scoville AG, Pfrender ME. 2010. Phenotypic plasticity facilitates recurrent rapid adaptation to introduced predators. PNAS 107:4260–63 [Google Scholar]
  110. Seehausen O, Takimoto G, Roy D, Jokela J. 2008. Speciation reversal and biodiversity dynamics with hybridization in changing environments. Mol. Ecol. 17:30–44 [Google Scholar]
  111. Siepielski AM, Benkman CW. 2010. Conflicting selection from an antagonist and a mutualist enhances phenotypic variation in a plant. Evolution 64:1120–28 [Google Scholar]
  112. Simpson GG. 1949. Tempo and Mode in Evolution New York: Columbia Univ. Press [Google Scholar]
  113. Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ. 2011. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480:241–44 [Google Scholar]
  114. Song Y, Endepols S, Klemann N, Richter D, Matuschka FR. et al. 2011. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr. Biol. 21:1296–301 [Google Scholar]
  115. Stenseth NC, Smith JM. 1984. Coevolution in ecosystems—Red Queen evolution or stasis. Evolution 38:870–80 [Google Scholar]
  116. Sunday JM, Bates AE, Dulvy NK. 2011. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278:1823–30 [Google Scholar]
  117. terHorst CP. 2010. Evolution in response to direct and indirect ecological effects in pitcher plant inquiline communities. Am. Nat. 176:675–85 [Google Scholar]
  118. Thomas CM, Nielsen KM. 2005. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 3:711–21 [Google Scholar]
  119. Thompson JN. 1999. Specific hypotheses on the geographic mosaic of coevolution. Am. Nat. 153:S1–14 [Google Scholar]
  120. Tilman D, Lehman C. 2001. Human-caused environmental change: impacts on plant diversity and evolution. PNAS 98:5433–40 [Google Scholar]
  121. Turley NE, Odell WC, Schaefer H, Everwand G, Crawley MJ, Johnson MTJ. 2013. Contemporary evolution of plant growth rate following experimental removal of herbivores. Am. Nat. 181:Suppl. 1S21–34 [Google Scholar]
  122. Urban MC. 2013. Evolution mediates the effects of apex predation on aquatic food webs. Proc. R. Soc. B 280:20130859 [Google Scholar]
  123. Van Doorslaer W, Stoks R, Swillen I, Feuchtmayr H, Atkinson D. et al. 2010. Experimental thermal microevolution in community-embedded Daphnia populations. Clim. Res. 43:81–89 [Google Scholar]
  124. Vellend M, Geber MA. 2005. Connections between species diversity and genetic diversity. Ecol. Lett. 8:767–81 [Google Scholar]
  125. Visser ME. 2008. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. R. Soc. B 275:649–59 [Google Scholar]
  126. Wiedenbeck J, Cohan FM. 2011. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol. Rev. 35:957–76 [Google Scholar]
  127. Williams HTP, Lenton TM. 2008. Environmental regulation in a network of simulated microbial ecosystems. PNAS 105:10432–37 [Google Scholar]
  128. Yoshida T, Jones LE, Ellner SP, Fussmann GF, Hairston NG. 2003. Rapid evolution drives ecological dynamics in a predator-prey system. Nature 424:303–6 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error