Recent studies have generated an explosion of phylogenetic and biogeographic data and have provided new tools to investigate the processes driving large-scale gradients in species diversity. Fossils and phylogenetic studies of plants and animals demonstrate that tropical regions are the source for almost all groups of organisms, and these groups are composed of a mixture of ancient and recently derived lineages. These findings are consistent with the hypothesis that the large extent of tropical environments during the past 10–50 million years, together with greater climatic stability, has promoted speciation and reduced extinction rates. Energy availability appears to only indirectly contribute to global patterns of species diversity, especially considering how some marine diversity gradients can be completely decoupled from temperature and productivity gradients. Instead, climate stability and time–integrated area together determine the baselines of both terrestrial and marine global diversity patterns. Biotic interactions likely augment diversification and coexistence in the tropics.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Allen AP, Gillooly JF, Brown JH. 2007. Recasting the species-energy hypothesis: the different roles of kinetic and potential energy in regulating biodiversity. Scaling Biodiversity D Storch, PA Marquet, JH Brown 258–82 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  2. Allen AP, Gillooly JF, Savage VM, Brown JH. 2006. Kinetic effects of temperature on rates of genetic divergence and speciation. PNAS 103:9130–35 [Google Scholar]
  3. Anacker B. 2011. Phylogenetic patterns of endemism and diversity. Serpentine: The Evolution and Ecology of a Model System SP Harrison, N Rajakaruna 49–79 Berkeley: Univ. Calif. Press [Google Scholar]
  4. Antonelli A, Sanmartín I. 2011. Why are there so many plant species in the Neotropics?. Taxon 60:403–14 [Google Scholar]
  5. Archibald SB, Bossert WH, Greenwood DR, Farrell BD. 2010. Seasonality, the latitudinal gradient of diversity, and Eocene insects. Paleobiology 36:374–98 [Google Scholar]
  6. Baker TR, Pennington RT, Magallon S, Gloor E, Laurance WF, et al. 2014. Fast demographic traits promote high diversification rates of Amazonian trees. Ecol. Lett. 17:527–36 [Google Scholar]
  7. Becerra JX. 1997. Insects on plants: macroevolutionary chemical trends in host use. Science 276:253–56 [Google Scholar]
  8. Belanger CL, Jablonski D, Roy K, Berke SK, Krug AZ. et al. 2012. Global environmental predictors of benthic marine biogeographic structure. PNAS 109:14046–51 [Google Scholar]
  9. Belmaker J, Jetz W. 2015. Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients. Ecol. Lett. 18:563–71 [Google Scholar]
  10. Brown JH. 2014. Why are there so many species in the tropics?. J. Biogeogr. 41:8–22 [Google Scholar]
  11. Buckley LB, Davies TJ, Ackerly DD, Kraft NJB, Harrison SP. et al. 2010. Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. Proc. R. Soc. B 277:2131–38 [Google Scholar]
  12. Cardillo M, Orme CDL, Owens IPF. 2005. Testing for latitudinal bias in diversification rates: an example using new world birds. Ecology 86:2278–87 [Google Scholar]
  13. Carnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C. 2009. Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323:785–89 [Google Scholar]
  14. Chown SL, Gaston KJ. 2000. Areas, cradles and museums: the latitudinal gradient in species richness. Trends Ecol. Evol. 15:311–15 [Google Scholar]
  15. Coley PD, Barone JA. 1996. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27:305–35 [Google Scholar]
  16. Coley PD, Bryant JP, Chapin FS. 1985. Resource availability and plant antiherbivore defense. Science 230:895–99 [Google Scholar]
  17. Condamine FL, Sperling FAH, Wahlberg N, Rasplus J-Y, Kergoat GJ. 2012. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecol. Lett. 15:267–77 [Google Scholar]
  18. Connell JH. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dynamics of Populations PJ den Boer, GR Gradwell 298–312 Wageningen, Neth.: Cent. Agric. Publ. Doc. [Google Scholar]
  19. Cornell HV. 2013. Is regional diversity bounded or unbounded?. Biol. Rev. 88:140–65 [Google Scholar]
  20. Coyne JA, Orr HA. 2004. Speciation Sunderland, MA: Sinauer [Google Scholar]
  21. Crame JA. 2001. Taxonomic diversity gradients through geological time. Divers. Distrib. 7:175–89 [Google Scholar]
  22. Currie DW, Kerr JT. 2008. Tests of the mid-domain hypothesis: a review of the evidence. Ecol. Monogr. 78:3–18 [Google Scholar]
  23. Davies TJ, Savolainen V, Chase MW, Moat J, Barraclough TG. 2004. Environmental energy and evolutionary rates in flowering plants. Proc. R. Soc. B 271:2195–200 [Google Scholar]
  24. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK. et al. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. PNAS 105:6668–72 [Google Scholar]
  25. Dobzhansky T. 1950. Evolution in the tropics. Am. Sci. 38:209–21 [Google Scholar]
  26. Donoghue MJ, Edwards EJ. 2014. Biome shifts and niche evolution in plants. Annu. Rev. Ecol. Evol. Syst. 45:547–72 [Google Scholar]
  27. Dynesius M, Jansson R. 2000. Evolutionary consequences of changes in species geographical distributions driven by Milankovitch climate oscillations. PNAS 97:9115–20 [Google Scholar]
  28. Ehrlich PR, Raven PH. 1964. Butterflies and plants: a study in coevolution. Evolution 18:586–608 [Google Scholar]
  29. Endler JA. 1977. Geographic Variation, Speciation, and Clines Princeton, NJ: Princeton Univ. Press [Google Scholar]
  30. Evans KL, Warren PH, Gaston KJ. 2005. Species-energy relationships at the macroecological scale: a review of the mechanisms. Biol. Rev. 80:1–25 [Google Scholar]
  31. Farrell BD, Dussourd DE, Mitter C. 1991. Escalation of plant defense: do latex and resin canals spur plant diversification?. Am. Nat. 138:881–90 [Google Scholar]
  32. Fine PVA. 2001. An evaluation of the geographic area hypothesis using the latitudinal gradient in North American tree diversity. Evol. Ecol. Res. 3:413–28 [Google Scholar]
  33. Fine PVA, Mesones I, Coley PD. 2004. Herbivores promote habitat specialization by trees in Amazonian forests. Science 305:663–65 [Google Scholar]
  34. Fine PVA, Metz MR, Lokvam J, Mesones I, Ayarza Zuñiga JM. et al. 2013. Insect herbivores, chemical innovation and the evolution of habitat specialization in Amazonian trees. Ecology 94:1764–75 [Google Scholar]
  35. Fine PVA, Ree RH. 2006. Evidence for a time-integrated species-area effect on the latitudinal gradient in tree diversity. Am. Nat. 168:796–804 [Google Scholar]
  36. Fine PVA, Ree RH, Burnham RJ. 2008. The disparity in tree species richness among tropical, temperate and boreal biomes: the geographic area and age hypothesis. Tropical Forest Community Ecology WP Carson, SA Schnitzer 31–45 London: Blackwell [Google Scholar]
  37. Fjeldså J, Bowie RCK, Rahbek C. 2012. The role of mountain ranges in the diversification of birds. Annu. Rev. Ecol. Evol. Syst. 43:249–65 [Google Scholar]
  38. Foote M. 2010. The geological history of biodiversity. Evolution Since Darwin: The First 150 Years MA Bell, DJ Futuyma, WF Eanes, JS Levinton 479–510 Sunderland, MA: Sinauer [Google Scholar]
  39. Forister ML, Dyer LA, Singer MS, Stireman JO III, Lill JT. 2012. Revisiting the evolution of ecological specialization, with emphasis on insect–plant interactions. Ecology 93:981–91 [Google Scholar]
  40. Freestone AL, Ruiz GM, Torchin ME. 2013. Stronger biotic resistance in tropics relative to temperate zone: effects of predation on marine invasion dynamics. Ecology 94:1370–77 [Google Scholar]
  41. Fuchs J, Parra JL, Goodman SM, Raherilalao MJ, Vanderwal J, Bowie RCK. 2013. Extending ecological niche models to the past 120,000 years corroborates the lack of strong phylogeographic structure in the Crested Drongo (Dicrurus f. forficatus) on Madagascar. Biol. J. Linn. Soc. 108:658–76 [Google Scholar]
  42. Futuyma DJ. 2010. Evolutionary constraint and ecological consequences. Evolution 64:1865–84 [Google Scholar]
  43. Futuyma DJ, Agrawal AA. 2009. Macroevolution and the biological diversity of plants and herbivores. PNAS 106:18054–61 [Google Scholar]
  44. Futuyma DJ, Moreno G. 1988. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19:207–33 [Google Scholar]
  45. Ghalambor CK, Huey RB, Martin PR, Tewksbury JJ, Wang G. 2006. Are mountain passes higher in the tropics? Janzen's hypothesis revisited. Integr. Comp. Biol. 46:5–17 [Google Scholar]
  46. Gillman LN, Keeling DJ, Gardner RC, Wright SD. 2010. Faster evolution of highly conserved DNA in tropical plants. J. Evol. Biol. 23:1327–30 [Google Scholar]
  47. Gillman LN, Keeling DJ, Ross HA. 2009. Latitude, elevation and the tempo of molecular evolution in mammals. Proc. R. Soc. B 276:3353–59 [Google Scholar]
  48. Gillooly JF, Allen AP, West GB, Brown JH. 2005. The rate of DNA evolution: effects of body size and temperature on the molecular clock. PNAS 102:140–45 [Google Scholar]
  49. Graham CH, Moritz C, Williams SE. 2006. Habitat history improves prediction of biodiversity in rainforest fauna. PNAS 103:632–36 [Google Scholar]
  50. Graham CH, VanDerWal J, Phillips S, Williams SE, Moritz C. 2010. Dynamic refugia and species persistence: tracking spatial shifts in habitat through time. Ecography 33:1062–69 [Google Scholar]
  51. Grant PR, Grant BR, Markert JA, Keller LF, Petren K. 2004. Convergent evolution of Darwin's finches caused by introgressive hybridization and selection. Evolution 58:1588–99 [Google Scholar]
  52. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH. 2012. Beyond biogeographical patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10:497–506 [Google Scholar]
  53. Harmon LJ, Harrison S. 2015. Species diversity is dynamic and unbounded at local and continental scales. Am. Nat. 185:584–93 [Google Scholar]
  54. Hawkins BA. 2010. Multiregional comparison of the ecological and phylogenetic structure of butterfly species richness gradients. J. Biogeogr. 37:647–56 [Google Scholar]
  55. Hawkins BA, Albuquerque FS, Araujo MB, Beck J, Bini LM. et al. 2007. A global evaluation of metabolic theory as an explanation for terrestrial species richness gradients. Ecology 88:1877–88 [Google Scholar]
  56. Hille Ris Lambers J, Clark JS, Beckage B. 2002. Density-dependent mortality and the latitudinal gradient in species diversity. Nature 417:732–35 [Google Scholar]
  57. Holt B, Lessard J-P, Borregaard MK, Fritz SA, Araújo MB. et al. 2013. An update of Wallace's zoogeographic regions of the world. Science 339:74–77 [Google Scholar]
  58. Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A. et al. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution and biodiversity. Science 330:927–31 [Google Scholar]
  59. Hubbell SP. 2001. The Unified Neutral Theory of Biodiversity and Biogeography Princeton, NJ: Princeton Univ. Press [Google Scholar]
  60. Hubbell SP. 2005. Neutral theory in community ecology and the hypothesis of functional equivalence. Funct. Ecol. 19:166–72 [Google Scholar]
  61. Hurlbert AH, Stegen JC. 2014. On the processes generating latitudinal richness gradients: identifying diagnostic patterns and predictions. Front. Genet. 5:420 [Google Scholar]
  62. Jablonski D, Belanger CL, Berke SK, Huang S, Krug AZ. et al. 2013. Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. PNAS 110:10487–94 [Google Scholar]
  63. Jablonski D, Roy K, Valentine JW. 2006. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314:102–6 [Google Scholar]
  64. Jansson R. 2003. Global patterns in endemism explained by past climatic change. Proc. R. Soc. B 270:583–90 [Google Scholar]
  65. Jansson R, Davies TJ. 2008. Global variation in diversification rates of flowering plants: energy versus climate change. Ecol. Lett. 11:173–83 [Google Scholar]
  66. Jansson R, Dynesius M. 2002. The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annu. Rev. Ecol. Syst. 33:741–77 [Google Scholar]
  67. Janz N, Nylin S, Wahlberg N. 2006. Diversity begets diversity: host expansions and the diversification of plant-feeding insects. BMC Evol. Biol. 6:4 [Google Scholar]
  68. Janzen DH. 1967. Why mountain passes are higher in the tropics. Am. Nat. 101:233–49 [Google Scholar]
  69. Janzen DH. 1970. Herbivores and the number of tree species in tropical forests. Am. Nat. 104:501–28 [Google Scholar]
  70. Janzen DH. 1974. Tropical blackwater rivers, animals, and mast fruiting by the Dipterocarpaceae. Biotropica 6:69–103 [Google Scholar]
  71. Jetz W, Fine PVA. 2012. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLOS Biol. 10:3e1001292 [Google Scholar]
  72. Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. 2012. The global diversity of birds in space and time. Nature 491:444–48 [Google Scholar]
  73. Jiménez-Hidalgo E, Smith KT, Guerrero-Arenas R, Alvarado-Ortega J. 2015. The first Late Eocene continental faunal assemblage from tropical North America. J. S. Am. Earth Sci. 57:39–48 [Google Scholar]
  74. Johnson DJ, Beaulieu WT, Bever JD, Clay K. 2012. Conspecific negative density dependence and forest diversity. Science 336:904–7 [Google Scholar]
  75. Kay KM, Ward KL, Watt LR, Schemske DW. 2011. Plant speciation. Serpentine: The Evolution and Ecology of a Model System SP Harrison, N Rajakaruna 71–95 Berkeley: Univ. Calif. Press [Google Scholar]
  76. Kerkhoff AJ, Moriarty PE, Weiser MD. 2014. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. PNAS 111:8125–30 [Google Scholar]
  77. Kisel Y, Barraclough TG. 2010. Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 175:316–34 [Google Scholar]
  78. Kisel Y, McInnes L, Toomey NH, Orme CDL. 2011. How diversification rates and diversity limits combine to create large-scale species-area relationships. Philos. Trans. R. Soc. B 366:2514–25 [Google Scholar]
  79. Kozak KH, Wiens JJ. 2012. Phylogeny, ecology, and the origins of climate-richness relationships. Ecology 93:S167–81 [Google Scholar]
  80. Kraft NJB, Comita LS, Chase JM, Sanders NJ, Swenson NG. et al. 2011. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333:1755–58 [Google Scholar]
  81. Kreft H, Jetz W. 2010. A framework for delineating biogeographic regions based on species distributions. J. Biogeogr. 37:2029–53 [Google Scholar]
  82. Kursar TA, Dexter KG, Lokvam J, Pennington RT, Richardson JE. et al. 2009. The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. PNAS 106:18073–78 [Google Scholar]
  83. Lande R. 1993. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142:911–27 [Google Scholar]
  84. Lessard J-P, Belmaker J, Myers JA, Chase JM, Rahbek C. 2012. Inferring local ecological processes amid species pool influences. Trends Ecol. Evol. 27:600–7 [Google Scholar]
  85. Lim J-Y, Fine PVA, Mittelbach GG. 2015. Assessing the latitudinal gradient in herbivory. Glob. Ecol. Biogeogr. 24:1106–12 [Google Scholar]
  86. Loehle C. 1998. Height growth rate tradeoffs determine southern range limits for trees. J. Biogeogr. 25:735–42 [Google Scholar]
  87. Loiseau C, Harrigan RJ, Robert A, Bowie RC, Thomassen HA. et al. 2012. Host and habitat specialization of avian malaria in Africa. Mol. Ecol. 21:431–41 [Google Scholar]
  88. MacArthur RH. 1972. Geographical Ecology Princeton, NJ: Princeton Univ. Press [Google Scholar]
  89. Mangan SA, Schnitzer SA, Herre EA, Mack KML Valencia MC. et al. 2010. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466:752–55 [Google Scholar]
  90. Mannion PD, Upchurch P, Benson RBJ, Goswami A. 2014. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29:42–50 [Google Scholar]
  91. Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JH. et al. 2007. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10:315–31 [Google Scholar]
  92. Moritz C, Patton JL, Schneider CJ, Smith TB. 2000. Diversification of rainforest faunas: an integrated molecular approach. Annu. Rev. Ecol. Syst. 31:533–63 [Google Scholar]
  93. Newbold T, Hudson LN, Hill SL, Contu S, Lysenko I. et al. 2015. Global effects of land use on local terrestrial biodiversity. Nature 520:45–50 [Google Scholar]
  94. Nuismer SL, Macpherson A, Rosenblum EB. 2012. Crossing the threshold: gene flow, dominance and the critical level of standing genetic variation required for adaptation to novel environments. J. Evol. Biol. 25:2665–71 [Google Scholar]
  95. Peay KG, Baraloto C, Fine PVA. 2013. Strong coupling of plant and fungal community structure across Amazonian rainforests. ISME J. 7:1852–61 [Google Scholar]
  96. Pianka ER. 1966. Latitudinal gradients in species diversity: a review of the concepts. Am. Nat. 100:33–46 [Google Scholar]
  97. Powell MG. 2007. Latitudinal diversity gradients for brachiopod genera during late Palaeozoic time: links between climate, biogeography and evolutionary rates. Glob. Ecol. Biogeogr. 16:519–28 [Google Scholar]
  98. Pyron RA. 2014. Temperate extinction in squamate reptiles and the roots of latitudinal diversity gradients. Glob. Ecol. Biogeogr. 23:1126–34 [Google Scholar]
  99. Pyron RA, Wiens JJ. 2013. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proc. R. Soc. B 280:20131622 [Google Scholar]
  100. Qian H, Ricklefs RE. 2007. A latitudinal gradient in large-scale β diversity for vascular plants in North America. Ecol. Lett. 10:737–44 [Google Scholar]
  101. Rabosky DL. 2013. Diversity-dependence, ecological speciation, and the role of competition in macroevolution. Annu. Rev. Ecol. Evol. Syst. 44:481–502 [Google Scholar]
  102. Rabosky DL, Goldberg EE. 2015. Model inadequacy and mistaken inference of trait-dependent speciation. Syst. Biol. 64:340–55 [Google Scholar]
  103. Rabosky DL, Hurlbert AH. 2015. Species richness at continental scales is dominated by ecological limits. Am. Nat. 185:572–83 [Google Scholar]
  104. Rabosky DL, Title PO, Huang H. 2015. Minimal effects of latitude on present-day speciation rates in New World birds. Proc. R. Soc. B 282:20142889 [Google Scholar]
  105. Rahbek C, Graves GR. 2001. Multiscale assessment of patterns of avian species richness. PNAS 98:4534–39 [Google Scholar]
  106. Rex MA, Etter RJ. 2010. Deep-Sea Biodiversity Cambridge, MA: Harvard Univ. Press [Google Scholar]
  107. Ricklefs RE. 1987. Community diversity: relative roles of local and regional processes. Science 235:167–71 [Google Scholar]
  108. Ricklefs RE. 2004. A comprehensive framework for global patterns in biodiversity. Ecol. Lett. 7:1–15 [Google Scholar]
  109. Ricklefs RE. 2006. Global variation in the diversification rate of passerine birds. Ecology 87:2468–78 [Google Scholar]
  110. Ricklefs RE. 2010. Evolutionary diversification, coevolution between populations and their antagonists, and the filling of niche space. PNAS 107:1265–72 [Google Scholar]
  111. Rohde K. 1992. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65:514–27 [Google Scholar]
  112. Rolland J, Condamine FL, Jiguet F, Morlon H. 2014. Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLOS Biol. 12:e1001775 [Google Scholar]
  113. Rosenblum ER, Sarver BA, Brown JW, Des Roches S, Hardwick KM. et al. 2012. Goldilocks meets Santa Rosalia: an ephemeral speciation model explains patterns of diversification across time scales. Evol. Biol. 39:255–61 [Google Scholar]
  114. Rosenzweig ML. 1995. Species Diversity in Space and Time Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  115. Salazar D, Marquis RL. 2012. Herbivore pressure increases toward the equator. PNAS 109:12616–20 [Google Scholar]
  116. Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ. et al. 2011. The influence of Late Quaternary climate-change velocity on species endemism. Science 334:660–64 [Google Scholar]
  117. Schemske DW. 2002. Tropical diversity: patterns and processes. Ecological and Evolutionary Perspectives on the Origins of Tropical Diversity: Key Papers and Commentaries R Chazdon, T Whitmore 163–73 Chicago: Univ. Chicago Press [Google Scholar]
  118. Schemske DW. 2009. Biotic interactions and speciation in the tropics. Speciation and Patterns of Diversity R Butlin, J Bridle, D Schluter 219–39 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  119. Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K. 2009. Is there a latitudinal gradient in the importance of biotic interactions?. Annu. Rev. Ecol. Evol. Syst. 40:245–69 [Google Scholar]
  120. Schluter D. 2001. Ecology and the origin of species. Trends Ecol. Evol. 16:372–80 [Google Scholar]
  121. Sepkoski JJ Jr. 1998. Rates of speciation in the fossil record. Philos. Trans. R. Soc. B 353:315–26 [Google Scholar]
  122. Sheldon PR. 1996. Plus ça change—a model for stasis and evolution in different environments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127:209–27 [Google Scholar]
  123. Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña Z. et al. 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57:573–83 [Google Scholar]
  124. Stanley SM. 1985. Rates of evolution. Paleobiology 11:13–26 [Google Scholar]
  125. Stevens GC. 1989. The latitudinal gradient in geographic range: how so many species coexist in the tropics. Am. Nat. 133:240–56 [Google Scholar]
  126. Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS. 2014. Global diversity and geography of soil fungi. Science 346:1078 [Google Scholar]
  127. ter Steege H, Pitman NCA, Sabatier D, Baraloto C, Salomao RP. et al. 2013. Hyper-dominance in the Amazonian tree flora. Science 342:325 [Google Scholar]
  128. Terborgh J. 2012. Enemies maintain hyperdiverse tropical forests. Am. Nat. 179:303–14 [Google Scholar]
  129. Thompson JN. 1994. The coevolutionary process Chicago: Univ. Chicago Press [Google Scholar]
  130. Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D. et al. 2010. Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098–101 [Google Scholar]
  131. Tolley KA, Bowie RCK, Measey GJ, Price BW, Forest F. 2014. The shifting landscape of genes since the Pliocene: terrestrial phylogeography in the Greater Cape Floristic Region. Ecology, Evolution, and Conservation of a Megadiverse Region N Allsopp, JF Colville, GA Verboom 143–63 Oxford, UK: Oxford Univ. Press [Google Scholar]
  132. Valentine JW, Jablonski D. 2015. A twofold role for global energy gradients in marine biodiversity trends. J. Biogeogr. 42:997–1005 [Google Scholar]
  133. Vasquez DP, Stevens RD. 2004. The latitudinal gradient in niche breadth: concepts and evidence. Am. Nat. 164:E1–19 [Google Scholar]
  134. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33:475–505 [Google Scholar]
  135. Wiens JJ. 2011. The causes of species richness patterns across space, time, and clades and the role of “ecological limits.”. Q. Rev. Biol. 86:75–96 [Google Scholar]
  136. Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB. et al. 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 10:1310–24 [Google Scholar]
  137. Wiens JJ, Donoghue MJ. 2004. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19:639–44 [Google Scholar]
  138. Willig MR, Kaufman DM, Stevens RD. 2003. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 34:273–309 [Google Scholar]
  139. Willis KJ, McElwain JC. 2002. The Evolution of Plants Oxford, UK: Oxford Univ. Press [Google Scholar]
  140. Winkler IS, Mitter C. 2008. The phylogenetic dimension on insect/plant interactions: a summary of recent evidence. Specialization, Speciation and Radiation: The Evolutionary Biology of Herbivorous Insects K Tilmon 240–63 Berkeley: Univ. Calif. Press [Google Scholar]
  141. Woodward FI. 1987. Climate and Plant Distribution Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  142. Wright DH. 1983. Species-energy theory: an extension of species-area theory. Oikos 41:496–506 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error