1932

Abstract

Dust is produced primarily in desert regions and transported long distances through the atmosphere to the oceans. Upon deposition of dust, its dissolution can provide an important source of a range of nutrients, particularly iron, to microbes living in open ocean surface waters. The dust supply is greatest nearest to deserts, hence in the Northern Hemisphere. The Southern Ocean region is farthest from these dust sources and shows clear evidence that phytoplankton primary production is limited, at least in part, by the rate of supply of iron. Iron is also essential for nitrogen fixation. In regions of high atmospheric iron supply, such as the tropical North Atlantic, stimulation of nitrogen fixation drives the phytoplankton population toward a state in which phosphorus supply rates limit primary production. Atmospheric deposition is also an important source of nitrogen to the low latitude ocean, where it stimulates primary production. In this review we consider the sources, transport, and deposition of atmospheric dust/iron and nitrogen to the oceans and their impacts on plankton systems. In conclusion, we suggest key areas for future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-112414-054118
2015-12-04
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/46/1/annurev-ecolsys-112414-054118.html?itemId=/content/journals/10.1146/annurev-ecolsys-112414-054118&mimeType=html&fmt=ahah

Literature Cited

  1. Achterberg EP, Moore CM, Henson SA, Steigenberger S, Stohl A. et al. 2013. Natural iron fertilization by the Eyjafjallajökull volcanic eruption. Geophys. Res. Lett. 40:921–26 [Google Scholar]
  2. Armstrong RA, Lee C, Hedges JI, Honjo S, Wakeham SG. 2002. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep Sea Res. Part II 49:219–36 [Google Scholar]
  3. Arrigo KR. 2005. Marine microorganisms and global nutrient cycles. Nature 437:349–55 [Google Scholar]
  4. Badarinath KVS, Kharol SK, Kaskaoutis DG, Sharma AR, Ramaswamy V, Kambezidis HD. 2010. Long-range transport of dust aerosols over the Arabian Sea and Indian region—a case study using satellite data and ground-based measurements. Glob. Planet. Change 72:164–81 [Google Scholar]
  5. Baker AR, Adams C, Bell TG, Jickells T. 2013. Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50°N to 50°S based on large-scale field sampling: iron and other dust-associated elements. Glob. Biogeochem. Cycles 27:755–67 [Google Scholar]
  6. Baker AR, Croot PL. 2010. Atmospheric and marine controls on aerosol iron solubility in seawater. Mar. Chem. 120:4–13 [Google Scholar]
  7. Baker AR, Jickells TD, Biswas KF, Weston K, French M. 2006. Nutrients in atmospheric aerosol particles along the Atlantic Meridional Transect. Deep Sea Res. Part II 53:1706–19 [Google Scholar]
  8. Baker AR, Laskina O, Grassian VH. 2014. Processing and ageing in the atmosphere. See Knippertz & Stuut 2014 75–92
  9. Baker AR, Lesworth T, Adams C, Jickells TD, Ganzeveld L. 2010. Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50°N to 50°S based on large-scale field sampling: fixed nitrogen and dry deposition of phosphorus. Glob. Biogeochem. Cycles 24:GB3006 doi: 10.1029/2009GB003634 [Google Scholar]
  10. Bergametti G, Forêt G. 2014. Dust deposition. See Knippertz & Stuut 2014 179–200
  11. Bergquist BA, Boyle EA. 2006. Dissolved iron in the tropical and subtropical Atlantic Ocean. Glob. Biogeochem. Cycles 20:GB1015 [Google Scholar]
  12. Bianchi D, Dunne JP, Sarmiento JL, Galbraith ED. 2012. Data-based estimates of suboxia, denitrification, and N2O production in the ocean and their sensitivities to dissolved O2. Glob. Biogeochem. Cycles 26:GB2009 [Google Scholar]
  13. Blain S, Guieu U, Claustre H, Leblanc K, Moutin T. et al. 2004. Availability of iron and major nutrients for phytoplankton in the northeast Atlantic Ocean. Limnol. Oceanogr. 49:2095–104 [Google Scholar]
  14. Boyd PW, Ellwood MJ. 2010. The biogeochemical cycle of iron in the ocean. Nat. Geosci. 3:675–82 [Google Scholar]
  15. Boyd PW, Jickells T, Law CS, Blain S, Boyle EA. et al. 2007. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–17 [Google Scholar]
  16. Boyd PW, Strzepek R, Fu F, Hutchins DA. 2010. Environmental control of open-ocean phytoplankton groups: now and in the future. Limnol. Oceanogr. 55:1353–76 [Google Scholar]
  17. Bressac M, Guieu D, Doxaran F, Bourrin N, Leblond K. et al. 2014. Quantification of the lithogenic carbon pump following a simulated dust-deposition event in large mesocosms. Biogeosciences 11:1007–20 [Google Scholar]
  18. Bristow CS, Hudson-Edwards KA, Chappell A. 2010. Fertilizing the Amazon and equatorial Atlantic with West African dust. Geophys. Res. Lett. 37:LI4807 [Google Scholar]
  19. Browning TJ, Bouman HA, Henderson GM, Mather TA, Pyle DM. et al. 2014. Strong responses of Southern Ocean phytoplankton communities to volcanic ash. Geophys. Res. Lett. 41:2851–57 [Google Scholar]
  20. Bullard JE. 2013. Contemporary glacigenic inputs to the dust cycle. Earth Surf. Process. Landf. 38:71–89 [Google Scholar]
  21. Chester R, Jickells T. 2012. Marine Geochemistry Chichester, UK: Wiley-Blackwell [Google Scholar]
  22. Chiapello I. 2014. Dust observations and climatology. See Knippertz & Stuut 2014 149–77
  23. Chiapello I, Bergametti G, Gomes L, Chatenet B, Dulac F. et al. 1995. An additional low layer transport of Sahelian and Saharan dust over the north-eastern tropical Atlantic. Geophys. Res. Lett. 22:3191–94 [Google Scholar]
  24. Conway TM, John SG. 2014. Quantification of dissolved iron sources to the North Atlantic Ocean. Nature 511:212–15 [Google Scholar]
  25. Croot PL, Streu P, Baker AR. 2004. Short residence time for iron in surface seawater impacted by atmospheric dry deposition from Saharan dust events. Geophys. Res. Lett. 31L23S08 [Google Scholar]
  26. Deutsch C, Sarmiento JL, Sigman DM, Gruber N, Dunne JP. 2007. Spatial coupling of nitrogen inputs and losses in the ocean. Nature 445:163–67 [Google Scholar]
  27. Duce RA. 1989. SEAREX: the sea/air exchange program. Chemical Oceanography 10 JP Riley, R Chester 1–14 London: Academic [Google Scholar]
  28. Duce RA, LaRoche J, Altieri K, Arrigo KR, Baker AR. et al. 2008. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320:893–97 [Google Scholar]
  29. Duce RA, Liss PS, Merrill T, Atlas EL, Buat-Menard P. et al. 1991. The atmospheric input of trace species to the world ocean. Glob. Biogeochem. Cycles 5:193–259 [Google Scholar]
  30. Ducklow HW, Steinberg DK, Buesseler KO. 2001. Upper ocean carbon export and the biological pump. Oceanography 14:50–58 [Google Scholar]
  31. Dutkiewicz S, Ward BA, Scott JR, Follows MJ. 2014. Understanding predicted shifts in diazotroph biogeography using resource competition theory. Biogeosciences 11:5445–61 [Google Scholar]
  32. Elrod VA, Berelson WM, Coates KH, Johnson KS. 2004. The flux of iron from continental shelf sediments: a missing source for global budgets. Geophys. Res. Lett. 31:L12307 [Google Scholar]
  33. Falkowski PG. 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387:272–75 [Google Scholar]
  34. Fitzsimmons JN, Boyle EA, Jenkins WJ. 2014. Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean. PNAS 111:16654–61 [Google Scholar]
  35. Francois R, Honjo S, Krishfield R, Manganini S. 2002. Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean. Glob. Biogeochem. Cycles 16:1087 [Google Scholar]
  36. Frew RD, Hutchins DA, Nodder S, Sanudo-Wilhelmy S, Tovar-Sanchez A. et al. 2006. Particulate iron dynamics during FeCycle in subantarctic waters southeast of New Zealand. Glob. Biogeochem. Cycles 20:GB1S93 [Google Scholar]
  37. Gledhill M, Buck KN. 2012. The organic complexation of iron in the marine environment: a review. Front. Microbiol. 3:69 [Google Scholar]
  38. Grand MM, Buck CS, Landing WM, CI Measures, Hatta M. 2014. Quantifying the impact of atmospheric deposition on the biogeochemistry of Fe and Al in the upper ocean: a decade of collaboration with the US CLIVAR-CO2 Repeat Hydrography Program. Oceanography 27:62–65 [Google Scholar]
  39. Guieu C, Aumont O, Paytan A, Bopp L, Law CS, Mahowald N. 2014a. The significance of the episodic nature of atmospheric deposition to low nutrient low chlorophyll regions. Glob. Biogeochem. Cycles 28:1179–98 [Google Scholar]
  40. Guieu C, Bozec Y, Blain S, Ridame C, Sarthou G, Leblond N. 2002. Impact of high Saharan dust inputs on dissolved iron concentrations in the Mediterranean Sea. Geophys. Res. Lett. 29:1911 [Google Scholar]
  41. Guieu C, Ridame C, Pulido-Vallena E, Bressae M, Desboeufs K, Dulac F. 2014b. Impact of dust deposition on carbon budget: a tentative assessment from a mesocosm approach. Biogeosciences 11:5621–35 [Google Scholar]
  42. Hamme RC, Webley PW, Crawford WR, Whitney FA, DeGrandpre MD. et al. 2010. Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific. Geophys. Res. Lett. 37:L19604 [Google Scholar]
  43. Heimburger A, Losno R, Triquet S, Dulac F, Mahowald N. 2012. Direct measurements of atmospheric iron, cobalt, and aluminum-derived dust deposition at Kerguelen Islands. Glob. Biogeochem. Cycles 26:GB4016 [Google Scholar]
  44. Heimburger A, Losno R, Triquet S, Nguyen EB. 2013. Atmospheric deposition fluxes of 26 elements over the southern Indian Ocean: time series on Kerguelen and Crozet Islands. Glob. Biogeochem. Cycles 27:440–49 [Google Scholar]
  45. Herndl GJ, Reinthaler T. 2013. Microbial control of the dark end of the biological pump. Nat. Geosci. 6:718–24 [Google Scholar]
  46. Herut B, Zohary T, Krom MD, Mantoura RFC, Pitta P, Psarra S. 2005. Response of east Mediterranean surface water to Saharan dust: on-board microcosm experiment and field observations. Deep Sea Res. Part II 52:3024–40 [Google Scholar]
  47. Hill PG, Zubkov MV, Purdie DA. 2010. Differential responses of Prochlorococcus and SAR11-dominated bacterioplankton groups to atmospheric dust inputs in the tropical northeast Atlantic Ocean. FEMS Microbiol. Lett. 306:82–89 [Google Scholar]
  48. Homoky WB, John SG, Conway TM, Mills RA. 2013. Distinct iron isotopic signatures and supply from marine sediment dissolution. Nat. Commun. 4:2143 [Google Scholar]
  49. Hudson-Edwards KA, Bristow CS, Cibin G, Mason G, Peacock CL. 2014. Solid-phase phosphorus speciation in Saharan Bodélé Depression dusts and source sediments. Chem. Geol. 384:16–26 [Google Scholar]
  50. Hunter KA, Boyd PW. 2007. Iron-binding ligands and their role in the ocean biogeochemistry of iron. Environ. Chem. 4:221–32 [Google Scholar]
  51. Jickells T, Boyd P, Hunter KA. 2014. Biogeochemical impacts of dust on the global carbon cycle. See Knippertz & Stuut 2014 359–84
  52. Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G. et al. 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71 [Google Scholar]
  53. Jickells TD, Deuser WG, Fleer A, Hemleben C. 1990. Variability of some elemental fluxes in the western tropical Atlantic Ocean. Oceanol. Acta 13:291–98 [Google Scholar]
  54. Jordi A, Basterretxea G, Tovar-Sánchez A, Alastuey A, Querol X. 2012. Copper aerosols inhibit phytoplankton growth in the Mediterranean Sea. PNAS 109:21246–49 [Google Scholar]
  55. Kim I-N, Lee K, Gruber N, Karl DM, Bullister JL. et al. 2014. Increasing anthropogenic nitrogen in the North Pacific Ocean. Science 346:1102–6 [Google Scholar]
  56. Knippertz P, Stuut JBW. 2014. Mineral Dust: A Key Player in the Earth System. Berlin: Springer [Google Scholar]
  57. Luo YW, Lima ID, Karl DM, Deutsch CA, Doney SC. 2014. Data-based assessment of environmental controls on global marine nitrogen fixation. Biogeosciences 11:691–708 [Google Scholar]
  58. Mackey KRM, Chien C-T, Post AF, Saito MA, Paytan A. 2015. Rapid and gradual modes of aerosol trace metal dissolution in seawater. Front. Microbiol. 5:794 [Google Scholar]
  59. Mahowald N, Jickells TD, Baker AR, Artaxo P, Benitez-Nelson CR. et al. 2008. Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Glob. Biogeochem. Cycles 22:GB4026 [Google Scholar]
  60. Mahowald NM, Baker AR, Bergametti G, Brooks N, Duce RA. et al. 2005. Atmospheric global dust cycle and iron inputs to the ocean. Glob. Biogeochem. Cycles 19:GB4025 [Google Scholar]
  61. Mahowald NM, Engelstaedter S, Luo C, Sealy A, Artaxo P. et al. 2009. Atmospheric iron deposition: global distribution, variability, and human perturbations. Annu. Rev. Mar. Sci. 1:245–78 [Google Scholar]
  62. Mahowald NM, Kloster S, Engelstaedter S, Moore JK, Mukhopadhyay S. et al. 2010. Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmos. Chem. Phys. 10:10875–93 [Google Scholar]
  63. Marañón E, Fernandez A, Mouriño-Carballido B, Martínez-García S, Teira E. et al. 2010. Degree of oligotrophy controls the response of microbial plankton to Saharan dust. Limnol. Oceanogr. 55:2339–52 [Google Scholar]
  64. Marchetti A, Schruth DM, Durkin CA, Parker MS, Kodner RB. et al. 2012. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. PNAS 109:E317–25 [Google Scholar]
  65. Marticorena B. 2014. Dust production mechanisms. See Knippertz & Stuut 2014 93–120
  66. Martínez-García A, Sigman DM, Ren H, Anderson RF, Straub M. et al. 2014. Iron fertilization of the subantarctic ocean during the last ice age. Science 343:1347–50 [Google Scholar]
  67. Martino M, Hamilton D, Baker AR, Jickells TD, Bromley T. et al. 2014. Western Pacific atmospheric nutrient deposition fluxes, their impact on surface ocean productivity. Glob. Biogeochem. Cycles 28:712–28 [Google Scholar]
  68. Mélançon J, Levasseur M, Lizotte M, Delmelle P, Cullen JT, Hamme RC. 2014. Early response of the northeast subarctic Pacific plankton assemblage to volcanic ash fertilization. Limnol. Oceanogr. 59:55–67 [Google Scholar]
  69. Miller RL, Knippertz P, García-Pando CP, Perlwitz JP, Tegen I. 2014. Impact of dust radiative forcing upon climate. See Knippertz & Stuut 2014 327–57
  70. Mills MM, Moore CM, Langlois R, Milne A, Achterberg E. et al. 2008. Nitrogen and phosphorus co-limitation of bacterial productivity and growth in the oligotrophic subtropical North Atlantic. Limnol. Oceanogr. 53:824–34 [Google Scholar]
  71. Mills MM, Ridame C, Davey M, La Roche J, Geider RJ. 2004. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429:292–94 [Google Scholar]
  72. Moore CM, Mills MM, Achterberg EP, Geider RJ, LaRoche J. et al. 2009. Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. Nat. Geosci. 2:867–71 [Google Scholar]
  73. Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp PW. et al. 2013. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6:701–10 [Google Scholar]
  74. Moore CM, Mills MM, Milne A, Langlois R, Achterberg EP. et al. 2006. Iron limits primary productivity during spring bloom development in the central North Atlantic. Glob. Change Biol. 12:626–34 [Google Scholar]
  75. Moore JK, Braucher O. 2008. Sedimentary and mineral dust sources of dissolved iron to the world ocean. Biogeosciences 5:631–56 [Google Scholar]
  76. Muhs DR, Prospero JM, Baddock MC, Gill TE. 2014. Identifying sources of Aeolian mineral dust: present and past. See Knippertz & Stuut 2014 51–74
  77. Mulitza S, Heslop D, Pittauerova D, Fischer HW, Meyer I. et al. 2010. Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature 466:226–28 [Google Scholar]
  78. Okin GS, Baker AR, Tegen I, Mahowald NM, Dentener FJ. et al. 2011. Impacts of atmospheric nutrient deposition on marine productivity: roles of nitrogen, phosphorus, and iron. Glob. Biogeochem. Cycles 25:GB2022 [Google Scholar]
  79. Olgun N, Duggen S, Croot PL, Delmelle P, Dietze H. et al. 2011. Surface ocean iron fertilization: the role of airborne volcanic ash from subduction zone and hot spot volcanoes and related iron fluxes into the Pacific Ocean. Glob. Biogeochem. Cycles 25:GB4001 [Google Scholar]
  80. Paytan A, Mackey KRM, Chen Y, Lima ID, Doney SC. et al. 2009. Toxicity of atmospheric aerosols on marine phytoplankton. PNAS 106:4601–5 [Google Scholar]
  81. Prospero JM, Bullard JE, Hodgkins R. 2012. High-latitude dust over the North Atlantic: inputs from Icelandic proglacial dust storms. Science 335:1078–82 [Google Scholar]
  82. Prospero JM, Collard F-X, Molinié J, Jeannot A. 2014. Characterizing the annual cycle of African dust transport to the Caribbean Basin and South America and its impact on the environment and air quality. Glob. Biogeochem. Cycles 28:757–73 [Google Scholar]
  83. Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE. 2002. Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 40:1002 [Google Scholar]
  84. Prospero JM, Lamb PJ. 2003. African droughts and dust transport to the Caribbean: climate change implications. Science 302:1024–27 [Google Scholar]
  85. Quigg A, Finkel ZV, Irwin AJ, Rosenthal Y, Ho T-Y. et al. 2003. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425:291–94 [Google Scholar]
  86. Raiswell R, Canfield DE. 2012. The iron biogeochemical cycle past and present. Geochem. Perspect. 1:1–216 [Google Scholar]
  87. Raven JA. 1988. The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytol. 109:279–87 [Google Scholar]
  88. Redfield AC. 1934. On the proportions of organic derivations in sea water and their relations to the composition of plankton. James Johnstone Memorial Volume RJ Daniel 177–92 Liverpool: Univ. Press Liverpool [Google Scholar]
  89. Ridame C, Guieu C, L'Helguen S. 2013. Strong stimulation of N2 fixation in oligotrophic Mediterranean Sea: results from dust addition in large in situ mesocosms. Biogeosciences 10:7333–46 [Google Scholar]
  90. Rubin M, Berman-Frank I, Shaked Y. 2011. Dust- and mineral-iron utilization by the marine dinitrogen-fixer Trichodesmium. Nat. Geosci. 4:529–34 [Google Scholar]
  91. Rudnick R, Gao S. 2003. Composition of the continental crust. Treatise Geochem. 3:1–64 [Google Scholar]
  92. Savoie DL, Prospero JM, Saltzman ES. 1989. Non-sea-salt sulfate and nitrate in trade wind aerosols at Barbados: evidence for long-range transport. J. Geophys. Res. Atmos. 94:5069–80 [Google Scholar]
  93. Schlosser C, Klar JK, Wake BD, Snow JT, Honey DJ. et al. 2014. Seasonal ITCZ migration dynamically controls the location of the (sub)tropical Atlantic biogeochemical divide. PNAS 111:1438–42 [Google Scholar]
  94. Sherwood OA, Guilderson TP, Batista FC, Schiff JT, McCarthy MD. 2014. Increasing subtropical North Pacific Ocean nitrogen fixation since the Little Ice Age. Nature 505:78–81 [Google Scholar]
  95. Shiozaki T, Furuya K, Kodama T, Kitajima S, Takeda S. et al. 2010. New estimation of N2 fixation in the western and central Pacific Ocean and its marginal seas. Glob. Biogeochem. Cycles 24:GB1015 [Google Scholar]
  96. Sohm JA, Webb EA, Capone DG. 2011. Emerging patterns of marine nitrogen fixation. Nat. Rev. Microbiol. 9:499–508 [Google Scholar]
  97. Sterner RW, Elser JJ. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere Princeton, NJ: Princeton Univ. Press [Google Scholar]
  98. Stuut JBW. 2014. Subaquatic dust deposits. See Knippertz & Stuut 2014 443–62
  99. Tagliabue A, Bopp L, Dutay J-C, Bowie AR, Chever F. et al. 2010. Hydrothermal contribution to the oceanic dissolved iron inventory. Nat. Geosci. 3:252–56 [Google Scholar]
  100. Tagliabue A, Williams RG, Rogan N, Achterberg EP, Boyd PW. 2014. A ventilation-based framework to explain the regeneration-scavenging balance of iron in the ocean. Geophys. Res. Lett. 41:7227–36 [Google Scholar]
  101. Tanaka TY, Chiba M. 2006. A numerical study of the contributions of dust source regions to the global dust budget. Glob. Planet. Change 52:88–104 [Google Scholar]
  102. Tanré D, Bréon FM, Deuzé JL, Dubovik O, Ducos F. et al. 2011. Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission. Atmos. Meas. Tech. 4:1383–95 [Google Scholar]
  103. Tegen I, Schulz M. 2014. Numerical dust models. See Knippertz & Stuut 2014 201–22
  104. Ternon E, Guieu C, Loÿe-Pilot M-D, Leblond N, Bose E. et al. 2010. The impact of Saharan dust on the particulate export in the water column of the North Western Mediterranean Sea. Biogeosciences 7:809–26 [Google Scholar]
  105. Ternon E, Guieu C, Ridame C, L'Helguen S, Catala P. 2011. Longitudinal variability of the biogeochemical role of Mediterranean aerosols in the Mediterranean Sea. Biogeosciences 8:1067–80 [Google Scholar]
  106. Tindale NW, Pease PP. 1999. Aerosols over the Arabian Sea: atmospheric transport pathways and concentrations of dust and sea salt. Deep Sea Res. Part II 46:1577–95 [Google Scholar]
  107. Ussher SJ, Achterberg EP, Powell C, Baker AR, Jickells TD. et al. 2013. Impact of atmospheric deposition on the contrasting iron biogeochemistry of the North and South Atlantic Ocean. Glob. Biogeochem. Cycles 27:1096–107 [Google Scholar]
  108. Vallelonga P, Svensson A. 2014. Ice core archives of mineral dust. See Knippertz & Stuut 2014 463–85
  109. Wadley MR, Jickells TD, Heywood KJ. 2014. The role of iron sources and transport for southern ocean productivity. Deep Sea Res. Part I 87:82–94 [Google Scholar]
  110. Ward BA, Dutkiewicz S, Moore CM, Follows MJ. 2013. Iron, phosphorus, and nitrogen supply ratios define the biogeography of nitrogen fixation. Limnol. Oceanogr. 58:2059–75 [Google Scholar]
  111. Wiersma GB, Davidson CI. 1986. Trace metals in the atmosphere of rural and remote regions. Toxic Metals in the Atmosphere JO Nriagu, CI Davidson 201–66 New York: Wiley [Google Scholar]
  112. Wu JF, Sunda W, Boyle EA, Karl DM. 2000. Phosphate depletion in the western North Atlantic Ocean. Science 289:759–62 [Google Scholar]
  113. Wuttig K, Wagener T, Bressac M, Dammshäuser A, Streu P. et al. 2013. Impacts of dust deposition on dissolved trace metal concentrations (Mn, Al and Fe) during a mesocosm experiment. Biogeosciences 10:2583–600 [Google Scholar]
  114. Zhao TL, Gong SL, Zhang XY, Blanchet J-P, McKendry IG, Zhou ZJ. 2006. A simulated climatology of Asian dust aerosol and its trans-Pacific transport. Part I: mean climate and validation. J. Clim. 19:88–103 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-112414-054118
Loading
/content/journals/10.1146/annurev-ecolsys-112414-054118
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error