Anthropocene defaunation, the global extinction of faunal species and populations and the decline in abundance of individuals within populations, has been predominantly documented in terrestrial ecosystems, but indicators suggest defaunation has been more severe in freshwater ecosystems. Marine defaunation is in a more incipient stage, yet pronounced effects are already apparent and its rapid acceleration seems likely. Defaunation now impacts the planet's wildlife with profound cascading consequences, ranging from local to global coextinctions of interacting species to the loss of ecological services critical for humanity. Slowing defaunation will require aggressively reducing animal overexploitation and habitat destruction; mitigating climate disruption; and stabilizing the impacts of human population growth and uneven resource consumption. Given its omnipresence, defaunation should receive status of major global environmental change and should be addressed with the same urgency as deforestation, pollution, and climatic change. Global action is needed to prevent defaunation's current trajectory from catalyzing the planet's sixth major extinction.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Agnew DJ, Pearce J, Pramod G, Peatman T, Watson R. et al. 2009. Estimating the worldwide extent of illegal fishing. PLOS ONE 4:e4570 [Google Scholar]
  2. Andrade GS, Rhodes JR. 2012. Protected areas and local communities: an inevitable partnership toward successful conservation strategies. Ecol. Soc. 17:14 [Google Scholar]
  3. Andrade MC, Giarrizzo T, Jegu M. 2013. Tometes camunani (Characiformes: Serrasalmidae), a new species of phytophagous fish from the Guiana Shield, rio Trombetas basin, Brazil. Neotropical Ichthyol 11:297–306 [Google Scholar]
  4. Antonio FJ, Mendes RS, Thomaz SM. 2011. Identifying and modeling patterns of tetrapod vertebrate mortality rates in the Gulf of Mexico oil spill. Aquat. Toxicol. 105:177–79 [Google Scholar]
  5. Bednaršek N, Feely R, Reum J, Peterson B, Menkel J. et al. 2014. Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem. Proc. R. Soc. B 281:20140123 [Google Scholar]
  6. Bello C, Galetti M, Pizo MA, Magnago LFS, Rocha MF. et al. 2015. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1:e1501105 [Google Scholar]
  7. Brashares JS, Abrahms B, Fiorella KJ, Golden CD, Hojnowski CE. et al. 2014. Wildlife decline and social conflict. Science 345:376–78 [Google Scholar]
  8. Brown LR, Moyle PB, Yoshiyama RM. 1994. Historical decline and current status of coho salmon in California. North Am. J. Fish. Manag. 14:237–61 [Google Scholar]
  9. Caprio J, Shimohara M, Marui T, Harada S, Kiyohara S. 2014. Marine teleost locates live prey through pH sensing. Science 344:1154–56 [Google Scholar]
  10. Cardillo M. 2003. Biological determinants of extinction risk: Why are smaller species less vulnerable. Anim. Conserv. 6:63–69 [Google Scholar]
  11. Cardillo M, Mace GM, Gittleman JL, Jones KE, Bielby J, Purvis A. 2008. The predictability of extinction: biological and external correlates of decline in mammals. Proc. R. Soc. B 275:1441–48 [Google Scholar]
  12. Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Emonds OR. et al. 2005. Multiple causes of high extinction risk in large mammal species. Science 309:1239–41 [Google Scholar]
  13. Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S. et al. 2008. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560–63 [Google Scholar]
  14. Carpenter SR, Cole JJ, Hodgson JR, Kitchell JF, Pace ML. et al. 2001. Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecol. Monogr. 71:163–86 [Google Scholar]
  15. Ceballos G, Ehrlich PR. 2002. Mammal population losses and the extinction crisis. Science 296:904–7 [Google Scholar]
  16. Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM. 2015. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1:e1400253 [Google Scholar]
  17. Christensen V, de la Puente S, Sueiro JC, Steenbeek J, Majluf P. 2014. Valuing seafood: the Peruvian fisheries sector. Mar. Policy 44:302–11 [Google Scholar]
  18. Civitello DJ, Cohen J, Fatima H, Halstead NT, Liriano J. et al. 2015. Biodiversity inhibits parasites: broad evidence for the dilution effect. PNAS 112:8667–71 [Google Scholar]
  19. Clavero M, García-Berthou E. 2005. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20:110 [Google Scholar]
  20. Cohen A. 1997. Sturgeon poaching and black market caviar: a case study. Environ. Biol. Fishes 48:423–26 [Google Scholar]
  21. Collen B, Böhm M, Kemp R, Baillie JEM. 2012. Spineless: Status and Trends of the World's Invertebrates. London: Zool. Soc. Lond.
  22. Collen B, McRae L, Deinet S, De Palma A, Carranza T. et al. 2011. Predicting how populations decline to extinction. Philos. Trans. R. Soc. B 366:2577–86 [Google Scholar]
  23. Collen B, Whitton F, Dyer EE, Baillie JE, Cumberlidge N. et al. 2014. Global patterns of freshwater species diversity, threat and endemism. Glob. Ecol. Biogeogr. 23:40–51 [Google Scholar]
  24. Colwell RK, Dunn RR, Harris NC. 2012. Coextinction and persistence of dependent species in a changing world. Annu. Rev. Ecol. Evol. Syst. 43:183–203 [Google Scholar]
  25. Costa-Pereira R, Galetti M. 2015. Frugivore downsizing and the collapse of seed dispersal by fish. Biol. Conserv. 191:809 [Google Scholar]
  26. Costello MJ. 2015. Biodiversity: the known, unknown, and rates of extinction. Curr. Biol. 25:R368–71 [Google Scholar]
  27. Costello MJ, May RM, Stork NE. 2013. Can we name Earth's species before they go extinct. Science 339:413–16 [Google Scholar]
  28. Cozzuol MA, Clozato CL, Holanda EC, Rodrigues FH, Nienow S. et al. 2013. A new species of tapir from the Amazon. J. Mammal. 94:1331–45 [Google Scholar]
  29. D'agata S, Mouillot D, Kulbicki M, Andréfouët S, Bellwood DR. et al. 2014. Human-mediated loss of phylogenetic and functional diversity in coral reef fishes. Curr. Biol. 24:555–60 [Google Scholar]
  30. DeMartini EE, Friedlander AM, Holzwarth SR. 2005. Size at sex change in protogynous labroids, prey body size distributions, and apex predator densities at NW Hawaiian atolls. Mar. Ecol. Prog. Ser. 297:259–71 [Google Scholar]
  31. Derraik JG. 2002. The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull. 44:842–52 [Google Scholar]
  32. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK. et al. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. PNAS 105:6668–72 [Google Scholar]
  33. Diaz RJ, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321:926–29 [Google Scholar]
  34. Dirzo R, Mendoza E, Ortíz P. 2007. Size-related differential seed predation in a heavily defaunated neotropical rain forest. Biotropica 39:355–62 [Google Scholar]
  35. Dirzo R, Miranda A. 1991. Altered patterns of herbivory and diversity in the forest understory: A case study of the possible consequences of contemporary defaunation. Plant-Animal Interactions: Evolutionary Ecology PW Price, TM Lewinshon, GW Fernandes, WW Benson 273–87 New York: Wiley [Google Scholar]
  36. Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJ, Collen B. 2014. Defaunation in the Anthropocene. Science 345:401–6 [Google Scholar]
  37. Dizney L, Dearing MD. 2016. Behavioural differences: a link between biodiversity and pathogen transmission. Anim. Behav. 111:341–47 [Google Scholar]
  38. Dobson A, Holdo R, Holt R. 1991. Rinderpest Berkeley: Univ. Calif. Press [Google Scholar]
  39. Druel E, Gjerde KM. 2014. Sustaining marine life beyond boundaries: options for an implementing agreement for marine biodiversity beyond national jurisdiction under the United Nations Convention on the Law of the Sea. Mar. Policy 49:90–97 [Google Scholar]
  40. Dudgeon D. 1999. Tropical Asian Streams: Zoobenthos, Ecology and Conservation Hong Kong: Hong Kong Univ. Press [Google Scholar]
  41. Dudgeon D, Arthington AH, Gessner MO, Kawabata Z-I, Knowler DJ. et al. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81:163–82 [Google Scholar]
  42. Edwards FA, Edwards DP, Hamer KC, Davies RG. 2013. Impacts of logging and conversion of rainforest to oil palm on the functional diversity of birds in Sundaland. Ibis 155:313–26 [Google Scholar]
  43. Erlandson JM, Braje TJ, Rick TC, Jew NP, Kennett DJ. et al. 2011. 10,000 years of human predation and size changes in the owl limpet (Lottia gigantea) on San Miguel Island, California. J. Archaeol. Sci. 38:1127–34 [Google Scholar]
  44. Estes JA, Burdin A, Doak DF. 2016. Sea otters, kelp forests, and the extinction of Steller's sea cow. PNAS 113:880–85 [Google Scholar]
  45. Fa JE, Peres CA, Meeuwig J. 2002. Bushmeat exploitation in tropical forests: an intercontinental comparison. Conserv. Biol. 16:232–37 [Google Scholar]
  46. FAO (Food Agric. Org.) 2012. Fishstat Plus—universal software for fishery statistical time series http://www.fao.org/fishery/statistics/software/fishstat/en [Google Scholar]
  47. FAO (Food Agric. Org.) 2014. The State of World Fisheries and Aquaculture Rome: FAO [Google Scholar]
  48. FAO (Food Agric. Org.) 2015. The Global Forest Resources Assessment Rome: FAO [Google Scholar]
  49. Fenberg PB, Roy K. 2008. Ecological and evolutionary consequences of size-selective harvesting: How much do we know?. Mol. Ecol. 17:209–20 [Google Scholar]
  50. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC. et al. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–94 [Google Scholar]
  51. Fisher R, O'Leary RA, Low-Choy S, Mengersen K, Knowlton N. et al. 2015. Species richness on coral reefs and the pursuit of convergent global estimates. Curr. Biol. 25:500–5 [Google Scholar]
  52. Foley JA, DeFries R, Asner GP, Barford C, Bonan G. et al. 2005. Global consequences of land use. Science 309:570–74 [Google Scholar]
  53. Frishkoff LO, Hadly EA, Daily GC. 2015. Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles. Glob. Change Biol. 21:3901–16 [Google Scholar]
  54. Frishkoff LO, Karp DS, M'Gonigle LK, Mendenhall CD, Zook J. et al. 2014. Loss of avian phylogenetic diversity in neotropical agricultural systems. Science 345:1343–46 [Google Scholar]
  55. Fritz SA, Purvis A. 2010. Phylogenetic diversity does not capture body size variation at risk in the world's mammals. Proc. R. Soc. B 277:2435–41 [Google Scholar]
  56. Galetti M, Dirzo R. 2013. Ecological and evolutionary consequences of living in a defaunated world. Biol. Conserv. 163:1–6 [Google Scholar]
  57. Galetti M, Guevara R, Côrtes MC, Fadini R, Von Matter S. et al. 2013. Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:1086–90 [Google Scholar]
  58. Galetti M, Guevara R, Galbiati LA, Neves CL, Rodarte RR, Mendes CP. 2015. Seed predation by rodents and implications for plant recruitment in defaunated Atlantic forests. Biotropica 47:521–25 [Google Scholar]
  59. Gallai N, Salles J-M, Settele J, Vaissière BE. 2009. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68:810–21 [Google Scholar]
  60. Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R. et al. 2013. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–11 [Google Scholar]
  61. Gende SM, Edwards RT, Willson MF, Wipfli MS. 2002. Pacific salmon in aquatic and terrestrial ecosystems. Bioscience 52:917–28 [Google Scholar]
  62. Goulson D, Nicholls E, Botías C, Rotheray EL. 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957 [Google Scholar]
  63. Gregory MR. 2009. Environmental implications of plastic debris in marine settings—entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. B 364:2013–25 [Google Scholar]
  64. Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F. et al. 2008. A global map of human impact on marine ecosystems. Science 319:948–52 [Google Scholar]
  65. Hanken J, Wake DB. 1994. Five new species of minute salamanders, genus Thorius (Caudata: Plethodontidae), from northern Oaxaca, Mexico. Copeia 3:573–90 [Google Scholar]
  66. Hansen DM, Donlan CJ, Griffiths CJ, Campbell KJ. 2010. Ecological history and latent conservation potential: large and giant tortoises as a model for taxon substitutions. Ecography 33:272–84 [Google Scholar]
  67. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova S. et al. 2013. High-resolution global maps of 21st-century forest cover change. Science 342:850–53 [Google Scholar]
  68. Harnik PG, Lotze HK, Anderson SC, Finkel ZV, Finnegan S. et al. 2012. Extinctions in ancient and modern seas. Trends Ecol. Evol. 27:608–17 [Google Scholar]
  69. Hayes TB, Collins A, Lee M, Mendoza M, Noriega N. et al. 2002. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. PNAS 99:5476–80 [Google Scholar]
  70. Hofmann GE, Barry JP, Edmunds PJ, Gates RD, Hutchins DA. et al. 2010. The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective. Annu. Rev. Ecol. Evol. Syst. 41:127–47 [Google Scholar]
  71. Holdo RM, Sinclair AR, Dobson AP, Metzger KL, Bolker BM. et al. 2009. A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. PLOS Biol 7:e1000210 [Google Scholar]
  72. Hooper DU, Adair EC, Cardinale BJ, Byrnes JE, Hungate BA. et al. 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–8 [Google Scholar]
  73. Hughes JB, Daily GC, Ehrlich PR. 1997. Population diversity: its extent and extinction. Science 278:689–92 [Google Scholar]
  74. Isaac NJ, Cowlishaw G. 2004. How species respond to multiple extinction threats. Proc. R. Soc. B 271:1135–41 [Google Scholar]
  75. IUCN (Int. Union Conserv. Nat.) 2015. The IUCN Red List of Threatened Species. Version 2014.3. http://www.iucnredlist.org [Google Scholar]
  76. Jackson JB, Kirby MX, Berger WH, Bjorndal KA, Botsford LW. et al. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–37 [Google Scholar]
  77. Jenkins CN, Pimm SL, Joppa LN. 2013. Global patterns of terrestrial vertebrate diversity and conservation. PNAS 110:E2602–10 [Google Scholar]
  78. Jetz W, Thomas GH, Joy JB, Redding DW, Hartmann K, Mooers AO. 2014. Global distribution and conservation of evolutionary distinctness in birds. Curr. Biol. 24:919–30 [Google Scholar]
  79. Johnson PT, Ostfeld RS, Keesing F. 2015. Frontiers in research on biodiversity and disease. Ecol. Lett. 18:1119–33 [Google Scholar]
  80. Jones HP, Tershy BR, Zavaleta ES, Croll DA, Keitt BS. et al. 2008. Severity of the effects of invasive rats on seabirds: a global review. Conserv. Biol. 22:16–26 [Google Scholar]
  81. Joseph MB, Mihaljevic JR, Orlofske SA, Paull SH. 2013. Does life history mediate changing disease risk when communities disassemble. Ecol. Lett. 16:1405–12 [Google Scholar]
  82. Just J, Kristensen RM, Olesen J. 2014. Dendrogramma, new genus, with two new non-bilaterian species from the marine bathyal of southeastern Australia (Animalia, Metazoa incertae sedis)—with similarities to some medusoids from the Precambrian Ediacara. PLOS ONE 9:e102976 [Google Scholar]
  83. Klass K-D, Zompro O, Kristensen NP, Adis J. 2002. Mantophasmatodea: a new insect order with extant members in the Afrotropics. Science 296:1456–59 [Google Scholar]
  84. Koch PL, Barnosky AD. 2006. Late quaternary extinctions: state of the debate. Annu. Rev. Ecol. Evol. Syst. 37:215–50 [Google Scholar]
  85. Kuris AM, Hechinger RF, Shaw JC, Whitney KL, Aguirre-Macedo L. et al. 2008. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454:515–18 [Google Scholar]
  86. Lafferty KD. 2012. Biodiversity loss decreases parasite diversity: theory and patterns. Philos. Trans. R. Soc. B 367:2814–27 [Google Scholar]
  87. Laurance WF, Clements GR, Sloan S, O'Connell CS, Mueller ND. et al. 2014. A global strategy for road building. Nature 513:229–32 [Google Scholar]
  88. Levi T, Shepard GH Jr., Ohl-Schacherer J, Peres CA, Yu DW. 2009. Modelling the long-term sustainability of indigenous hunting in Manu National Park, Peru: landscape-scale management implications for Amazonia. J. Appl. Ecol. 46:804–14 [Google Scholar]
  89. Lewison RL, Crowder LB, Wallace BP, Moore JE, Cox T. et al. 2014. Global patterns of marine mammal, seabird, and sea turtle bycatch reveal taxa-specific and cumulative megafauna hotspots. PNAS 111:5271–76 [Google Scholar]
  90. Liow LH, Fortelius M, Lintulaakso K, Mannila H, Stenseth NC. 2009. Lower extinction risk in sleep-or-hide mammals. Am. Nat. 173:264–72 [Google Scholar]
  91. Lokrantz J, Nyström M, Thyresson M, Johansson C. 2008. The non-linear relationship between body size and function in parrotfishes. Coral Reefs 27:967–74 [Google Scholar]
  92. Losey JE, Vaughan M. 2006. The economic value of ecological services provided by insects. Bioscience 56:311–23 [Google Scholar]
  93. Loss SR, Will T, Marra PP. 2015. Direct mortality of birds from anthropogenic causes. Annu. Rev. Ecol. Evol. Syst. 46:99–120 [Google Scholar]
  94. Lubchenco J, Grorud-Colvert K. 2015. Making waves: the science and politics of ocean protection. Science 340:382–83 [Google Scholar]
  95. Lyons SK, Smith FA, Brown JH. 2004. Of mice, mastodons and men: human-mediated extinctions on four continents. Evol. Ecol. Res. 6:339–58 [Google Scholar]
  96. Maas B, Clough Y, Tscharntke T. 2013. Bats and birds increase crop yield in tropical agroforestry landscapes. Ecol. Lett. 16:1480–87 [Google Scholar]
  97. Madin EM, Madin JS, Booth DJ. 2011. Landscape of fear visible from space. Sci. Rep. 1:1–3 [Google Scholar]
  98. Malhi Y, Doughty CE, Galetti M, Smith FA, Svenning JC, Terborgh JW. 2016. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. PNAS 113:838–46 [Google Scholar]
  99. Manne LL, Brooks TM, Pimm SL. 1999. Relative risk of extinction of passerine birds on continents and islands. Nature 399:258–61 [Google Scholar]
  100. Maron JL, Estes JA, Croll DA, Danner EM, Elmendorf SC, Buckelew SL. 2006. An introduced predator alters Aleutian Island plant communities by thwarting nutrient subsidies. Ecol. Monogr. 76:3–24 [Google Scholar]
  101. McCauley DJ, Dawson TE, Power ME, Finlay JC, Ogada M. et al. 2015a. Carbon stable isotopes suggest that hippopotamus-vectored nutrients subsidize aquatic consumers in an East African river. Ecosphere 6:1–11 [Google Scholar]
  102. McCauley DJ, DeSalles PA, Young HS, Dunbar RB, Dirzo R. et al. 2012a. From wing to wing: the persistence of long ecological interaction chains in less-disturbed ecosystems. Sci. Rep. 2:1–5 [Google Scholar]
  103. McCauley DJ, Hoffmann E, Young HS, Micheli F. 2012b. Night shift: expansion of temporal niche use following reductions in predator density. PLOS ONE 7:e38871 [Google Scholar]
  104. McCauley DJ, Keesing F, Young TP, Allan BF, Pringle RM. 2006. Indirect effects of large herbivores on snakes in an African savanna. Ecology 87:2657–63 [Google Scholar]
  105. McCauley DJ, Micheli F, Young HS, Tittensor DP, Brumbaugh DR. et al. 2010. Acute effects of removing large fish from a near-pristine coral reef. Mar. Biol. 157:2739–50 [Google Scholar]
  106. McCauley DJ, Pinsky ML, Palumbi SR, Estes JA, Joyce FH, Warner RR. 2015b. Marine defaunation: animal loss in the global ocean. Science 347:1255641 [Google Scholar]
  107. McCauley DJ, Young HS, Guevara R, Williams GJ, Power EA. et al. 2014. Positive and negative effects of a threatened parrotfish on reef ecosystems. Conserv. Biol. 28:1312–21 [Google Scholar]
  108. McClenachan L, Cooper AB, Dulvy NK. 2016. Rethinking trade-driven extinction risk in marine and terrestrial megafauna. Curr. Biol. 26:1640–46 [Google Scholar]
  109. McLellan R, Iyengar L, Jeffries B, Oerlemans N. 2014. Living planet report 2014: species and spaces, people and places WWF Int., Gland, Switz. [Google Scholar]
  110. Meynard CN, Devictor V, Mouillot D, Thuiller W, Jiguet F, Mouquet N. 2011. Beyond taxonomic diversity patterns: How do α, β and γ components of bird functional and phylogenetic diversity respond to environmental gradients across France. Glob. Ecol. Biogeogr. 20:893–903 [Google Scholar]
  111. Milner JM, Nilsen EB, Andreassen HP. 2007. Demographic side effects of selective hunting in ungulates and carnivores. Conserv. Biol. 21:36–47 [Google Scholar]
  112. Mora C, Tittensor DP, Adl S, Simpson AG, Worm B. 2011. How many species are there on Earth and in the ocean?. PLOS Biol 9:e1001127 [Google Scholar]
  113. Mosepele K, Moyle PB, Merron GS, Purkey DR, Mosepele B. 2009. Fish, floods, and ecosystem engineers: aquatic conservation in the Okavango Delta, Botswana. Bioscience 59:53–64 [Google Scholar]
  114. Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS. et al. 2009. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. PNAS 106:1848–52 [Google Scholar]
  115. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853–58 [Google Scholar]
  116. Myers RA, Baum JK, Shepherd TD, Powers SP, Peterson CH. 2007. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315:1846–50 [Google Scholar]
  117. Newbold T, Scharlemann JP, Butchart SH, Şekercioğlu ÇH, Alkemade R. et al. 2013. Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc. R. Soc. B 280:20122131 [Google Scholar]
  118. NOAA (Nat. Ocean. Atmos. Admin.) 2013. Fisheries economics of the United States U.S. Dept. Commerce, NOAA Tech. Memo. NMFS-F/SPO-159, Oct. 2015 [Google Scholar]
  119. NOAA (Nat. Ocean. Atmos. Admin.) 2015. Raw incident data. IncidentNews http://incidentnews.noaa.gov/raw/index [Google Scholar]
  120. O'Dowd DJ, Green PT, Lake PS. 2003. Invasional ‘meltdown’ on an oceanic island. Ecol. Lett. 6:812–17 [Google Scholar]
  121. Paleczny M, Hammill E, Karpouzi V, Pauly D. 2015. Population trend of the world's monitored seabirds, 1950–2010. PLOS ONE 10:e0129342 [Google Scholar]
  122. Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA. 2014. Mechanisms of reef coral resistance to future climate change. Science 344:895–98 [Google Scholar]
  123. Peres CA. 2001. Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conserv. Biol. 15:1490–505 [Google Scholar]
  124. Peres CA, Emilio T, Schietti J, Desmoulière S, Levi T. 2016. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. PNAS 113:892–97 [Google Scholar]
  125. Pérez-Méndez N, Jordano P, Valido A. 2015. Downsized mutualisms: consequences of seed dispersers' body-size reduction for early plant recruitment. Perspect. Plant Ecol. Evol. Syst. 17:151–59 [Google Scholar]
  126. Pershing AJ, Alexander MA, Hernandez CM, Kerr LA, Le Bris A. et al. 2015. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350:809–12 [Google Scholar]
  127. Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H. et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255–58 [Google Scholar]
  128. Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL. et al. 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752 [Google Scholar]
  129. Pocock MJ. 2011. Can traits predict species' vulnerability? A test with farmland passerines in two continents. Proc. R. Soc. B 278:1532–38 [Google Scholar]
  130. Potapov P, Yaroshenko A, Turubanova S, Dubinin M, Laestadius L. et al. 2008. Mapping the world's intact forest landscapes by remote sensing. Ecol. Soc. 13:51 [Google Scholar]
  131. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. 2010. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25:345–53 [Google Scholar]
  132. Purvis A, Agapow P-M, Gittleman JL, Mace GM. 2000a. Nonrandom extinction and the loss of evolutionary history. Science 288:328–30 [Google Scholar]
  133. Purvis A, Gittleman JL, Cowlishaw G, Mace GM. 2000b. Predicting extinction risk in declining species. Proc. R. Soc. B 267:1947–52 [Google Scholar]
  134. Randall Hughes A, Byrnes JE, Kimbro DL, Stachowicz JJ. 2007. Reciprocal relationships and potential feedbacks between biodiversity and disturbance. Ecol. Lett. 10:849–64 [Google Scholar]
  135. Rantala HM, Nelson AM, Fulgoni JN, Whiles MR, Hall RO. et al. 2015. Long-term changes in structure and function of a tropical headwater stream following a disease-driven amphibian decline. Freshw. Biol. 60:575–89 [Google Scholar]
  136. Redford KH. 1992. The empty forest. Bioscience 42:412–22 [Google Scholar]
  137. Revenga C, Campbell I, Abell R, De Villiers P, Bryer M. 2005. Prospects for monitoring freshwater ecosystems towards the 2010 targets. Philos. Trans. R. Soc. B 360:397–413 [Google Scholar]
  138. Rezende EL, Lavabre JE, Guimarães PR, Jordano P, Bascompte J. 2007. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448:925–28 [Google Scholar]
  139. Ricciardi A, Rasmussen JB. 1999. Extinction rates of North American freshwater fauna. Conserv. Biol. 13:1220–22 [Google Scholar]
  140. Ripple WJ, Newsome TM, Wolf C, Dirzo R, Everatt KT. et al. 2015. Collapse of the world's largest herbivores. Sci. Adv. 1:e1400103 [Google Scholar]
  141. Robinson JG. 2000. Calculating maximum sustainable harvests and percentage offtakes. Hunting Sustainability in Tropical Forests JG Robinson, EL Bennett 521–24 New York: Columbia Univ. Press [Google Scholar]
  142. Roman J, Estes JA, Morissette L, Smith C, Costa D. et al. 2014. Whales as marine ecosystem engineers. Front. Ecol. Environ. 12:377–85 [Google Scholar]
  143. Safi K, Cianciaruso MV, Loyola RD, Brito D, Armour-Marshall K, Diniz-Filho JAF. 2011. Understanding global patterns of mammalian functional and phylogenetic diversity. Philos. Trans. R. Soc. B 366:2536–44 [Google Scholar]
  144. Salkeld DJ, Padgett KA, Jones JH, Antolin MF. 2015. Public health perspective on patterns of biodiversity and zoonotic disease. PNAS 112:E6261 [Google Scholar]
  145. Säterberg T, Sellman S, Ebenman B. 2013. High frequency of functional extinctions in ecological networks. Nature 499:468–70 [Google Scholar]
  146. Seddon PJ, Griffiths CJ, Soorae PS, Armstrong DP. 2014. Reversing defaunation: restoring species in a changing world. Science 345:406–12 [Google Scholar]
  147. Sharp R, Sumaila UR. 2009. Quantification of US marine fisheries subsidies. North Am. J. Fish. Manag. 29:18–32 [Google Scholar]
  148. Shultz S, Bradbury RB, Evans KL, Gregory RD, Blackburn TM. 2005. Brain size and resource specialization predict long-term population trends in British birds. Proc. R. Soc. B 272:2305–11 [Google Scholar]
  149. Sirot C, Villéger S, Mouillot D, Darnaude A, Ramos-Miranda J. et al. 2015. Combinations of biological attributes predict temporal dynamics of fish species in response to environmental changes. Ecol. Indic. 48:147–56 [Google Scholar]
  150. Small C, Nicholls RJ. 2003. A global analysis of human settlement in coastal zones. J. Coast. Res. 1:584–99 [Google Scholar]
  151. Smith MR, Singh GM, Mozaffarian D, Myers SS. 2015. Effects of decreases of animal pollinators on human nutrition and global health: a modelling analysis. Lancet 386:1964–72 [Google Scholar]
  152. Springer AM, Estes J, Van Vliet G, Williams T, Doak D. et al. 2003. Sequential megafaunal collapse in the North Pacific Ocean: an ongoing legacy of industrial whaling. PNAS 100:12223–28 [Google Scholar]
  153. Stoner KE, Vulinec K, Wright SJ, Peres CA. 2007. Hunting and plant community dynamics in tropical forests: a synthesis and future directions. Biotropica 39:385–92 [Google Scholar]
  154. Strayer DL, Dudgeon D. 2010. Freshwater biodiversity conservation: recent progress and future challenges. J. North Am. Benthol. Soc. 29:344–58 [Google Scholar]
  155. Stuart-Smith RD, Bates AE, Lefcheck JS, Duffy JE, Baker SC. et al. 2013. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501:539–42 [Google Scholar]
  156. Suzán G, García-Peña GE, Castro-Arellano I, Rico O, Rubio AV. et al. 2015. Metacommunity and phylogenetic structure determine wildlife and zoonotic infectious disease patterns in time and space. Ecol. Evol. 5:865–73 [Google Scholar]
  157. Taylor RA, Ryan SJ, Brashares JS, Johnson LR. 2016. Hunting, food subsidies, and mesopredator release: the dynamics of crop-raiding baboons in a managed landscape. Ecology 97:951–60 [Google Scholar]
  158. Tershy BR, Shen KW, Newton KM, Holmes ND, Croll DA. 2015. The importance of islands for the protection of biological and linguistic diversity. BioScience 65:592–97 [Google Scholar]
  159. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ. et al. 2004. Extinction risk from climate change. Nature 427:145–48 [Google Scholar]
  160. Thompson C, WWF. 2010. Amazon Alive: A Decade of Discovery 1999–2009 Washington, DC: WWF Living Amazon Initiat. [Google Scholar]
  161. Turvey ST, Crees JJ, Di Fonzo MMI. 2015. Historical data as a baseline for conservation: reconstructing long-term faunal extinction dynamics in Late Imperial–modern China. Proc. R. Soc. B 282:1–9 [Google Scholar]
  162. UNFCCC (U.N. Framew. Conv. Clim. Change) 2015. Adoption of the Paris agreement FCCC/CP/2015/L.9/Rev.1, Paris [Google Scholar]
  163. Valiente-Banuet A, Aizen MA, Alcántara JM, Arroyo J, Cocucci A. et al. 2015. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29:299–307 [Google Scholar]
  164. van Riper C III, van Riper SG, Goff ML, Laird M. 1986. The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol. Monogr. 56:327–44 [Google Scholar]
  165. Vega GC, Wiens JJ. 2012. Why are there so few fish in the sea. Proc. R. Soc. B 283:1–7 [Google Scholar]
  166. Walsh S, Hamilton S, Ruttenberg B, Donovan M, Sandin S. 2012. Fishing top predators indirectly affects condition and reproduction in a reef-fish community. J. Fish Biol. 80:519–37 [Google Scholar]
  167. Walther G-R, Post E, Convey P, Menzel A, Parmesan C. et al. 2002. Ecological responses to recent climate change. Nature 416:389–95 [Google Scholar]
  168. Wanger TC, Darras K, Bumrungsri S, Tscharntke T, Klein A-M. 2014. Bat pest control contributes to food security in Thailand. Biol. Conserv. 171:220–23 [Google Scholar]
  169. WEF (World Econ. Forum) 2016. The new plastics economy: rethinking the future of plastics World Econ. Forum, Geneva, Switz. http://wef.ch/plasticseconomy [Google Scholar]
  170. White RL, Bennett PM. 2015. Elevational distribution and extinction risk in birds. PLOS ONE 10:e0121849 [Google Scholar]
  171. Wilcox C, Van Sebille E, Hardesty BD. 2015. Threat of plastic pollution to seabirds is global, pervasive, and increasing. PNAS 112:11899–904 [Google Scholar]
  172. Wilmers CC, Estes JA, Edwards M, Laidre KL, Konar B. 2012. Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests. Front. Ecol. Environ. 10:409–15 [Google Scholar]
  173. Winemiller K, McIntyre P, Castello L, Fluet-Chouinard E, Giarrizzo T. et al. 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351:128–29 [Google Scholar]
  174. Worm B, Hilborn R, Baum JK, Branch TA, Collie JS. et al. 2009. Rebuilding global fisheries. Science 325:578–85 [Google Scholar]
  175. Yeakel JD, Pires MM, Rudolf L, Dominy NJ, Koch PL. et al. 2014. Collapse of an ecological network in Ancient Egypt. PNAS 111:14472–77 [Google Scholar]
  176. Young HS, Dirzo R, Helgen KM, McCauley DJ, Billeter SA. et al. 2014. Declines in large wildlife increase landscape-level prevalence of rodent-borne disease in Africa. PNAS 111:7036–41 [Google Scholar]
  177. Young HS, Dirzo R, Helgen KM, McCauley DJ, Nunn CL. et al. 2016. Large wildlife removal drives immune defense increases in rodents. Funct. Ecol. 30:799–807 [Google Scholar]
  178. Zimov NS, Zimov SA, Zimova AE, Zimova GM, Chuprynin VI, Chapin III FS. 2009. Carbon storage in permafrost and soils of the mammoth tundra-steppe biome: role in the global carbon budget. Geophys. Res. Lett. 36:1–6 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error