1932

Abstract

Soil organic matter (SOM) anchors global terrestrial productivity and food and fiber supply. SOM retains water and soil nutrients and stores more global carbon than do plants and the atmosphere combined. SOM is also decomposed by microbes, returning CO, a greenhouse gas, to the atmosphere. Unfortunately, soil carbon stocks have been widely lost or degraded through land use changes and unsustainable forest and agricultural practices. To understand its structure and function and to maintain and restore SOM, we need a better appreciation of soil organic carbon (SOC) saturation capacity and the retention of above- and belowground inputs in SOM. Our analysis suggests root inputs are approximately five times more likely than an equivalent mass of aboveground litter to be stabilized as SOM. Microbes, particularly fungi and bacteria, and soil faunal food webs strongly influence SOM decomposition at shallower depths, whereas mineral associations drive stabilization at depths greater than ∼30 cm. Global uncertainties in the amounts and locations of SOM include the extent of wetland, peatland, and permafrost systems and factors that constrain soil depths, such as shallow bedrock. In consideration of these uncertainties, we estimate global SOC stocks at depths of 2 and 3 m to be between 2,270 and 2,770 Pg, respectively, but could be as much as 700 Pg smaller. Sedimentary deposits deeper than 3 m likely contain >500 Pg of additional SOC. Soils hold the largest biogeochemically active terrestrial carbon pool on Earth and are critical for stabilizing atmospheric CO concentrations. Nonetheless, global pressures on soils continue from changes in land management, including the need for increasing bioenergy and food production.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-112414-054234
2017-11-02
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/48/1/annurev-ecolsys-112414-054234.html?itemId=/content/journals/10.1146/annurev-ecolsys-112414-054234&mimeType=html&fmt=ahah

Literature Cited

  1. Amundson R. 2001. The carbon budget in soils. Annu. Rev. Earth Planet. Sci. 29:535–62 [Google Scholar]
  2. Austin EE, Wickings K, McDaniel MD, Robertson GP, Grandy AS. 2017. Cover crop root contributions to soil carbon in a no-till corn bioenergy cropping system. GCB Bioenergy https://doi.org/10.1111/gcbb.12428 [Crossref] [Google Scholar]
  3. Averill C, Hawkes CV. 2016. Ectomycorrhizal fungi slow soil carbon cycling. Ecol. Lett. 19:8937–47 [Google Scholar]
  4. Averill C, Turner BL, Finzi AC. 2014. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:7484543–45 [Google Scholar]
  5. Bachmann J, Guggenberger G, Baumgartl T, Ellerbrock RH, Urbanek E. et al. 2008. Physical carbon‐sequestration mechanisms under special consideration of soil wettability. J. Plant Nutr. Soil Sci. 171:14–26 [Google Scholar]
  6. Balesdent J, Balabane M. 1996. Major contribution of roots to soil carbon storage inferred from maize cultivated soils. Soil Biol. Biochem. 28:1261–63 [Google Scholar]
  7. Bang HS, Lee J-H, Kwon OS, Na YE, Jang YS, Kim WH. 2005. Effects of paracoprid dung beetles (Coleoptera: Scarabaeidae) on the growth of pasture herbage and on the underlying soil. Appl. Soil Ecol. 29:2165–71 [Google Scholar]
  8. Barber SA. 1979. Corn residue management and soil organic matter. Agron. J. 71:4625–27 [Google Scholar]
  9. Batjes NH. 1996. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 47:2151–63 [Google Scholar]
  10. Batjes NH. 2016. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma 269:61–68 [Google Scholar]
  11. Beare MH, Parmelee RW, Hendrix PF, Cheng W, Coleman DC, Crossley D. 1992. Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecol. Monogr. 62:4569–91 [Google Scholar]
  12. Berthrong ST, Jobbágy EG, Jackson RB. 2009. A global meta‐analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol. Appl. 19:82228–41 [Google Scholar]
  13. Bertrand M, Barot S, Blouin M, Whalen J, De Oliveira T, Roger-Estrade J. 2015. Earthworm services for cropping systems. A review. Agron. Sustain. Dev. 35:2553–67 [Google Scholar]
  14. Bird JA, Kleber M, Torn MS. 2008. 13C and 15N stabilization dynamics in soil organic matter fractions during needle and fine root decomposition. Organ. Geochem. 39:465–77 [Google Scholar]
  15. Bohlen PJ, Pelletier DM, Groffman PM, Fahey TJ, Fisk MC. 2004. Influence of earthworm invasion on redistribution and retention of soil carbon and nitrogen in northern temperate forests. Ecosystems 7:13–27 [Google Scholar]
  16. Bolinder MA, Angers DA, Giroux M, Laverdière MR. 1999. Estimating C inputs retained as soil organic matter from corn (Zea mays L.). Plant Soil 215:85–91 [Google Scholar]
  17. Bolinder MA, Janzen HH, Gregorich EG, Angers DA, Vandenbygaart AJ. 2007. An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Environment 118:29–42 [Google Scholar]
  18. Bonanomi G, Incerti G, Giannino F, Mingo A, Lanzotti V, Mazzoleni S. 2013. Litter quality assessed by solid state 13C NMR spectroscopy predicts decay rate better than C/N and lignin/N ratios. Soil Biol. Biochem. 56:40–48 [Google Scholar]
  19. Bossuyt H, Six J, Hendrix PF. 2006. Interactive effects of functionally different earthworm species on aggregation and incorporation and decomposition of newly added residue carbon. Geoderma 130:14–25 [Google Scholar]
  20. Bouché M. 1977. Stratégies lombriciennes. Ecol. Bull. 25:122–32 [Google Scholar]
  21. Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM. et al. 2008. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11:121316–27 [Google Scholar]
  22. Bradford MA, Wieder WR, Bonan GB, Fierer N, Raymond PA, Crowther TW. 2016. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6:8751–58 [Google Scholar]
  23. Brzostek ER, Dragoni D, Brown ZA, Phillips RP. 2015. Mycorrhizal type determines the magnitude and direction of root‐induced changes in decomposition in a temperate forest. New Phytol 206:41274–82 [Google Scholar]
  24. Cárcamo H, Abe T, Prescott C, Holl F, Chanway C. 2000. Influence of millipedes on litter decomposition, N mineralization, and microbial communities in a coastal forest in British Columbia, Canada. Can. J. Forest Res. 30:5817–26 [Google Scholar]
  25. Cheshire M. 1979. Nature and Origin of Carbohydrates in Soils London: Academic [Google Scholar]
  26. Chung H, Ngo KJ, Plante A, Six J. 2010. Evidence for carbon saturation in a highly structured and organic-matter-rich soil. Soil Sci. Soc. Am. J. 74:130–38 [Google Scholar]
  27. Clapp CE, Allmaras RR, Layese MF, Linden DR, Dowdy RH. 2000. Soil organic carbon and 13C abundance as related to tillage, crop residue, and nitrogen fertilization under continuous corn management in Minnesota. Soil Tillage Res 55:3127–42 [Google Scholar]
  28. Clemmensen K, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A. et al. 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:61271615–18 [Google Scholar]
  29. Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D. et al. 2014. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7:627–37 [Google Scholar]
  30. Conant RT, Cerri CEP, Osborne BB, Paustian K. 2017. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27:662–68 [Google Scholar]
  31. Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E. 2013. The microbial efficiency‐matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?. Glob. Change Biol. 19:4988–95 [Google Scholar]
  32. Crow SE, Filley TR, McCormick M, Szlávecz K, Stott DE. et al. 2009. Earthworms, stand age, and species composition interact to influence particulate organic matter chemistry during forest succession. Biogeochemistry 92:1–261–82 [Google Scholar]
  33. Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC. et al. 2016. Quantifying global soil carbon losses in response to warming. Nature 540:104–8 [Google Scholar]
  34. Curry JP, Schmidt O. 2007. The feeding ecology of earthworms—a review. Pedobiologia 50:6463–77 [Google Scholar]
  35. David J. 2014. The role of litter-feeding macroarthropods in decomposition processes: a reappraisal of common views. Soil Biol. Biochem. 76:109–18 [Google Scholar]
  36. de Vries FT, Thébault E, Liiri M, Birkhofer K, Tsiafouli MA. et al. 2013. Soil food web properties explain ecosystem services across European land use systems. PNAS 110:3514296–301 [Google Scholar]
  37. Dean C, Kirkpatrick JB, Friedland AJ. 2017. Conventional intensive logging promotes loss of organic carbon from the mineral soil. Glob. Change Biol. 23:1–11 [Google Scholar]
  38. DeHaan LR, Van Tassel DL, Cox TS. 2005. Perennial grain crops: a synthesis of ecology and plant breeding. Renew. Agric. Food Syst. 20:015–14 [Google Scholar]
  39. Diochon A, Kellman L, Beltrami H. 2009. Looking deeper: an investigation of soil carbon losses following harvesting from a managed northeastern red spruce (Picea rubens Sarg.) forest chronosequence. Forest Ecol. Manag. 257:413–20 [Google Scholar]
  40. Doetterl S, Stevens A, Six J, Merckx R, Van Oost K. et al. 2015. Soil carbon storage controlled by interactions between geochemistry and climate. Nat. Geosci. 8:10780–83 [Google Scholar]
  41. Drake JE, Gallet‐Budynek A, Hofmockel KS, Bernhardt ES, Billings SA. et al. 2011. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long‐term enhancement of forest productivity under elevated CO2. Ecol. Lett. 14:4349–57 [Google Scholar]
  42. Eclesia RP, Jobbágy EG, Jackson RB, Rizzotto M, Piñeiro G. 2016. Stabilization of new carbon inputs rather than old carbon decomposition determines soil organic carbon shifts following woody or herbaceous vegetation transitions. Plant Soil 409:99–116 [Google Scholar]
  43. Eisenhauer N, Cesarz S, Koller R, Worm K, Reich PB. 2012. Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Glob. Change Biol. 18:2435–47 [Google Scholar]
  44. Ekschmitt K, Kandeler E, Poll C, Brune A, Buscot F. et al. 2008. Soil‐carbon preservation through habitat constraints and biological limitations on decomposer activity. J. Plant Nutr. Soil Sci. 171:27–35 [Google Scholar]
  45. FAO. 2012. Harmonized World Soil Database (version 1.2) Rome: FAO http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ [Google Scholar]
  46. Fekete I, Kotroczó Z, Varga C, Nagy PT, Várbíró G. et al. 2014. Alterations in forest detritus inputs influence soil carbon concentration and soil respiration in a Central-European deciduous forest. Soil Biol. Biochem. 74:106–14 [Google Scholar]
  47. Field CB, Raupach MR. , eds. 2004. The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World Washington, DC: Island Press [Google Scholar]
  48. Filley TR, McCormick MK, Crow SE, Szlavecz K, Whigham DF. et al. 2008. Comparison of the chemical alteration trajectory of Liriodendron tulipifera L. leaf litter among forests with different earthworm abundance.. J. Geophys. Res. Biogeosci. 113:G11–14 [Google Scholar]
  49. Francis F, Artru S, Brédart D, Lassois L, Francis F. 2016. Towards sustainable food systems: the concept of agroecology and how it questions current research practices. A review. Biotechnol. Agron. Soc. Environ. 20:S1215–24 [Google Scholar]
  50. Gadgil RL, Gadgil PD. 1971. Mycorrhiza and litter decomposition. Nature 233:133 [Google Scholar]
  51. Galy V, Peucker-Ehrenbrink B, Eglinton T. 2015. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 521:7551204–7 [Google Scholar]
  52. Geyer KM, Kyker-Snowman E, Grandy AS, Frey SD. 2016. Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 127:2–3173–88 [Google Scholar]
  53. Ghafoor A, Poeplau C, Kätterer T. 2017. Fate of straw- and root-derived carbon in a Swedish agricultural soil agricultural soil. Biol. Fertil. Soils 53:257–67 [Google Scholar]
  54. Giardina CP, Litton CM, Crow SE, Asner GP. 2014. Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux. Nat. Clim. Change 4:9822–27 [Google Scholar]
  55. Godbold DL, Hoosbeek MR, Lukac M, Cotrufo MF, Janssens IA. et al. 2006. Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281:1–215–24 [Google Scholar]
  56. González-Chang M, Wratten SD, Lefort M-C, Boyer S. 2016. Food webs and biological control: a review of molecular tools used to reveal trophic interactions in agricultural systems. Food Webs 9:4–11 [Google Scholar]
  57. Gottschalk P, Smith JU, Wattenbach M, Bellarby J, Stehfest E. et al. 2012. How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios. Biogeosciences 9:3151–71 [Google Scholar]
  58. Grandy AS, Wieder WR, Wickings K, Kyker-Snowman E. 2016. Beyond microbes: Are fauna the next frontier in soil biogeochemical models. Soil Biol. Biochem. 102:40–44 [Google Scholar]
  59. Groffman PM, Fahey TJ, Fisk MC, Yavitt JB, Sherman RE. et al. 2015. Earthworms increase soil microbial biomass carrying capacity and nitrogen retention in northern hardwood forests. Soil Biol. Biochem. 87:51–58 [Google Scholar]
  60. Guo LB, Gifford RM. 2002. Soil carbon stocks and land use change: a meta analysis. Glob. Chang. Biol. 8:345–60 [Google Scholar]
  61. Hall SJ, Liptzin D, Buss HL, DeAngelis K, Silver WL. 2016. Drivers and patterns of iron redox cycling from surface to bedrock in a deep tropical forest soil: a new conceptual model. Biogeochemistry 130:1–2177–90 [Google Scholar]
  62. Harden JW, Koven CD, Ping CL, Hugelius G, McGuire AD. et al. 2012. Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys. Res. Lett. 39:L15704 [Google Scholar]
  63. He Y, Trumbore SE, Torn MS, Harden JW, Vaughn LJ. et al. 2016. Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century. Science 353:63061419–24 [Google Scholar]
  64. Hendrix PF, Callaham MA Jr., Drake JM, Huang C-Y, James SW. et al. 2008. Pandora's box contained bait: the global problem of introduced earthworms. Annu. Rev. Ecol. Evol. Syst. 39:593–613 [Google Scholar]
  65. Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M. et al. 2017. SoilGrids250m: global gridded soil information based on machine learning. PLOS ONE 12:2e0169748 [Google Scholar]
  66. Hobbie SE. 2000. Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems 3:5484–94 [Google Scholar]
  67. Hodge A, Fitter AH. 2010. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. PNAS 107:3113754–59 [Google Scholar]
  68. Hoover CM, Heath LS. 2015. A commentary on ‘Mineral soil carbon fluxes in forests and implications for carbon balance assessments’: a deeper look at the data. GCB Bioenergy 7:362–65 [Google Scholar]
  69. Hu S, Coleman D, Carroll C, Hendrix P, Beare M. 1997. Labile soil carbon pools in subtropical forest and agricultural ecosystems as influenced by management practices and vegetation types. Agric. Ecosyst. Environ. 65:69–78 [Google Scholar]
  70. Huang W, Spohn M. 2015. Effects of long-term litter manipulation on soil carbon, nitrogen, and phosphorus in a temperate deciduous forest. Soil Biol. Biochem. 83:12–18 [Google Scholar]
  71. Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur E. et al. 2014. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11:236573–93 [Google Scholar]
  72. Hupy JP, Schaetzl RJ. 2006. Introducing “bombturbation,” a singular type of soil disturbance and mixing. Soil Sci 171:11823–36 [Google Scholar]
  73. Ise T, Litton CM, Giardina CP, Ito A. 2010. Comparison of modeling approaches for carbon partitioning: impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP. J. Geophys. Res. Biogeosci. 115:G41–11 [Google Scholar]
  74. Jackson RB, Mooney HA, Schulze E-D. 1997. A global budget for fine root biomass, surface area, and nutrient contents. PNAS 94:7362–66 [Google Scholar]
  75. Jackson RB, Schenk HJ, Jobbágy EG, Canadell J, Colello GD. et al. 2000. Belowground consequences of vegetation change and their treatment in models. Ecol. Appl. 10:470–83 [Google Scholar]
  76. Janzen H. 2006. The soil carbon dilemma: Shall we hoard it or use it. Soil Biol. Biochem. 38:3419–24 [Google Scholar]
  77. Jayawickreme DH, Jobbágy EG, Jackson RB. 2014. Geophysical subsurface imaging for ecological applications. New Phytol 201:1170–75 [Google Scholar]
  78. Jobbágy EG, Jackson RB. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10:2423–36 [Google Scholar]
  79. Joosten H, Clarke D. 2002. Wise Use of Mires and Peatlands: Background and Principles Including a Framework for Decision-Making Devon, UK: Int. Mire Conserv. Group/Int. Peatl. Soc. [Google Scholar]
  80. Kaiser K, Guggenberger G. 2000. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Organ. Geochem. 31:7711–25 [Google Scholar]
  81. Kätterer T, Bolinder MA, Andrén O, Kirchmann H, Menichetti L. 2011. Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agric. Ecosyst. Environ. 141:184–92 [Google Scholar]
  82. Keiluweit M, Nico PS, Kleber M, Fendorf S. 2016. Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils. Biogeochemistry 127:2–3157–71 [Google Scholar]
  83. Kell DB. 2011. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration. Ann. Bot. 108:407–18 [Google Scholar]
  84. Kleber M, Eusterhues K, Keiluweit M, Mikutta C, Mikutta R, Nico PS. 2015. Mineral–organic associations: formation, properties, and relevance in soil environments. Adv. Agron. 130:1–140 [Google Scholar]
  85. Knicker H. 2011. Soil organic N: an under-rated player for C sequestration in soils. Soil Biol. Biochem. 43:1118–29 [Google Scholar]
  86. Köchy M, Hiederer R, Freibauer A. 2015. Global distribution of soil organic carbon–Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil 1:351–65 [Google Scholar]
  87. Kong AYY, Six J. 2010. Tracing root versus residue carbon into soils from conventional and alternative cropping systems. Soil Sci. Soc. Am. J. 74:1201 [Google Scholar]
  88. Koven CD, Schuur EAG, Schädel C, Bohn TJ, Burke EJ. et al. 2015. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Philos. Trans. R. Soc. A 373:20140423 [Google Scholar]
  89. Kramer MG, Lajtha K, Aufdenkampe A. 2017. Natural abundance 15N and C/N soil depth trends controlled more by association with minerals than by microbial decay. Biogeochem. Lett. In press [Google Scholar]
  90. Kramer MG, Sanderman J, Chadwick OA, Chorover J, Vitousek PM. 2012. Long‐term carbon storage through retention of dissolved aromatic acids by reactive particles in soil. Glob. Change Biol. 18:82594–605 [Google Scholar]
  91. Kramer MG, Sollins P, Sletten RS. 2004. Soil carbon dynamics across a windthrow disturbance sequence in southeast Alaska. Ecology 85:82230–44 [Google Scholar]
  92. Kuzyakov Y. 2010. Priming effects: interactions between living and dead organic matter. Soil Biol. Biochem. 42:1363–71 [Google Scholar]
  93. Kuzyakov Y, Blagodatskaya E. 2015. Microbial hotspots and hot moments in soil: concept and review. Soil Biol. Biochem. 83:184–99 [Google Scholar]
  94. Kuzyakov Y, Friedel J, Stahr K. 2000. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32:111485–98 [Google Scholar]
  95. Lacroix EM, Petrenko CL, Friedland AJ. 2016. Evidence for losses from strongly bound SOM pools after clear cutting in a northern hardwood forest. Soil Sci 181:202–7 [Google Scholar]
  96. Lajtha K, Bowden RD, Nadelhoffer K. 2014a. Litter and root manipulations provide insights into soil organic matter dynamics and stability. Soil Sci. Soc. Am. J. 78:S261 [Google Scholar]
  97. Lajtha K, Townsend KL, Kramer MG, Swanston C, Bowden RD, Nadelhoffer K. 2014b. Changes to particulate versus mineral-associated soil carbon after 50 years of litter manipulation in forest and prairie experimental ecosystems. Biogeochemistry 119:1–3341–60 [Google Scholar]
  98. Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–27 [Google Scholar]
  99. Lavelle P. 1988. Earthworm activities and the soil system. Biol. Fertil. Soils 6:237–51 [Google Scholar]
  100. Lavelle P, Bignell D, Lepage M, Wolters W, Roger P. et al. 1997. Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 33:4159–93 [Google Scholar]
  101. Lefèvre R, Barré P, Moyano FE, Christensen BT, Bardoux G. et al. 2014. Higher temperature sensitivity for stable than for labile soil organic carbon—evidence from incubations of long‐term bare fallow soils. Glob. Change Biol. 20:2633–40 [Google Scholar]
  102. Leifeld J, Fuhrer J. 2005. The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality. Biogeochemistry 75:3433–53 [Google Scholar]
  103. Liski J, Perruchoud D, Karjalainen T. 2002. Increasing carbon stocks in the forest soils of western Europe. Forest Ecol. Manag. 169:159–75 [Google Scholar]
  104. Loisel J, van Bellen S, Pelletier L, Talbot J, Hugelius G. et al. 2017. Insights and issues with estimating northern peatland carbon stocks and fluxes since the Last Glacial Maximum. Earth-Sci. Rev. 165:59–80 [Google Scholar]
  105. Lubbers IM, Van Groenigen KJ, Fonte SJ, Six J, Brussaard L, Van Groenigen JW. 2013. Greenhouse-gas emissions from soils increased by earthworms. Nat. Clim. Change 3:3187–94 [Google Scholar]
  106. Luo Y, Ahlström A, Allison SD, Batjes NH, Brovkin V. et al. 2016. Toward more realistic projections of soil carbon dynamics by Earth system models. Glob. Biogeochem. Cycles 30:40–56 [Google Scholar]
  107. Machmuller MB, Kramer MG, Cyle TK, Hill N, Hancock D, Thompson A. 2015. Emerging land use practices rapidly increase soil organic matter. Nat. Commun. 6:6995 [Google Scholar]
  108. Manzoni S, Piñeiro G, Jackson RB, Jobbágy EG, Kim JH, Porporato A. 2012a. Analytical models of soil and litter decomposition: solutions for mass loss and time-dependent decay rates. Soil Biol. Biochem. 50:66–76 [Google Scholar]
  109. Manzoni S, Taylor P, Richter A, Porporato A, Ågren GI. 2012b. Environmental and stoichiometric controls on microbial carbon‐use efficiency in soils. New Phytol 196:79–91 [Google Scholar]
  110. Mayer LM. 1994. Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chem. Geol. 114:3–4347–63 [Google Scholar]
  111. Mayzelle MM, Krusor ML, Lajtha K, Bowden RD, Six J. 2014. Effects of detrital inputs and roots on carbon saturation deficit of a temperate forest soil. Soil Sci. Soc. Am. J. 78:S1S76–83 [Google Scholar]
  112. Mazzilli SR, Kemanian AR, Ernst OR, Jackson RB, Piñeiro G. 2014. Priming of soil organic carbon decomposition induced by corn compared to soybean crops. Soil Biol. Biochem. 75:273–81 [Google Scholar]
  113. Mazzilli SR, Kemanian AR, Ernst OR, Jackson RB, Piñeiro G. 2015. Greater humification of belowground than aboveground biomass carbon into particulate soil organic matter in no-till corn and soybean crops. Soil Biol. Biochem. 85:22–30 [Google Scholar]
  114. McBratney AB, Santos MM, Minasny B. 2003. On digital soil mapping. Geoderma 117:3–52 [Google Scholar]
  115. Mikutta R, Mikutta C, Kalbitz K, Scheel T, Kaiser K, Jahn R. 2007. Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms. Geochim. Cosmochim. Acta 71:102569–90 [Google Scholar]
  116. Miller RD, Xia J, Park CB, Ivanov JM. 1999. Multichannel analysis of surface waves to map bedrock. Leading Edge 18:121392–96 [Google Scholar]
  117. Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D. et al. 2017. Soil carbon 4 per mille. Geoderma 292:59–86 [Google Scholar]
  118. Molon M, Boyce JI, Arain MA. 2017. Quantitative, nondestructive estimates of coarse root biomass in a temperate pine forest using 3‐D ground‐penetrating radar (GPR). J. Geophys. Res. Biogeosci. 122:80–102 [Google Scholar]
  119. Moore JC, Berlow EL, Coleman DC, Ruiter PC, Dong Q. et al. 2004. Detritus, trophic dynamics and biodiversity. Ecol. Lett. 7:7584–600 [Google Scholar]
  120. Moore JC, de Ruiter PC, Hunt HW, Coleman DC, Freckman DW. 1996. Microcosms and soil ecology: critical linkages between fields studies and modelling food webs. Ecology 77:3694–705 [Google Scholar]
  121. Nave LE, Swanston CW, Mishra U, Nadelhoffer KJ. 2013. Afforestation effects on soil carbon storage in the United States: a synthesis. Soil Sci. Soc. Am. J. 77:1037–45 [Google Scholar]
  122. Nave LE, Vance ED, Swanston CW, Curtis PS. 2010. Harvest impacts on soil carbon storage in temperate forests. Forest Ecol. Manag. 259:5857–66 [Google Scholar]
  123. Nichols E, Spector S, Louzada J, Larsen T, Amezquita S. et al. 2008. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol. Conserv. 141:61461–74 [Google Scholar]
  124. Oades JM. 1967. Carbohydrates in some Australian soils. Soil Res 5:103–15 [Google Scholar]
  125. Oades JM. 1984. Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76:319–37 [Google Scholar]
  126. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN. et al. 2001. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51:933–38 [Google Scholar]
  127. Orwin KH, Kirschbaum MUF, St. John MG, Dickie IA. 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol. Lett. 14:493–502 [Google Scholar]
  128. Osler GH, Sommerkorn M. 2007. Toward a complete soil C and N cycle: incorporating the soil fauna. Ecology 88:71611–21 [Google Scholar]
  129. Page SE, Rieley JO, Banks CJ. 2011. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17:2798–818 [Google Scholar]
  130. Parfitt R, Parshotam A, Salt G. 2002. Carbon turnover in two soils with contrasting mineralogy under long-term maize and pasture. Soil Res 40:127–36 [Google Scholar]
  131. Parton WJ, Hartman M, Ojima D, Schimel D. 1998. DAYCENT and its land surface submodel: description and testing. Glob. Planet. Change 19:35–48 [Google Scholar]
  132. Paustian K, Andrén O, Janzen HH, Lal R, Smith P. et al. 1997. Agricultural soils as a sink to mitigate CO2 emissions. Soil Use Manag 13:230–44 [Google Scholar]
  133. Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P. 2016. Climate-smart soils. Nature 532:49–57 [Google Scholar]
  134. Pelletier JD, Broxton PD, Hazenberg P, Zeng X, Troch PA. et al. 2016. A gridded global data set of soil, immobile regolith, and sedimentary deposit thicknesses for regional and global land surface modeling. J. Adv. Model. Earth Syst. 8:41–65 [Google Scholar]
  135. Peng S, Guo T, Liu G. 2013. The effects of arbuscular mycorrhizal hyphal networks on soil aggregations of purple soil in southwest China. Soil Biol. Biochem. 57:411–17 [Google Scholar]
  136. Phillips RP, Meier IC, Bernhardt ES, Grandy AS, Wickings K, Finzi AC. 2012. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecol. Lett. 15:91042–49 [Google Scholar]
  137. Piñeiro G, Jobbágy EG, Baker J, Murray BC, Jackson RB. 2009. Set‐asides can be better climate investment than corn ethanol. Ecol. Appl. 19:2277–82 [Google Scholar]
  138. Plante AF, Conant RT, Stewart CE, Paustian K, Six J. 2006. Impact of soil texture on the distribution of soil organic matter in physical and chemical fractions. Soil Sci. Soc. Am. J. 70:287–96 [Google Scholar]
  139. Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. 2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30–50 [Google Scholar]
  140. Post WM, Emanuel WR, Zinke PJ, Stangenberger AG. 1982. Soil carbon pools and world life zones. Nature 298:5870156–59 [Google Scholar]
  141. Puget P, Drinkwater LE. 2001. Short-term dynamics of root- and shoot-derived carbon from a leguminous green manure. Soil Sci. Soc. Am. J. 65:3771–79 [Google Scholar]
  142. Rasse DP, Rumpel C, Dignac M-F. 2005. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–56 [Google Scholar]
  143. Reich P. 2006. Soil organic carbon map Washington, DC: USDA-NRCS https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054018 [Google Scholar]
  144. Richter DD, Markewitz D. 1995. How deep is soil?. BioScience 45:600–9 [Google Scholar]
  145. Sayer EJ. 2006. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol. Rev. 81:1–31 [Google Scholar]
  146. Scharlemann JP, Tanner EV, Hiederer R, Kapos V. 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag 5:81–91 [Google Scholar]
  147. Schlesinger WH. 1977. Carbon balance in terrestrial detritus. Annu. Rev. Ecol. Syst. 8:51–81 [Google Scholar]
  148. Schlesinger WH. 1990. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348:6298232–34 [Google Scholar]
  149. Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G. et al. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478:736749–56 [Google Scholar]
  150. Schrumpf M, Kaiser K, Guggenberger G, Persson T, Kögel-Knabner I, Schulze E-D. 2013. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences 10:1675–91 [Google Scholar]
  151. Schuur EAG, McGuire AD, Schädel C, Grosse G, Harden JW. et al. 2015. Climate change and the permafrost carbon feedback. Nature 520:171–79 [Google Scholar]
  152. Shahbaz M, Kuzyakov Y, Heitkamp F. 2016. Decrease of soil organic matter stabilization with increasing inputs: mechanisms and controls. Geoderma 304:76–82 [Google Scholar]
  153. Six J, Bossuyt H, Degryze S, Denef K. 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res 79:7–31 [Google Scholar]
  154. Six J, Frey S, Thiet R, Batten K. 2006. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70:2555–69 [Google Scholar]
  155. Slade EM, Riutta T, Roslin T, Tuomisto HL. 2016. The role of dung beetles in reducing greenhouse gas emissions from cattle farming. Sci. Rep. 6:18140–40 [Google Scholar]
  156. Slessarev E, Lin Y, Bingham N, Johnson J, Dai Y. et al. 2016. Water balance creates a threshold in soil pH at the global scale. Nature 540:7634567–69 [Google Scholar]
  157. Soller DR, Reheis MC, Garrity CP, Van Sistine DR. 2009. Map database for surficial materials in the conterminous United States US Geol. Surv. Data Ser 425. https://pubs.usgs.gov/ds/425/ [Google Scholar]
  158. Sollins P, Kramer MG, Swanston C, Lajtha K, Filley T. et al. 2009. Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial- and mineral-controlled soil organic matter stabilization. Biogeochemistry 96:1–3209–31 [Google Scholar]
  159. Soong JL, Vandegehuchte ML, Horton AJ, Nielsen UN, Denef K. et al. 2016. Soil microarthropods support ecosystem productivity and soil C accrual: evidence from a litter decomposition study in the tallgrass prairie. Soil Biol. Biochem. 92:230–38 [Google Scholar]
  160. Stewart CE, Paustian K, Conant RT, Plante AF, Six J. 2009. Soil carbon saturation: implications for measurable carbon pool dynamics in long-term incubations. Soil Biol. Biochem. 41:2357–66 [Google Scholar]
  161. Sulzman EW, Brant JB, Bowden RD, Lajtha K. 2005. Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest. Biogeochemistry 73:231–256 [Google Scholar]
  162. Syvitski JPM, Peckham SD, Hilberman R, Mulder T. 2003. Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective. Sediment. Geol 162:5–24 [Google Scholar]
  163. Szlavecz K, McCormick M, Xia L, Saunders J, Morcol T. et al. 2011. Ecosystem effects of non-native earthworms in Mid-Atlantic deciduous forests. Biol. Invasions 13:51165–82 [Google Scholar]
  164. Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23:2GB2023 https://doi.org/10.1029/2008GB003327 [Crossref] [Google Scholar]
  165. Taylor J, Wilson B, Mills MS, Burns RG. 2002. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol. Biochem. 34:3387–401 [Google Scholar]
  166. Todd-Brown KEO, Hopkins FM, Kivlin SN, Talbot JM, Allison SD. 2012. A framework for representing microbial decomposition in coupled climate models. Biogeochemistry 109:1–319–33 [Google Scholar]
  167. Todd-Brown KEO, Randerson J, Post W, Hoffman F, Tarnocai C. et al. 2013. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10:31717–36 [Google Scholar]
  168. Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM. 1997. Mineral control of soil organic carbon storage and turnover. Nature 389:6647170–73 [Google Scholar]
  169. Townsend AR, Vitousek PM, Desmarais DJ, Tharpe A. 1997. Soil carbon pool structure and temperature sensitivity inferred using CO2 and 13CO2 incubation fluxes from five Hawaiian soils. Biogeochemistry 38:1–17 [Google Scholar]
  170. Trumbore SE, Chadwick OA, Amundson R. 1996. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272:5260393–96 [Google Scholar]
  171. van Loosdrecht MC, Lyklema J, Norde W, Zehnder A. 1990. Influence of interfaces on microbial activity. Microbiol. Rev. 54:75–87 [Google Scholar]
  172. van der Voort TS, Hagedorn F, McIntyre C, Zell C, Walthert L. et al. 2016. Variability in 14C contents of soil organic matter at the plot and regional scale across climatic and geologic gradients. Biogeosciences 13:113427–39 [Google Scholar]
  173. Vetter S, Fox O, Ekschmitt K, Wolters V. 2004. Limitations of faunal effects on soil carbon flow: density dependence, biotic regulation and mutual inhibition. Soil Biol. Biochem. 36:3387–97 [Google Scholar]
  174. Wagg C, Bender SF, Widmer F, van der Heijden MG. 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. PNAS 111:145266–70 [Google Scholar]
  175. Wall DH, Bradford MA, St. John MG, Trofymow JA, Behan-Pelletier V. et al. 2008. Global decomposition experiment shows soil animal impacts on decomposition are climate‐dependent. Glob. Change Biol. 14:112661–77 [Google Scholar]
  176. Wardle DA, Yeates GW, Watson RN, Nicholson KS. 1995. The detritus food-web and the diversity of soil fauna as indicators of disturbance regimes in agro-ecosystems. Plant Soil 170:35–43 [Google Scholar]
  177. Watson SJ, Luck GW, Spooner PG, Watson DM. 2014. Land‐use change: incorporating the frequency, sequence, time span, and magnitude of changes into ecological research. Front. Ecol. Environ. 12:4241–49 [Google Scholar]
  178. Wei X, Shao M, Gale W, Li L. 2014. Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Sci. Rep. 4:4062 [Google Scholar]
  179. Wieder WR, Bonan GB, Allison SD. 2013. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Change 3:10909–12 [Google Scholar]
  180. Wieder WR, Grandy AS, Kallenbach CM, Taylor PG, Bonan GB. 2015. Representing life in the Earth system with soil microbial functional traits in the MIMICS model. Geosci. Model Dev. 8:61789–808 [Google Scholar]
  181. Wolters V. 2000. Invertebrate control of soil organic matter stability. Biol. Fertil. Soils 31:1–19 [Google Scholar]
  182. Xu X, Schimel JP, Thornton PE, Song X, Yuan F, Goswami S. 2014. Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth system models. Ecol. Lett. 17:5547–55 [Google Scholar]
  183. Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ. 2010. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37:L13402 [Google Scholar]
  184. Zhang W, Hendrix PF, Dame LE, Burke RA, Wu J. et al. 2013. Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization. Nat. Commun. 4:2576 [Google Scholar]
  185. Zimmerman AR, Chorover J, Goyne KW, Brantley SL. 2004. Protection of mesopore-adsorbed organic matter from enzymatic degradation. Environ. Sci. Technol. 38:174542–48 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-112414-054234
Loading
/content/journals/10.1146/annurev-ecolsys-112414-054234
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error