Selfing has evolved in animals, fungi, and plants, and since Darwin's pioneering study, it is considered one of the most frequent evolutionary trends in flowering plants. Generally, the evolution of selfing is characterized by a loss of self-incompatibility, the selfing syndrome, and changes in genome-wide polymorphism patterns. Recent interdisciplinary studies involving molecular functional experiments, genome-wide data, experimental evolution, and evolutionary ecology using , and other species show that the evolution of selfing is not merely a degradation of outcrossing traits but a model for studying the recurrent patterns underlying adaptive molecular evolution. For example, in wild relatives, self-compatibility evolved from mutations in the male specificity gene, (), rather than the female specificity gene, (), supporting the theoretical prediction of sexual asymmetry. Prevalence of dominant self-compatible mutations is consistent with Haldane's sieve, which acts against recessive adaptive mutations. Time estimates based on genome-wide polymorphisms and self-incompatibility genes generally support the recent origin of selfing.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Agren JA, Wang W, Koenig D, Neuffer B, Weigel D, Wright SI. 2014. Mating system shifts and transposable element evolution in the plant genus Capsella. BMC Genom. 15:602 [Google Scholar]
  2. Akama S, Shimizu-Inatsugi R, Shimizu KK, Sese J. 2014. Genome-wide quantification of homeolog expression ratio revealed nonstochastic gene regulation in synthetic allopolyploid Arabidopsis. Nucleic Acids Res. 42:e46 [Google Scholar]
  3. Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M. et al. 2010. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–31 [Google Scholar]
  4. Baker HG. 1955. Self compatibility and establishment after long distance dispersal. Evolution 9:347–49 [Google Scholar]
  5. Barrett SC. 2002. The evolution of plant sexual diversity. Nat. Rev. Genet. 3:274–84 [Google Scholar]
  6. Barrett SC. 2013. The evolution of plant reproductive systems: How often are transitions irreversible?. Proc. R. Soc. B 280:20130913 [Google Scholar]
  7. Barriere A, Felix MA. 2005. High local genetic diversity and low outcrossing rate in Caenorhabditis elegans natural populations. Curr. Biol. 15:1176–84 [Google Scholar]
  8. Bateman AJ. 1948. Intra-sexual selection in Drosophila. Heredity 2:349–68 [Google Scholar]
  9. Bateman AJ. 1955. Self-incompatibility systems in angiosperms III. Cruciferae. Heredity 9:52–68 [Google Scholar]
  10. Bechsgaard JS, Castric V, Charlesworth D, Vekemans X, Schierup MH. 2006. The transition to self-compatibility in Arabidopsis thaliana and evolution within S-haplotypes over 10 Myr. Mol. Biol. Evol. 23:1741–50Shows the recent loss of SI in A. thaliana using the substitution ratio of SRK. [Google Scholar]
  11. Boggs NA, Nasrallah JB, Nasrallah ME. 2009. Independent S-locus mutations caused self-fertility in Arabidopsis thaliana. PLOS Genet. 5:e1000426 [Google Scholar]
  12. Brandvain Y, Kenney AM, Flagel L, Coop G, Sweigart AL. 2014. Speciation and introgression between Mimulus nasutus and Mimulus guttatus. PLOS Genet. 10:e1004410Reports several clear genomic signatures of the transition from outcrossing to selfing in Mimulus. [Google Scholar]
  13. Brandvain Y, Slotte T, Hazzouri KM, Wright SI, Coop G. 2013. Genomic identification of founding haplotypes reveals the history of the selfing species Capsella rubella. PLOS Genet. 9:e1003754 [Google Scholar]
  14. Breuninger H, Lenhard M. 2010. Control of tissue and organ growth in plants. Curr. Top. Dev. Biol. 91:185–220 [Google Scholar]
  15. Brock MT, Kover PX, Weinig C. 2012. Natural variation in GA1 associates with floral morphology in Arabidopsis thaliana. New Phytol. 195:58–70 [Google Scholar]
  16. Busch JW, Delph LF. 2012. The relative importance of reproductive assurance and automatic selection as hypotheses for the evolution of self-fertilization. Ann. Bot. 109:553–62 [Google Scholar]
  17. Busch JW, Herlihy CR, Gunn L, Werner WJ. 2010. Mixed mating in a recently derived self-compatible population of Leavenworthia alabamica (Brassicaceae). Am. J. Bot. 97:1005–13 [Google Scholar]
  18. Busch JW, Joly S, Schoen DJ. 2011. Demographic signatures accompanying the evolution of selfing in Leavenworthia alabamica. Mol. Biol. Evol. 28:1717–29 [Google Scholar]
  19. Busch JW, Schoen DJ. 2008. The evolution of self-incompatibility when mates are limiting. Trends Plant Sci. 13:128–36 [Google Scholar]
  20. Busch JW, Sharma J, Schoen DJ. 2008. Molecular characterization of Lal2, an SRK-like gene linked to the S-locus in the wild mustard Leavenworthia alabamica. Genetics 178:2055–67 [Google Scholar]
  21. Bustamante CD, Nielsen R, Sawyer SA, Olsen KM, Purugganan MD, Hartl DL. 2002. The cost of inbreeding in Arabidopsis. Nature 416:531–34 [Google Scholar]
  22. Castric V, Billiard S, Vekemans X. 2014. Trait transitions in explicit ecological and genomic contexts: plant mating systems as case studies. Adv. Exp. Med. Biol. 781:7–36 [Google Scholar]
  23. Castric V, Vekemans X. 2004. Plant self-incompatibility in natural populations: a critical assessment of recent theoretical and empirical advances. Mol. Ecol. 13:2873–89 [Google Scholar]
  24. Chantha SC, Herman AC, Platts AE, Vekemans X, Schoen DJ. 2013. Secondary evolution of a self-incompatibility locus in the Brassicaceae genus Leavenworthia. PLOS Biol. 11:e1001560Shows that the S-locus of Leavenworthia is not at the ancestral position; reports male SC mutations. [Google Scholar]
  25. Charlesworth D, Willis JH. 2009. The genetics of inbreeding depression. Nat. Rev. Genet. 10:783–96 [Google Scholar]
  26. Charnov EL. 1982. The Theory of Sex Allocation Princeton, NJ: Princeton Univ. Press [Google Scholar]
  27. Chen KY, Cong B, Wing R, Vrebalov J, Tanksley SD. 2007. Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science 318:643–45 [Google Scholar]
  28. Cheptou PO, Massol F. 2009. Pollination fluctuations drive evolutionary syndromes linking dispersal and mating system. Am. Nat. 174:46–55 [Google Scholar]
  29. Cutter AD. 2008. Reproductive evolution: symptom of a selfing syndrome. Curr. Biol. 18:R1056–58 [Google Scholar]
  30. Cutter AD, Wasmuth JD, Washington NL. 2008. Patterns of molecular evolution in Caenorhabditis preclude ancient origins of selfing. Genetics 178:2093–104 [Google Scholar]
  31. Darwin C. 1876. The Effects of Cross and Self Fertilisation in the Vegetable Kingdom London: John Murray [Google Scholar]
  32. de Jong TJ, Klinkhamer PGL. 2005. Evolutionary Ecology of Plant Reproductive Strategies. Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  33. de la Chaux N, Tsuchimatsu T, Shimizu KK, Wagner A. 2012. The predominantly selfing plant Arabidopsis thaliana experienced a recent reduction in transposable element abundance compared to its outcrossing relative Arabidopsis lyrata. Mob. DNA 3:2 [Google Scholar]
  34. de Nettancourt D. 2001. Incompatibility and Incongruity in Wild and Cultivated Plants Berlin: Springer-Verlag [Google Scholar]
  35. Dobzhansky T. 1950. Evolution in the tropics. Am. Sci. 38:209–21 [Google Scholar]
  36. Doums C, Viard F, Pernot AF, Delay B, Jarne P. 1996. Inbreeding depression, neutral polymorphism, and copulatory behavior in freshwater snails: a self-fertilization syndrome. Evolution 50:1908–18 [Google Scholar]
  37. Durand E, Meheust R, Soucaze M, Goubet PM, Gallina S. et al. 2014. Dominance hierarchy arising from the evolution of a complex small RNA regulatory network. Science 346:1200–5 [Google Scholar]
  38. Dwyer KG, Berger MT, Ahmed R, Hritzo MK, McCulloch AA. et al. 2013. Molecular characterization and evolution of self-incompatibility genes in Arabidopsis thaliana: the case of the Sc haplotype. Genetics 193:985–94 [Google Scholar]
  39. Eckert CG, Kalisz S, Geber MA, Sargent R, Elle E. et al. 2010. Plant mating systems in a changing world. Trends Ecol. Evol. 25:35–43 [Google Scholar]
  40. Ehlers BK, Schierup MH. 2008. When gametophytic self-incompatibility meets gynodioecy. Genet. Res. 90:27–35 [Google Scholar]
  41. Fierst JL, Willis JH, Thomas CG, Wang W, Reynolds RM. et al. 2015. Reproductive mode and the evolution of genome size and structure in Caenorhabditis nematodes. PLOS Genet. 11:e1005323 [Google Scholar]
  42. Fisher RA. 1941. Average excess and average effect of a gene substitution. Ann. Eugen. 11:53–63 [Google Scholar]
  43. Foxe JP, Slotte T, Stahl EA, Neuffer B, Hurka H, Wright SI. 2009. Recent speciation associated with the evolution of selfing in Capsella. PNAS 106:5241–45 [Google Scholar]
  44. Foxe JP, Stift M, Tedder A, Haudry A, Wright SI, Mable BK. 2010. Reconstructing origins of loss of self-incompatibility and selfing in North American Arabidopsis lyrata: a population genetic context. Evolution 64:3495–510 [Google Scholar]
  45. Glemin S, Ronfort J. 2013. Adaptation and maladaptation in selfing and outcrossing species: new mutations versus standing variation. Evolution 67:225–40 [Google Scholar]
  46. Goldberg EE, Kohn JR, Lande R, Robertson KA, Smith SA, Igic B. 2010. Species selection maintains self-incompatibility. Science 330:493–95Demonstrates lower diversification rates in SC species using a macroevolutionary phylogenetic analysis of the Solanaceae. [Google Scholar]
  47. Good-Avila SV, Stephenson AG. 2002. The inheritance of modifiers conferring self-fertility in the partially self-incompatible perennial, Campanula rapunculoides L. (Campanulaceae). Evolution 56:263–72 [Google Scholar]
  48. Goodwillie C, Kalisz S, Eckert CG. 2005. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 36:47–79 [Google Scholar]
  49. Goring DR, Indriolo E, Samuel MA. 2014. The ARC1 E3 ligase promotes a strong and stable self-incompatibility response in Arabidopsis species: response to the Nasrallah and Nasrallah commentary. Plant Cell 26:3842–46 [Google Scholar]
  50. Gowaty PA, Kim YK, Anderson WW. 2012. No evidence of sexual selection in a repetition of Bateman's classic study of Drosophila melanogaster. PNAS 109:11740–45 [Google Scholar]
  51. Griffin PC, Willi Y. 2014. Evolutionary shifts to self-fertilisation restricted to geographic range margins in North American Arabidopsis lyrata. Ecol. Lett. 17:484–90 [Google Scholar]
  52. Guo YL, Bechsgaard JS, Slotte T, Neuffer B, Lascoux M. et al. 2009. Recent speciation of Capsella rubella from Capsella grandiflora, associated with loss of self-incompatibility and an extreme bottleneck. PNAS 106:5246–51 [Google Scholar]
  53. Haig D. 2013. Kin conflict in seed development: an interdependent but fractious collective. Annu. Rev. Cell Dev. Biol. 29:189–211 [Google Scholar]
  54. Haldane JBS. 1927. A mathematical theory of natural and artificial selection, part V: selection and mutation. Math. Proc. Camb. Philos. Soc. 23:838–44 [Google Scholar]
  55. Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB. et al. 2011. Adaptation to climate across the Arabidopsis thaliana genome. Science 334:83–86 [Google Scholar]
  56. Harada Y, Takagaki Y, Sunagawa M, Saito T, Yamada L. et al. 2008. Mechanism of self-sterility in a hermaphroditic chordate. Science 320:548–50 [Google Scholar]
  57. Haudry A, Zha HG, Stift M, Mable BK. 2012. Disentangling the effects of breakdown of self-incompatibility and transition to selfing in North American Arabidopsis lyrata. Mol. Ecol. 21:1130–42 [Google Scholar]
  58. Herman AC, Busch JW, Schoen DJ. 2012. Phylogeny of Leavenworthia S-alleles suggests unidirectional mating system evolution and enhanced positive selection following an ancient population bottleneck. Evolution 66:1849–61 [Google Scholar]
  59. Hoekstra HE, Coyne JA. 2007. The locus of evolution: evo devo and the genetics of adaptation. Evolution 61:995–1016 [Google Scholar]
  60. Hoffmann AA, Sgro CM. 2011. Climate change and evolutionary adaptation. Nature 470:479–85 [Google Scholar]
  61. Hollister JD, Smith LM, Guo YL, Ott F, Weigel D, Gaut BS. 2011. Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. PNAS 108:2322–27 [Google Scholar]
  62. Hough J, Williamson RJ, Wright SI. 2013. Patterns of selection in plant genomes. Annu. Rev. Ecol. Evol. Syst. 44:31–49 [Google Scholar]
  63. Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF. et al. 2011. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 43:476–81 [Google Scholar]
  64. Igic B, Busch JW. 2013. Is self-fertilization an evolutionary dead end?. New Phytol. 198:386–97 [Google Scholar]
  65. Igic B, Lande R, Kohn JR. 2008. Loss of self-incompatibility and its evolutionary consequences. Int. J. Plant Sci. 169:93–104 [Google Scholar]
  66. Indriolo E, Safavian D, Goring DR. 2014. The ARC1 E3 ligase promotes two different self-pollen avoidance traits in Arabidopsis. Plant Cell 26:1525–43 [Google Scholar]
  67. Indriolo E, Tharmapalan P, Wright SI, Goring DR. 2012. The ARC1 E3 ligase gene is frequently deleted in self-compatible Brassicaceae species and has a conserved role in Arabidopsis lyrata self-pollen rejection. Plant Cell 24:4607–20 [Google Scholar]
  68. Iwano M, Ito K, Fujii S, Kakita M, Asano-Shimosato H. et al. 2015. Calcium signalling mediates self-incompatibility response in the Brassicaceae. Nat. Plants 1:15128 [Google Scholar]
  69. Iwasa Y, Pomiankowski A. 1995. Continual change in mate preferences. Nature 377:420–22 [Google Scholar]
  70. Jarne P, Auld JR. 2006. Animals mix it up too: the distribution of self-fertilization among hermaphroditic animals. Evolution 60:1816–24 [Google Scholar]
  71. Juenger T, Purugganan M, Mackay TFC. 2000. Quantitative trait loci for floral morphology in Arabidopsis thaliana. Genetics 156:1379–92 [Google Scholar]
  72. Kalisz S, Vogler DW, Hanley KM. 2004. Context-dependent autonomous self-fertilization yields reproductive assurance and mixed mating. Nature 430:884–87 [Google Scholar]
  73. Klaas M, Yang BC, Bosch M, Thorogood D, Manzanares C. et al. 2011. Progress towards elucidating the mechanisms of self-incompatibility in the grasses: further insights from studies in Lolium. Ann. Bot. 108:677–85 [Google Scholar]
  74. Koch MA, Haubold B, Mitchell-Olds T. 2000. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol. Biol. Evol. 17:1483–98 [Google Scholar]
  75. Kubo K-I, Paape T, Hatakeyama M, Entani T, Takara A. et al. 2015. Gene duplication and genetic exchange drive the evolution of S-RNase–based self-incompatibility in Petunia. Nat. Plants 1:14005Shows the loss of SI via duplication of 1 of 16–20 male SLF genes. [Google Scholar]
  76. Kusaba M, Dwyer K, Hendershot J, Vrebalov J, Nasrallah JB, Nasrallah ME. 2001. Self-incompatibility in the genus Arabidopsis: characterization of the S locus in the outcrossing A. lyrata and its autogamous relative A. thaliana. Plant Cell 13:627–43 [Google Scholar]
  77. Lande R, Schemske DW. 1985. The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evolution 39:24–40 [Google Scholar]
  78. Lloyd DG. 1979. Some reproductive factors affecting the selection of self-fertilization in plants. Am. Nat. 113:67–79 [Google Scholar]
  79. Luo YH, Widmer A. 2013. Herkogamy and its effects on mating patterns in Arabidopsis thaliana. PLOS ONE 8:e57902 [Google Scholar]
  80. Mable BK. 2008. Genetic causes and consequences of the breakdown of self-incompatibility: case studies in the Brassicaceae. Genet. Res. 90:47–60 [Google Scholar]
  81. Mable BK, Robertson AV, Dart S, Di Berardo C, Witham L. 2005. Breakdown of self-incompatibility in the perennial Arabidopsis lyrata (Brassicaceae) and its genetic consequences. Evolution 59:1437–48 [Google Scholar]
  82. Miller JS, Venable DL. 2000. Polyploidy and the evolution of gender dimorphism in plants. Science 289:2335–38 [Google Scholar]
  83. Morran LT, Parmenter MD, Phillips PC. 2009. Mutation load and rapid adaptation favour outcrossing over self-fertilization. Nature 462:350–52 [Google Scholar]
  84. Morran LT, Schmidt OG, Gelarden IA, Parrish RC 2nd, Lively CM. 2011. Running with the Red Queen: host-parasite coevolution selects for biparental sex. Science 333:216–18 [Google Scholar]
  85. Müller H. 1873. Fertilisation of flowers by insects. Nature 8:433–35 [Google Scholar]
  86. Nasrallah JB, Nasrallah ME. 2014. Robust self-incompatibility in the absence of a functional ARC1 gene in Arabidopsis thaliana. Plant Cell 26:3838–41 [Google Scholar]
  87. Nasrallah ME, Liu P, Nasrallah JB. 2002. Generation of self-incompatible Arabidopsis thaliana by transfer of two S locus genes from A. lyrata. Science 297:247–49Shows SC mutations at the S-locus in A. thaliana using heterologous transgenic experiments. [Google Scholar]
  88. Ness RW, Siol M, Barrett SCH. 2011. De novo sequence assembly and characterization of the floral transcriptome in cross- and self-fertilizing plants. BMC Genom. 12:298 [Google Scholar]
  89. Nordborg M. 2000. Linkage disequilibrium, gene trees and selfing: an ancestral recombination graph with partial self-fertilization. Genetics 154:923–29 [Google Scholar]
  90. Nordborg M, Donnelly P. 1997. The coalescent process with selfing. Genetics 146:1185–95 [Google Scholar]
  91. Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C. et al. 2005. The pattern of polymorphism in Arabidopsis thaliana. PLOS Biol. 3:1289–99 [Google Scholar]
  92. Nowak MD, Russo G, Schlapbach R, Huu CN, Lenhard M, Conti E. 2015. The draft genome of Primula veris yields insights into the molecular basis of heterostyly. Genome Biol. 16:12 [Google Scholar]
  93. Okamoto S, Odashima M, Fujimoto R, Sato Y, Kitashiba H, Nishio T. 2007. Self-compatibility in Brassica napus is caused by independent mutations in S-locus genes. Plant J. 50:391–400 [Google Scholar]
  94. Ossowski S, Schneeberger K, Lucas-Lledo JI, Warthmann N, Clark RM. et al. 2010. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92–94 [Google Scholar]
  95. Paape T, Igic B, Smith SD, Olmstead R, Bohs L, Kohn JR. 2008. A 15-Myr-old genetic bottleneck. Mol. Biol. Evol. 25:655–63 [Google Scholar]
  96. Palopoli MF, Rockman MV, TinMaung A, Ramsay C, Curwen S. et al. 2008. Molecular basis of the copulatory plug polymorphism in Caenorhabditis elegans. Nature 454:1019–22 [Google Scholar]
  97. Pamilo P, Nei M, Li WH. 1987. Accumulation of mutations in sexual and asexual populations. Genet. Res. 49:135–46 [Google Scholar]
  98. Pannell JR. 2015. Evolution of the mating system in colonizing plants. Mol. Ecol. 24:2018–37 [Google Scholar]
  99. Pannell JR, Auld JR, Brandvain Y, Burd M, Busch JW. et al. 2015. The scope of Baker's law. New Phytol. 208656–67 [Google Scholar]
  100. Paoletti M, Seymour FA, Alcocer MJC, Kaur N, Caivo AM. et al. 2007. Mating type and the genetic basis of self-fertility in the model fungus Aspergillus nidulans. Curr. Biol. 17:1384–89 [Google Scholar]
  101. Pujol B, Zhou SR, Vilas JS, Pannell JR. 2009. Reduced inbreeding depression after species range expansion. PNAS 106:15379–83 [Google Scholar]
  102. Schemske DW, Lande R. 1985. The evolution of self-fertilization and inbreeding depression in plants. II. Empirical observations. Evolution 39:41–52 [Google Scholar]
  103. Sherman-Broyles S, Boggs N, Farkas A, Liu P, Vrebalov J. et al. 2007. S locus genes and the evolution of self-fertility in Arabidopsis thaliana. Plant Cell 19:94–106 [Google Scholar]
  104. Shimizu KK, Fujii S, Marhold K, Watanabe K, Kudoh H. 2005. Arabidopsis kamchatica (Fisch. ex DC.) K. Shimizu & Kudoh and A. kamchatica subsp. kawasakiana (Makino) K. Shimizu & Kudoh, new combinations. Acta Phytotax. Geobot. 56:165–74 [Google Scholar]
  105. Shimizu KK, Kudoh H, Kobayashi MJ. 2011. Plant sexual reproduction during climate change: gene function in natura studied by ecological and evolutionary systems biology. Ann. Bot. 108:777–87 [Google Scholar]
  106. Shimizu KK, Purugganan MD. 2005. Evolutionary and ecological genomics of Arabidopsis. Plant Physiol. 138:578–84 [Google Scholar]
  107. Shimizu KK, Shimizu-Inatsugi R, Tsuchimatsu T, Purugganan MD. 2008. Independent origins of self-compatibility in Arabidopsis thaliana. Mol. Ecol. 17:704–14 [Google Scholar]
  108. Shimizu-Inatsugi R, Lihova J, Iwanaga H, Kudoh H, Marhold K. et al. 2009. The allopolyploid Arabidopsis kamchatica originated from multiple individuals of Arabidopsis lyrata and Arabidopsis halleri. Mol. Ecol. 18:4024–48 [Google Scholar]
  109. Sicard A, Lenhard M. 2011. The selfing syndrome: a model for studying the genetic and evolutionary basis of morphological adaptation in plants. Ann. Bot. 107:1433–43 [Google Scholar]
  110. Sicard A, Stacey N, Hermann K, Dessoly J, Neuffer B. et al. 2011. Genetics, evolution, and adaptive significance of the selfing syndrome in the genus Capsella. Plant Cell 23:3156–71Provides thorough QTL mapping of selfing syndrome using Capsella. [Google Scholar]
  111. Simmons LW, Fitzpatrick JL. 2012. Sperm wars and the evolution of male fertility. Reproduction 144:519–34 [Google Scholar]
  112. Slotte T, Hazzouri KM, Agren JA, Koenig D, Maumus F. et al. 2013. The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nat. Genet. 45:831–35Supports genome-wide relaxation of purifying selection using the genome assembly of the selfer C. rubella. [Google Scholar]
  113. Slotte T, Hazzouri KM, Stern D, Andolfatto P, Wright SI. 2012. Genetic architecture and adaptive significance of the selfing syndrome in Capsella. Evolution 66:1360–74 [Google Scholar]
  114. Spillane C, Schmid KJ, Laoueille-Duprat S, Pien S, Escobar-Restrepo JM. et al. 2007. Positive Darwinian selection at the imprinted MEDEA locus in plants. Nature 448:349–52 [Google Scholar]
  115. Stebbins GL. 1974. Flowering Plants: Evolution Above the Species Level Cambridge, MA: Harvard Univ. Press [Google Scholar]
  116. Stern DL. 2013. The genetic causes of convergent evolution. Nat. Rev. Genet. 14:751–64 [Google Scholar]
  117. Szovenyi P, Devos N, Weston DJ, Yang XH, Hock Z. et al. 2014. Efficient purging of deleterious mutations in plants with haploid selfing. Genome Biol. Evol. 6:1238–52 [Google Scholar]
  118. Takayama S, Isogai A. 2005. Self-incompatibility in plants. Annu. Rev. Plant Biol. 56:467–89 [Google Scholar]
  119. Tang CL, Toomajian C, Sherman-Broyles S, Plagnol V, Guo YL. et al. 2007. The evolution of selfing in Arabidopsis thaliana. Science 317:1070–72 [Google Scholar]
  120. Tantikanjana T, Rizvi N, Nasrallah ME, Nasrallah JB. 2009. A dual role for the S-locus receptor kinase in self-incompatibility and pistil development revealed by an Arabidopsis rdr6 mutation. Plant Cell 21:2642–54 [Google Scholar]
  121. Tarutani Y, Shiba H, Iwano M, Kakizaki T, Suzuki G. et al. 2010. Trans-acting small RNA determines dominance relationships in Brassica self-incompatibility. Nature 466:983–86 [Google Scholar]
  122. Tedder A, Carleial S, Gołębiewska M, Kappel C, Shimizu KK, Stift M. 2015a. Evolution of the selfing syndrome in Arabis alpina (Brassicaceae). PLOS ONE 10:e0126618 [Google Scholar]
  123. Tedder A, Helling M, Pannell JR, Shimizu-Inatsugi R, Kawagoe T. et al. 2015b. Female sterility associated with increased clonal propagation suggests a unique combination of androdioecy and asexual reproduction in populations of Cardamine amara (Brassicaceae). Ann. Bot. 115:763–76 [Google Scholar]
  124. Tsuchimatsu T, Kaiser P, Yew CL, Bachelier JB, Shimizu KK. 2012. Recent loss of self-incompatibility by degradation of the male component in allotetraploid Arabidopsis kamchatica. PLOS Genet. 8:e1002838Shows loss of the male SI function in polyploids and compiles male/female SC mutations. [Google Scholar]
  125. Tsuchimatsu T, Shimizu KK. 2013. Effects of pollen availability and the mutation bias on the fixation of mutations disabling the male specificity of self-incompatibility. J. Evol. Biol. 26:2221–32 [Google Scholar]
  126. Tsuchimatsu T, Suwabe K, Shimizu-Inatsugi R, Isokawa S, Pavlidis P. et al. 2010. Evolution of self-compatibility in Arabidopsis by a mutation in the male specificity gene. Nature 464:1342–46Shows a male SC mutation in the SCR gene of A. thaliana by transgenic restoration of SI. [Google Scholar]
  127. Tsukamoto T, Ando T, Kokubun H, Watanabe H, Sato T. et al. 2003. Breakdown of self-incompatibility in a natural population of Petunia axillaris caused by a modifier locus that suppresses the expression of an S-RNase gene. Sex. Plant Reprod. 15:255–63 [Google Scholar]
  128. Uyenoyama MK, Zhang Y, Newbigin E. 2001. On the origin of self-incompatibility haplotypes: transition through self-compatible intermediates. Genetics 157:1805–17 [Google Scholar]
  129. Vekemans X, Poux C, Goubet PM, Castric V. 2014. The evolution of selfing from outcrossing ancestors in Brassicaceae: What have we learned from variation at the S-locus?. J. Evol. Biol. 27:1372–85 [Google Scholar]
  130. Wessinger CA, Rausher MD. 2014. Predictability and irreversibility of genetic changes associated with flower color evolution in Penstemon barbatus. Evolution 68:1058–70 [Google Scholar]
  131. Wheeler MJ, de Graaf BHJ, Hadjiosif N, Perry RM, Poulter NS. et al. 2009. Identification of the pollen self-incompatibility determinant in Papaver rhoeas. Nature 459:992–95 [Google Scholar]
  132. Whitney KD, Baack EJ, Hamrick JL, Godt MJW, Barringer BC. et al. 2010. A role for nonadaptive processes in plant genome size evolution?. Evolution 64:2097–109 [Google Scholar]
  133. Wright SI, Kalisz S, Slotte T. 2013. Evolutionary consequences of self-fertilization in plants. Proc. R. Soc. B 280:20130133 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error