The flora of southern Africa is, for its latitude and area, very species-rich. Although the hyperdiverse Cape flora contributes almost half of this richness, three other radiations (desert, grassland, and woodland) contribute significantly to the botanical wealth of southern Africa. Each radiation occurs in a different ecological setting and has a different diversification history. Such parallel radiations can develop in suitably complex environments, given gradual change through time and no region-wide catastrophes. These four radiations cross-seeded each other, with clades spawning subclades in other radiations, thus linking all four into one complex radiation. This led to an increase in the number of diversifying clades in each radiation. Such complex radiations accumulate diversifying lineages over a long time, spawn daughter radiations on other continents, and become powerhouses of global-biodiversity generation. We suggest that several of the most species-rich regions may harbor such complex radiations.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ackerly DD, Stock WD, Slingsby JA. 2014. Geography, climate, and biodiversity: the history and future of Mediterranean-type ecosystems. See Allsopp et al. 2014 361–75
  2. Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A. et al. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. PNAS 106:13410–14 [Google Scholar]
  3. Allsopp N, Verboom GA, Colville J. 2014. Fynbos: Ecology, Evolution, and Conservation of a Megadiverse Region Oxford, UK: Oxford Univ. Press [Google Scholar]
  4. Antonelli A, Nylander JAA, Persson C, Sanmartin I. 2009. Tracing the impact of the Andean uplift on Neotropical plant evolution. PNAS 106:9749–54 [Google Scholar]
  5. Barrable A, Meadows ME, Hewitson BC. 2002. Environmental reconstruction and climate modelling of the Late Quaternary in the winter rainfall region of the Western Cape, South Africa. S. Afr. J. Sci. 98:611–16 [Google Scholar]
  6. Bellstedt DU, Galley C, Pirie MD, Linder HP. 2012. The migration of the palaeotropical arid flora: Zygophylloideae as an example. Syst. Bot. 37:951–59 [Google Scholar]
  7. Bentley J, Verboom GA, Bergh NG. 2014. Erosive processes after tectonic uplift stimulate vicariant and adaptive speciation: evolution in an Afrotemperate-endemic paper daisy genus. BMC Evol. Biol. 14:27 [Google Scholar]
  8. Bergh NG, Linder HP. 2009. Cape diversification and repeated out-of-southern-Africa dispersal in paper daisies (Asteraceae-Gnaphalieae). Mol. Phylogenetics Evol. 51:5–18 [Google Scholar]
  9. Bergh NG, Verboom GA, Rouget M, Cowling RM. 2014. Vegetation types of the Greater Cape Floristic Region. See Allsopp et al. 2014 1–25
  10. Bierman PR, Coppersmith R, Hanson K, Neveling J, Portenga EW, Rood DH. 2014. A cosmogenic view of erosion, relief generation, and the age of faulting in southern Africa. GSA Today 24:4–11 [Google Scholar]
  11. Bouchenak-Khelladi Y, Maurin O, Hurter J, van der Bank M. 2010. The evolutionary history and biogeography of Mimosoideae (Leguminosae): an emphasis on African acacias. Mol. Phylogenetics Evol. 57:495–508 [Google Scholar]
  12. Britton MN, Hedderson TA, Verboom GA. 2014. Topography as a driver of cryptic speciation in the high-elevation cape sedge Tetraria triangularis (Boeck.) C. B. Clarke (Cyperaceae: Schoeneae). Mol. Phylogenetics Evol. 77:96–109 [Google Scholar]
  13. Carbutt C, Edwards TJ. 2006. The endemic and near-endemic angiosperms of the Drakensberg Alpine Centre. S. Afr. J. Bot. 72:105–32 [Google Scholar]
  14. Chase BM, Meadows ME. 2007. Late Quaternary dynamics of southern Africa's winter rainfall zone. Earth-Sci. Rev. 84:103–38 [Google Scholar]
  15. Coetzee JA. 1983. Intimations on the Tertiary vegetation of southern Africa. Bothalia 14:345–54 [Google Scholar]
  16. Coetzee JA. 1986. Microfloral elements in the Neogene of the southwestern Cape Province and their phytogeographical significance. Palaeoecol. Afr. 17:21–30 [Google Scholar]
  17. Coetzee JA, Praglowski J. 1988. Winteraceae pollen from the Miocene of the southwestern Cape (South Africa). Grana 27:27–37 [Google Scholar]
  18. Coetzee JA, Rogers J. 1982. Palynological and lithological evidence for the Miocene palaeoenvironment in the Saldanha region (South Africa). Palaeogeogr. Palaeoclimatol. Palaeoecol. 39:71–85 [Google Scholar]
  19. Cowling RM, Rundel PW, Desmet PG, Esler KJ. 1998. Extraordinary high regional-scale plant diversity in southern African arid lands: subcontinental and global comparisons. Divers. Distrib. 4:27–36 [Google Scholar]
  20. Cramer MD, West AG, Power SC, Skelton R, Stock WD. 2014. Plant ecophysiological diversity. See Allsopp et al. 2014 248–72
  21. Crisp M, Cook L, Steane D. 2004. Radiation of the Australian flora: What can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities?. Philos. Trans. R. Soc. Lond. B 359:1551–71 [Google Scholar]
  22. Crisp MD, Arroyo MTK, Cook LG, Gandolfo MA, Jordan GJ. et al. 2009. Phylogenetic biome conservatism on a global scale. Nature 458:754–56 [Google Scholar]
  23. Crisp MD, Cook LG. 2013. How was the Australian flora assembled over the last 65 million years? A molecular phylogenetic perspective. Annu. Rev. Ecol. Evol. Syst. 44:303–24 [Google Scholar]
  24. Damschen EI, Harrison S, Ackerly DD, Fernandez-Going BM, Anacker BL. 2012. Endemic plant communities on special soils: early victims or hardy survivors of climate change?. J. Ecol. 100:1122–30 [Google Scholar]
  25. de Villiers SE, Cadman A. 2001. An analysis of the palynomorphs obtained from Tertiary sediments at Koingnaas, Namaqualand, South Africa. J. Afr. Earth Sci. 33:17–47 [Google Scholar]
  26. de Winter B. 1966. Remarks on the distribution of some desert plants in Africa. Palaeoecol. Afr. 1:188–89 [Google Scholar]
  27. Donoghue MJ. 2008. A phylogenetic perspective on the distribution of plant diversity. PNAS 105:11549–55 [Google Scholar]
  28. Dupont LM, Linder HP, Rommerskirchen F, Schefuss E. 2011. Climate-driven rampant speciation of the Cape flora. J. Biogeogr. 38:1059–68 [Google Scholar]
  29. Dupont LM, Rommerskirchen F, Mollenhauer G, Schefuss E. 2013. Miocene to Pliocene changes in South African hydrology and vegetation in relation to the expansion of C4 plants. Earth Planet. Sci. Lett. 375:408–17 [Google Scholar]
  30. Dupont-Nivet G, Krijgsman W, Langereis CG, Abels HA, Dai S, Fang X. 2007. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature 445:635–38 [Google Scholar]
  31. FitzJohn RG. 2010. Quantitative traits and diversification. Syst. Biol. 59:619–33 [Google Scholar]
  32. Forest F, Nänni I, Chase MW, Crane PR, Hawkins JA. 2007. Diversification of a large genus in a continental biodiversity hotspot: temporal and spatial origin of Muraltia (Polygalaceae) in the Cape of South Africa. Mol. Phylogenetics Evol. 43:60–74 [Google Scholar]
  33. Galley C, Bytebier B, Bellstedt DU, Linder HP. 2007. The Cape element in the Afrotemperate flora: from Cape to Cairo?. Proc. R. Soc. Lond. B 274:535–43 [Google Scholar]
  34. Galley C, Linder HP. 2006. Geographical affinities of the Cape flora, South Africa. J. Biogeogr. 33:236–50 [Google Scholar]
  35. Gehrke B, Linder HP. 2009. The scramble for Africa: pan-temperate elements on the African high mountains. Proc. R. Soc. B. 276:2657–65 [Google Scholar]
  36. Givnish TJ, Barfuss MHJ, Van Ee B, Riina R, Schulte K. et al. 2014. Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Mol. Phylogenetics Evol. 71:55–78 [Google Scholar]
  37. Goldblatt P. 1978. An analysis of the flora of southern Africa: its characteristics, relationships, and origins. Ann. Mo. Bot. Garden 65:369–436 [Google Scholar]
  38. Gregory-Wodzicki KM. 2000. Uplift history of the Central and Northern Andes: a review. Geol. Soc. Am. Bull. 112:1091–105 [Google Scholar]
  39. Heenan PB, McGlone MS. 2013. Evolution of New Zealand alpine and open-habitat plant species during the late Cenozoic. N.Z. J. Ecol. 37:105–13 [Google Scholar]
  40. Heywood VH, Davis SD. 1994. Introduction. Centres of Plant Diversity. A Guide and Strategy for Their Conservation SD Davis, VH Heywood 1–38 Gland, Switz.: Int. Union Conserv. Nat. [Google Scholar]
  41. Hoetzel S, Dupont L, Schefuss E, Rommerskirchen F, Wefer G. 2013. The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution. Nat. Geosci. 6:1027–30 [Google Scholar]
  42. Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A. et al. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–31 [Google Scholar]
  43. Hopper SD, Gioia P. 2004. The Southwest Australian Floristic Region: evolution and conservation of a global hot spot of biodiversity. Annu. Rev. Ecol. Evol. Syst. 35:623–50 [Google Scholar]
  44. Hughes C, Eastwood R. 2006. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. PNAS 103:10334–39 [Google Scholar]
  45. Jiménez I, Ricklefs RE. 2014. Diversity anomalies and spatial climate heterogeneity. Glob. Ecol. Biogeogr. 23:988–99 [Google Scholar]
  46. Klak C, Reeves G, Hedderson TA. 2004. Unmatched tempo of evolution in Southern African semi-desert ice plants. Nature 427:63–65 [Google Scholar]
  47. Klopper RR, Gautier L, Chatelain C, Smith GF, Spichiger R. 2007. Floristics of the angiosperm flora of sub-Saharan Africa: an analysis of the African Plant Checklist and Database. Taxon 56:201–8 [Google Scholar]
  48. Kraaij T, Van Wilgen BW. 2014. Drivers, ecology, and management of fire in fynbos. See Allsopp et al. 2014 47–72
  49. Linder HP. 1990. On the relationship between the vegetation and floras of the Afromontane and the Cape regions of Africa. Mitt. Inst. Allg. Bot. Hambg. 23b:777–90 [Google Scholar]
  50. Linder HP. 2003. The radiation of the Cape flora, southern Africa. Biol. Rev. Camb. Philos. Soc. 78:597–638 [Google Scholar]
  51. Linder HP. 2008. Plant species radiations: where, when, why?. Philos. Trans. R. Soc. B 363:3097–105 [Google Scholar]
  52. Linder HP. 2014. The evolution of African plant diversity. Front. Ecol. Evol. 2:38 [Google Scholar]
  53. Linder HP, de Klerk HM, Born J, Burgess ND, Fjeldså J, Rahbek C. 2012. The partitioning of Africa: statistically defined biogeographical regions in sub-Saharan Africa. J. Biogeogr. 39:1189–205 [Google Scholar]
  54. Linder HP, Eldenäs P, Briggs BG. 2003. Contrasting patterns of radiation in African and Australian Restionaceae. Evolution 57:2688–702 [Google Scholar]
  55. Litsios G, Wüest RO, Kostikova A, Forest F, Lexer C. et al. 2014. Effects of a fire response trait on diversification in replicate radiations. Evolution 68:453–65 [Google Scholar]
  56. Maddison WP, Midford PE, Otto SP. 2007. Estimating a binary character's effect on speciation and extinction. Syst. Biol. 56:701–10 [Google Scholar]
  57. Madriñán S, Cortés AJ, Richardson JE. 2013. Páramo is the world's fastest evolving and coolest biodiversity hotspot. Front. Genet. 4:192 [Google Scholar]
  58. Manning J, Goldblatt P. 2012. Plants of the Greater Cape Floristic Region. 1: the core Cape flora. Strelitzia29 Pretoria: S. Afr. Natl. Biodivers. Inst. [Google Scholar]
  59. McCarthy T, Rubidge B. 2005. The Story of Earth and Life: A Southern African Perspective on a 4.6-Billion-Year Journey. Cape Town: Struik [Google Scholar]
  60. Mills SC, Grab SW, Carr SJ. 2009. Recognition and palaeoclimatic implications of late Quaternary niche glaciation in eastern Lesotho. J. Quat. Sci. 24:647–63 [Google Scholar]
  61. Morlon H, Parsons TL, Plotkin JB. 2011. Reconciling molecular phylogenies with the fossil record. PNAS 108:16327–32 [Google Scholar]
  62. Mucina L, Hoare DB, Lötter MC, du Preez PJ, Rutherford MC. et al. 2006a. Grassland Biome. See Mucina & Rutherford 2006 348–436
  63. Mucina L, Juergens N, Le Roux A, Rutherford MC, Schmiedel U. et al. 2006b. Succulent Karoo biome. See Mucina & Rutherford 2006 220–99
  64. Mucina L, Rutherford MC. 2006. The Vegetation of South Africa, Lesotho and Swaziland 19 Pretoria: S. Afr. Natl. Biodivers. Inst. [Google Scholar]
  65. Mummenhoff K, Al-Shehbaz IA, Bakker FT, Linder HP, Mühlhausen A. 2005. Phylogeny, morphological evolution, and speciation of endemic Brassicaceae genera in the Cape flora of Southern Africa. Ann. Mo. Bot. Garden 92:400–24 [Google Scholar]
  66. Muñoz J, Felicisimo AM, Cabezas F, Burgaz AR, Martinez I. 2004. Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304:1144–47 [Google Scholar]
  67. Mutke J, Barthlott W. 2005. Patterns of vascular plant diversity at continental to global scales. Biol. Skr. 55:521–31 [Google Scholar]
  68. Neumann FH, Bamford MK. 2015. Shaping of modern southern African biomes: Neogene vegetation and climate changes. Trans. R. Soc. South. Afr. In press. doi: 10.1080/0035919X.2015.1072859 [Google Scholar]
  69. Nilsson S, Coetzee JH, Grafstrom E. 1996. On the origin of the Sarcolaenaceae with reference to pollen morphological evidence. Grana 35:321–34 [Google Scholar]
  70. Parkington J, Cartwright C, Cowling RM, Baxter A, Meadows M. 2000. Palaeovegetation at the last glacial maximum in the western Cape, South Africa: wood charcoal and pollen evidence from Elands Bay Cave. S. Afr. J. Sci. 96:543–46 [Google Scholar]
  71. Partridge TC. 1998. Of diamonds, dinosaurs and diastrophism: 150 million years of landscape evolution in southern Africa. S. Afr. J. Geol. 101:167–84 [Google Scholar]
  72. Partridge TC, Maud RR. 2000. Macro-scale geomorphic evolution of southern Africa. The Cenozoic of Southern Africa TC Partridge, RR Maud 3–18 Oxford, UK: Oxford Univ. Press [Google Scholar]
  73. Phillips JFV. 1927. Fossil Widdringtonia in lignites of the Knysna series with a note on fossil leaves of several other species. S. Afr. J. Sci. 24:188–97 [Google Scholar]
  74. Pickford M. 2004. Southern Africa: a cradle of evolution. S. Afr. J. Sci. 100:205–14 [Google Scholar]
  75. Pickford M, Senut B, Mocke H, Mourer-Chauvire C, Rage J-C, Mein P. 2014. Eocene aridity in southwestern Africa: timing of onset and biological consequences. Trans. R. Soc. S. Afr. 69:139–44 [Google Scholar]
  76. Potts AJ, Hedderson TA, Cowling RM. 2013a. Testing large-scale conservation corridors designed for patterns and processes: comparative phylogeography of three tree species. Divers. Distrib. 19:1418–28 [Google Scholar]
  77. Potts AJ, Hedderson TA, Vlok JHJ, Cowling RM. 2013b. Pleistocene range dynamics in the eastern Greater Cape Floristic Region: a case study of the Little Karoo endemic Berkheya cuneata (Asteraceae). S. Afr. J. Bot. 88:401–13 [Google Scholar]
  78. Quint M, Classen-Bockhoff R. 2008. Ancient or recent? Insights into the temporal evolution of the Bruniaceae. Org. Divers. Evol. 8:293–304 [Google Scholar]
  79. Rabosky DL. 2014. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLOS ONE 9:e89543 [Google Scholar]
  80. Ronquist F. 1997. Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Syst. Biol. 46:195–203 [Google Scholar]
  81. Saerkinen T, Pennington RT, Lavin M, Simon MF, Hughes CE. 2012. Evolutionary islands in the Andes: Persistence and isolation explain high endemism in Andean dry tropical forests. J. Biogeogr. 39:884–900 [Google Scholar]
  82. Sanmartín I, Wanntorp L, Winkworth RC. 2007. West Wind Drift revisited: testing for directional dispersal in the Southern Hemisphere using event-based tree fitting. J. Biogeogr. 34:398–416 [Google Scholar]
  83. Scharf TE, Codilean AT, de Wit M, Jansen JD, Kubik PW. 2013. Strong rocks sustain ancient postorogenic topography in southern Africa. Geology 41:331–34 [Google Scholar]
  84. Scholtz A. 1985. The palynology of the upper lacustrine sediments of the Arnot Pipe, Banke, Namaqualand. Ann. S. Afr. Mus. 95:1–109 [Google Scholar]
  85. Scott L. 1995. Pollen evidence for vegetational and climatic change in Southern Africa during the Neogene and Quaternary. Paleoclimate and Evolution, with Emphasis on Human Origins ES Vrba, GH Denton, TC Partridge, LH Burckle 65–76 New Haven, CT: Yale Univ. Press [Google Scholar]
  86. Segalen L, Renard M, Lee-Thorp JA, Emmanuel L, Le Callonnec L. et al. 2006. Neogene climate change and emergence of C4 grasses in the Namib, southwestern Africa, as reflected in ratite 13C and 18O. Earth Planet. Sci. Lett. 244:725–34 [Google Scholar]
  87. Senut B, Pickford M, Segalen L. 2009. Neogene desertification of Africa. C. R. Geosci. 341:591–602 [Google Scholar]
  88. Senut B, Segalen L. 2014. Neogene palaeoenvironments of the Namib Desert: a brief synthesis. Trans. R. Soc. S. Afr. 69:205–11 [Google Scholar]
  89. Siesser WG. 1980. Late Miocene origin of the Benguela Upwelling System of northern Namibia. Science 208:283–85 [Google Scholar]
  90. Silvestro D, Zizka G, Schulte K. 2013. Disentangling the effects of key innovations on the diversification of Bromelioideae (Bromeliaceae). Evolution 68:163–75 [Google Scholar]
  91. Snijman DA. 2013. Plants of the Greater Cape Floristic Region. 2: the extra Cape flora. Strelitzia30 Pretoria: S. Afr. Natl. Biodivers. Inst. [Google Scholar]
  92. Thiergart F, Frantz U, Raukopf K. 1963. Palynologische Untersuchungen von Tertiärkohlen und einer oberflächen Probe nähe Knysna, Südafrika. Adv. Front. Plant Sci. 4:151–78 [Google Scholar]
  93. Thiv M, van der Niet T, Rutschmann F, Thulin M, Brune T, Linder HP. 2011. Old–New World and trans-African disjunctions of Thamnosma (Rutaceae): intercontinental long-distance dispersal and local differentiation in the succulent biome. Am. J. Bot. 98:76–87 [Google Scholar]
  94. Thorne RF. 1973. Floristic relationships between tropical Africa and tropical America. Tropical Forest Ecosystems in Africa and South America: A Comparative Review BJ Meggers, AS Ayensu, WD Duckworth 27–47 Washington, DC: Smithsonian Inst. Press [Google Scholar]
  95. Thwaites RN, Jacobs EO. 1987. The Knysna lignites: a review of their position within the geomorphological development of the southern Cape Province, South Africa. S. Afr. J. Geol. 90:137–46 [Google Scholar]
  96. Tinker J, de Wit M, Brown R. 2008a. Linking source and sink: evaluating the balance between onshore erosion and offshore sediment accumulation since Gondwana break-up, South Africa. Tectonophysics 455:94–103 [Google Scholar]
  97. Tinker J, de Wit M, Brown R. 2008b. Mesozoic exhumation of the southern Cape, South Africa, quantified using apatite fission track thermochronology. Tectonophysics 455:77–93 [Google Scholar]
  98. Tyson PD, Partridge TC. 2000. Evolution of Cenozoic climates. The Cenozoic of Southern Africa TC Partridge, RR Maud 371–87 Oxford, UK: Oxford Univ. Press [Google Scholar]
  99. van Wyk AE, Smith GF. 2001. Regions of Floristic Endemism in Southern Africa Hatfield, S. Afr.: Umdaus Press [Google Scholar]
  100. Verboom GA, Archibald JK, Bakker FT, Bellstedt DU, Conrad F. et al. 2009. Origin and diversification of the Greater Cape flora: ancient species repository, hot-bed of recent radiation, or both?. Mol. Phylogenetics Evol. 51:44–53 [Google Scholar]
  101. Verboom GA, Linder HP, Forest F, Hoffmann V, Bergh NG, Cowling RM. 2014. Cenozoic assembly of the Greater Cape flora. See Allsopp et al. 2014 93–114
  102. Wagstaff SJ, Bayly MJ, Garnock-Jones PJ, Albach DC. 2002. Classification, origin, and diversification of the New Zealand Hebes (Scrophulariaceae). Ann. Mo. Bot. Garden 89:38–63 [Google Scholar]
  103. Wen J, Zhang J, Nie Z-L, Zhong Y, Sun H. 2014. Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Front. Genet. 5:4 [Google Scholar]
  104. White F. 1983. The Vegetation of Africa Paris: UNESCO [Google Scholar]
  105. Winkworth RC, Wagstaff SJ, Glenny D, Lockhart PJ. 2002. Plant dispersal N.E.W.S. from New Zealand. Trends Ecol. Evol. 17:514–20 [Google Scholar]
  106. Winkworth RC, Wagstaff SJ, Glenny D, Lockhart PJ. 2005. Evolution of the New Zealand mountain flora: origins, diversification and dispersal. Org. Divers. Evol. 5:237–47 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error