1932

Abstract

Ecologists and evolutionary biologists are increasingly using big-data approaches to tackle questions at large spatial, taxonomic, and temporal scales. However, despite recent efforts to gather two centuries of biodiversity inventories into comprehensive databases, many crucial research questions remain unanswered. Here, we update the concept of knowledge shortfalls and review the tradeoffs between generality and uncertainty. We present seven key shortfalls of current biodiversity data. Four previously proposed shortfalls pinpoint knowledge gaps for species taxonomy (Linnean), distribution (Wallacean), abundance (Prestonian), and evolutionary patterns (Darwinian). We also redefine the Hutchinsonian shortfall to apply to the abiotic tolerances of species and propose new shortfalls relating to limited knowledge of species traits (Raunkiæran) and biotic interactions (Eltonian). We conclude with a general framework for the combined impacts and consequences of shortfalls of large-scale biodiversity knowledge for evolutionary and ecological research and consider ways of overcoming the seven shortfalls and dealing with the uncertainty they generate.

[Erratum, Closure]

An erratum has been published for this article:
Seven Shortfalls that Beset Large-Scale Knowledge of Biodiversity
Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-112414-054400
2015-12-04
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/46/1/annurev-ecolsys-112414-054400.html?itemId=/content/journals/10.1146/annurev-ecolsys-112414-054400&mimeType=html&fmt=ahah

Literature Cited

  1. Adler PB, Salguero-Gómez R, Compagnoni A, Hsu JS, Ray-Mukherjee J. et al. 2014. Functional traits explain variation in plant life history strategies. PNAS 111:740–45 [Google Scholar]
  2. Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S. 2010. A multi-trait approach reveals the structure and the relative importance of intra versus interspecific variability in plant traits. Funct. Ecol. 24:1192–201 [Google Scholar]
  3. Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A. et al. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. PNAS 106:13410–14 [Google Scholar]
  4. Antonelli A, Condamine FL, Hettling H, Nilsson K, Nilsson RH. et al. 2014. SUPERSMART: ecology and evolution in the era of big data. PeerJ PrePrints 2:e501v1 [Google Scholar]
  5. Baselga A, Lobo JM, Hortal J, Jiménez-Valverde A, Gómez JF. 2010. Assessing α and β taxonomy in Eupelmid wasps: determinants of the probability of describing good species and synonyms. J. Zool. Syst. Evol. Res. 48:40–49 [Google Scholar]
  6. Beale CM, Lennon JJ. 2012. Incorporating uncertainty in predictive species distribution modelling. Philos. Trans. R. Soc. B 367:247–58 [Google Scholar]
  7. Beck J, Ballesteros-Mejia L, Buchmann CM, Dengler J, Fritz SA. et al. 2012. What's on the horizon for macroecology?. Ecography 35:673–83 [Google Scholar]
  8. Beck J, Kitching IJ. 2007. Estimating regional species richness of tropical insects from museum data: a comparison of a geography-based and sample-based methods. J. Appl. Ecol. 44:672–81 [Google Scholar]
  9. Bini LM, Diniz-Filho JAF, Rangel TFLVB, Bastos RP, Pinto MP. 2006. Challenging Wallacean and Linnean shortfalls: knowledge gradients and conservation planning in a biodiversity hotspot. Divers. Distrib. 12:475–82 [Google Scholar]
  10. Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD. et al. 2007. The delayed rise of present-day mammals. Nature 446:507–12 [Google Scholar]
  11. Blomberg SP, Garland T, Ives AR. 2003. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57:717–45 [Google Scholar]
  12. Blüthgen N, Fründ J, Vázquez DP, Menzel F. 2008. What do interaction network metrics tell us about specialization and biological traits. Ecology 89:3387–99 [Google Scholar]
  13. Boakes EH, McGowan PJK, Fuller RA, Chang-qing D, Clark NE. et al. 2010. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLOS Biol. 8:e1000385 [Google Scholar]
  14. Boggs SW. 1949. An atlas of ignorance: a needed stimulus to honest thinking and hard work. Proc. Am. Philos. Soc. 93:253–58 [Google Scholar]
  15. Boorstin DJ. 1983. The Discoverers: A History of Man's Search to Know His World and Himself Los Angeles: The Publ. Mills [Google Scholar]
  16. Boyce MS. 2006. Scale for resource selection functions. Divers. Distrib. 12:269–76 [Google Scholar]
  17. Bozinovic F, Calosi P, Spicer JI. 2011. Physiological correlates of geographic range in animals. Annu. Rev. Ecol. Evol. Syst. 42:155–79 [Google Scholar]
  18. Brown JH. 1984. On the relationship between abundance and distribution of species. Am. Nat. 124:255–79 [Google Scholar]
  19. Brown JH, Lomolino MV. 1998. Biogeography. Sunderland, MA: Sinauer, 2nd ed.. [Google Scholar]
  20. Bush MB, Lovejoy TE. 2007. Amazonian conservation: pushing the limits of biogeographical knowledge. J. Biogeogr. 34:1291–93 [Google Scholar]
  21. Cadotte M, Albert CH, Walker SC. 2013. The ecology of differences: assessing community assembly with trait and evolutionary distances. Ecol. Lett. 16:1234–44 [Google Scholar]
  22. Cadotte MW, Dinnage R, Tilman D. 2012. Phylogenetic diversity promotes ecosystem stability. Ecology 93:S223–33 [Google Scholar]
  23. Caley MJ, Fisher R, Mengersen K. 2014. Global species richness estimates have not converged. Trends Ecol. Evol. 29:187–88 [Google Scholar]
  24. Cardoso P, Erwin TL, Borges PA, New TR. 2011. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144:2647–55 [Google Scholar]
  25. Caut S, Angulo E, Courchamp F. 2009. Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. J. Appl. Ecol. 46:443–53 [Google Scholar]
  26. Celep F, Atalay Z, Dikmen F, Doğan M, Classen-Bockhoff R. 2014. Flies as pollinators of melittophilous Salvia species (Lamiaceae). Am. J. Bot. 101:2148–59 [Google Scholar]
  27. Chacoff NP, Vázquez D, Lomáscolo S, Stevani E, Dorado J, Padrón B. 2012. Evaluating sampling completeness in a desert plant-pollinator network. J. Anim. Ecol. 81:190–200 [Google Scholar]
  28. Chapman AD. 2009. Numbers of Living Species in Australia and the World Canberra, Aust: Aust. Biol. Resour. Study., 2nd ed.. [Google Scholar]
  29. Clark JS. 2005. Why environmental scientists are becoming Bayesians. Ecol. Lett. 8:2–14 [Google Scholar]
  30. Clark JS, Bjørnstad ON. 2004. Population time series: process variability, observation errors, missing values, lags, and hidden states. Ecology 85:3140–50 [Google Scholar]
  31. Colwell RK, Rangel TF. 2009. Hutchinson's duality: the once and future niche. PNAS 106:19651–58 [Google Scholar]
  32. Cordlandwehr V, Meredith RL, Ozinga WA, Bekker RM, van Groenendael JM, Bakker JP. 2013. Do plant traits retrieved from a database accurately predict on-site measurements?. J. Ecol. 101:662–70 [Google Scholar]
  33. Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N. et al. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51:335–80 [Google Scholar]
  34. Costello MJ, May RM, Stork NE. 2013. Can we name Earth's species before they go extinct?. Science 339:413–16 [Google Scholar]
  35. Costello MJ, Wilson S, Houlding B. 2012. Predicting total global species richness using rates of species description and estimates of taxonomic effort. Syst. Biol. 61:871–83 [Google Scholar]
  36. Dayrat B. 2005. Towards integrative taxonomy. Biol. J. Linn. Soc. 85:407–15 [Google Scholar]
  37. de Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen JC. et al. 2010. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers. Conserv. 19:2873–93 [Google Scholar]
  38. Deans AR, Lewis SE, Huala E, Anzaldo SS, Ashburner M. et al. 2015. Finding our way through phenotypes. PLOS Biol. 13:e1002033 [Google Scholar]
  39. Dennis R, Thomas C. 2000. Bias in butterfly distribution maps: the influence of hot spots and recorder's home range. J. Insect Conserv. 4:73–77 [Google Scholar]
  40. Diamond SE, Nichols LM, McCoy N, Hirsch C, Pelini SL. et al. 2012. A physiological trait-based approach to predicting the responses of species to experimental climate warming. Ecology 93:2305–12 [Google Scholar]
  41. Díaz S, Cabido M. 2001. Vive la differénce: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16:646–55 [Google Scholar]
  42. Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson TM. 2007. Incorporating plant functional diversity effects in ecosystem service assessments. PNAS 104:20684–89 [Google Scholar]
  43. Díaz S, Purvis A, Cornelissen JHC, Mace GM, Donoghue MJ. et al. 2013. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 3:2958–75 [Google Scholar]
  44. Diniz-Filho JAF, Bastos RP, Rangel TFLVB, Bini LM, Carvalho P, Silva RJ. 2005. Macroecological correlates and spatial patterns of anuran description dates in the Brazilian Cerrado. Glob. Ecol. Biogeogr. 14:469–77 [Google Scholar]
  45. Diniz-Filho JAF, Bini LM, Hawkins BA. 2003. Spatial autocorrelation and red herrings in geographical ecology. Glob. Ecol. Biogeogr. 12:53–64 [Google Scholar]
  46. Diniz-Filho JAF, Loyola RD, Raia P, Mooers AO, Bini LM. 2013. Darwinian shortfalls in biodiversity conservation. Trends Ecol. Evol. 28:689–95 [Google Scholar]
  47. Dornburg A, Beaulieu JM, Oliver JC, Near TJ. 2011. Integrating fossil preservation biases in the selection of calibrations for molecular divergence time estimation. Syst. Biol. 60:519–27 [Google Scholar]
  48. Drummond AJ, Rambaut A, Shapiro B, Pybus OG. 2005. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22:1185–92 [Google Scholar]
  49. Dunne J, Williams R, Martinez N. 2004. Network structure and robustness of marine food webs. Mar. Ecol. Prog. Ser. 273:291–302 [Google Scholar]
  50. Dunning JB, Stewart DJ, Danielson BJ, Noon BR, Root TL. et al. 1995. Spatially explicit population models: current forms and future uses. Ecol. Appl. 5:3–11 [Google Scholar]
  51. Eastman JM, Alfaro ME, Joyce P, Hipp AL, Harmon LJ. 2011. A novel comparative method for identifying shifts in the rate of character evolution on trees. Evolution 65:3578–89 [Google Scholar]
  52. Elith J, Leathwick J. 2007. Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Divers. Distrib. 13:265–75 [Google Scholar]
  53. Ellwood MDF, Foster WA. 2004. Doubling the estimate of invertebrate biomass in a rainforest canopy. Nature 429:549–51 [Google Scholar]
  54. Faith D, Collen B, Ariño A, Koleff P, Guinotte J. et al. 2013. Bridging the biodiversity data gaps: recommendations to meet users' data needs. Biodivers. Inform. 8:4126 [Google Scholar]
  55. Felsenstein J. 1985. Phylogenies and the comparative method. Am. Nat. 125:1–15 [Google Scholar]
  56. Firestein S. 2012. Ignorance: How it Drives Science. Oxford, UK: Oxford Univ. Press [Google Scholar]
  57. FitzJohn RG, Maddison WP, Otto SP. 2009. Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst. Biol. 58:595–611 [Google Scholar]
  58. Freckleton RP, Harvey PH, Pagel M. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160:712–26 [Google Scholar]
  59. Garcillán PP, Ezcurra E. 2011. Sampling procedures and species estimation: testing the effectiveness of herbarium data against vegetation sampling in an oceanic island. J. Veg. Sci. 22:273–80 [Google Scholar]
  60. Gaston KJ. 2003. The Structure and Dynamics of Geographic Ranges Oxford, UK: Oxford Univ. Press [Google Scholar]
  61. Gaston KJ, Blackburn TM. 1994. Are newly described bird species small-bodied?. Biodivers. Lett. 2:16–20 [Google Scholar]
  62. Gaston KJ, Rodrigues. 2003. Reserve selection in regions with poor biological data. Conserv. Biol. 17:188–95 [Google Scholar]
  63. Gibb H, Parr CL. 2013. Does structural complexity determine the morphology of assemblages? An experimental test on three continents. PLOS ONE 8:e64005 [Google Scholar]
  64. Gleason HA. 1926. The individualistic concept of the plant association. Bull. Torrey Bot. Club 53:7–26 [Google Scholar]
  65. González-Varo JP, Arroyo JM, Jordano P. 2014. Who dispersed the seeds? The use of DNA barcoding in frugivory and seed dispersal studies. Methods Ecol. Evol. 5:806–14 [Google Scholar]
  66. Gouveia SF, Hortal J, Tejedo M, Duarte H, Cassemiro FAS. et al. 2014. Climatic niche at physiological and macroecological scales: the thermal tolerance–geographical range interface and niche dimensionality. Glob. Ecol. Biogeogr. 23:446–56 [Google Scholar]
  67. Hall BG. 2011. Phylogenetic Trees Made Easy: A How-to Manual Sunderland, MA: Sinauer, 4th ed.. [Google Scholar]
  68. Hansen TF, Martins EP. 1996. Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data. Evolution 50:1404–17 [Google Scholar]
  69. Hartley S, Kunin WE. 2003. Scale dependency of rarity, extinction risk, and conservation priority. Conserv. Biol. 17:1559–70 [Google Scholar]
  70. Hebert PDN, Gregory TR. 2005. The promise of DNA barcoding for taxonomy. Syst. Biol. 54:852–59 [Google Scholar]
  71. Hopkins GW, Freckleton RP. 2002. Declines in the numbers of amateur and professional taxonomists: implications for conservation. Anim. Conserv. 5:245–49 [Google Scholar]
  72. Hopkins MJG. 2007. Modelling the known and unknown plant biodiversity of the Amazon Basin. J. Biogeogr. 34:1400–11 [Google Scholar]
  73. Hortal J, Jiménez-Valverde A, Gómez JF, Lobo JM, Baselga A. 2008. Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos 117:847–58 [Google Scholar]
  74. Hortal J, Lobo JM. 2005. An ED-based protocol for optimal sampling of biodiversity. Biodivers. Conserv. 14:2913–47 [Google Scholar]
  75. Hortal J, Lobo JM, Jimenez-Valverde A. 2007. Limitations of biodiversity databases: case study on seed-plant diversity in Tenerife, Canary Islands. Conserv. Biol. 21:853–63 [Google Scholar]
  76. Huisman JM, Millar AJK. 2013. Australian seaweed collections: use and misuse. Phycologia 52:2–5 [Google Scholar]
  77. Hutchinson GE. 1978. An Introduction to Population Biology New Haven, CT: Yale Univ. Press [Google Scholar]
  78. Inchausti P, Halley J. 2001. Investigating long-term ecological variability using the Global Population Dynamics Database. Science 293:655–57 [Google Scholar]
  79. Ings TC, Montoya JM, Bascompte J, Blüthgen N, Brown L. et al. 2009. Ecological networks—beyond food webs. J. Anim. Ecol. 78:253–69 [Google Scholar]
  80. IUCN (Int. Union Conserv. Nat.) 2011. IUCN Red List of Threatened Species Gland, Switz: IUCN [Google Scholar]
  81. Jackson ST. 2012. Representation of flora and vegetation in Quaternary fossil assemblages: known and unknown knowns and unknowns. Quaternary Sci. Rev. 49:1–15 [Google Scholar]
  82. Jetz W, McPherson JM, Guralnick RP. 2012a. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27:151–59 [Google Scholar]
  83. Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. 2012b. The global diversity of birds in space and time. Nature 491:444–48 [Google Scholar]
  84. Johansen B. 2007. Get There Early Oakland, CA: Berrett-Koehler [Google Scholar]
  85. Jorge LR, Prado PI, Almeida-Neto M, Lewinsohn TM. 2014. An integrated framework to improve the concept of resource specialisation. Ecol. Lett. 17:1341–50 [Google Scholar]
  86. Kadmon R, Farber O, Danin A. 2004. Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecol. Appl. 14:401–13 [Google Scholar]
  87. Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P. et al. 2011a. TRY—a global database of plant traits. Glob. Chang. Biol. 17:2905–35 [Google Scholar]
  88. Kattge J, Ogle K, Bönisch G, Díaz S, Lavorel S. et al. 2011b. A generic structure for plant trait databases. Methods Ecol. Evol. 2:202–13 [Google Scholar]
  89. Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN. et al. 2001. The strength of phenotypic selection in natural populations. Am. Nat. 157:245–61 [Google Scholar]
  90. Knape J, de Valpine P. 2012. Are patterns of density dependence in the Global Population Dynamics Database driven by uncertainty about population abundance?. Ecol. Lett. 15:17–23 [Google Scholar]
  91. Kress WJ, García-Robledo C, Uriarte M, Erickson DL. 2015. DNA barcodes for ecology, evolution, and conservation. Trends Ecol. Evol. 30:25–35 [Google Scholar]
  92. Ladle R, Hortal J. 2013. Mapping species distributions: living with uncertainty. Front. Biogeogr. 5:8–9 [Google Scholar]
  93. Lambers H, Chapin FS III, Pons TL. 2008. Plant Physiological Ecology New York: Springer-Verlag, 2nd ed.. [Google Scholar]
  94. Laughlin DC. 2014. The intrinsic dimensionality of plant traits and its relevance to community assembly. J. Ecol. 102:186–93 [Google Scholar]
  95. Laughlin DC, Laughlin DE. 2013. Advances in modeling trait-based plant community assembly. Trends Plant Sci. 18:584–93 [Google Scholar]
  96. Layman CA, Araujo MS, Boucek R, Hammerschlag-Peyer CM, Harrison E. et al. 2012. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev. 87:545–62 [Google Scholar]
  97. Lewinsohn TM, Inácio Prado P, Jordano P, Bascompte J, M Olesen J. 2006. Structure in plant-animal interaction assemblages. Oikos 113:174–84 [Google Scholar]
  98. Löbl I, Leschen RAB. 2014. Misinterpreting global species numbers: examples from Coleoptera. Syst. Entomol. 39:2–6 [Google Scholar]
  99. Lobo JM. 2001. Decline of roller dung beetle (Scarabaeinae) populations in the Iberian peninsula during the 20th century. Biol. Conserv. 97:43–50 [Google Scholar]
  100. Lobo JM, Baselga A, Hortal J, Jiménez-Valverde A, Gómez JF. 2007. How does the knowledge about the spatial distribution of Iberian dung beetle species accumulate over time?. Divers. Distrib. 13:772–80 [Google Scholar]
  101. Logan ML, Cox RM, Calsbeek R. 2014. Natural selection on thermal performance in a novel thermal environment. PNAS 111:14165–69 [Google Scholar]
  102. Loiselle BA, Jorgensen PM, Consiglio T, Jimenez I, Blake JG. et al. 2008. Predicting species distributions from herbarium collections: Does climate bias in collection sampling influence model outcomes?. J. Biogeogr. 35:105–16 [Google Scholar]
  103. Lomolino MV. 2004. Conservation biogeography. Frontiers of Biogeography: New Directions in the Geography of Nature MV Lomolino, LR Heaney 293–96 Sunderland, MA: Sinauer [Google Scholar]
  104. Losos JB. 2011. Seeing the forest for the trees: the limitations of phylogenies in comparative biology. Am. Nat. 177:709–27 [Google Scholar]
  105. Lozier JD, Aniello P, Hickerson MJ. 2009. Predicting the distribution of Sasquatch in western North America: anything goes with ecological niche modelling. J. Biogeogr. 36:1623–27 [Google Scholar]
  106. Lukoschek V, Scott Keogh J, Avise JC. 2012. Evaluating fossil calibrations for dating phylogenies in light of rates of molecular evolution: a comparison of three approaches. Syst. Biol. 61:22–43 [Google Scholar]
  107. Mace GM. 2004. The role of taxonomy in species conservation. Philos. Trans. R. Soc. B 359:711–19 [Google Scholar]
  108. Mace GM, Gittleman JL, Purvis A. 2003. Preserving the tree of life. Science 300:1707–9 [Google Scholar]
  109. MacNally R, Fleishman E, Bulluck LP, Betrus CJ. 2004. Comparative influence of spatial scale on β diversity within regional assemblages of birds and butterflies. J. Biogeogr. 31:917–29 [Google Scholar]
  110. Marrero P, Fregel R, Cabrera VM, Nogales M. 2009. Extraction of high-quality host DNA from feces and regurgitated seeds: a useful tool for vertebrate ecological studies. Biol. Res. 42:147–51 [Google Scholar]
  111. Martinez ND. 1993. Effects of resolution on food web structure. Oikos 66:403–12 [Google Scholar]
  112. May RM. 2010. Tropical arthropod species, more or less?. Science 329:41–42 [Google Scholar]
  113. McCann S, Greenlees MJ, Newell D, Shine R. 2014. Rapid acclimation to cold allows the cane toad to invade montane areas within its Australian range. Funct. Ecol. 28:1166–74 [Google Scholar]
  114. McCarthy MA, Franklin DC, Burgman MA. 1994. The importance of demographic uncertainty: an example from the helmeted honeyeater Lichenostomus melanops cassidix. Biol. Conserv. 67:135–42 [Google Scholar]
  115. McGill BJ, Enquist BJ, Weiher E, Westoby M. 2006. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21:178–85 [Google Scholar]
  116. McInerny GJ, Chen M, Freeman R, Gavaghan D, Meyer M. et al. 2014. Information visualisation for science and policy: engaging users and avoiding bias. Trends Ecol. Evol. 29:148–57 [Google Scholar]
  117. McInerny GJ, Purves DW. 2011. Fine-scale environmental variation in species distribution modelling: regression dilution, latent variables and neighbourly advice. Methods Ecol. Evol. 2:248–57 [Google Scholar]
  118. McLachlan AJ, Ladle RJ. 2011. Barriers to adaptive reasoning in community ecology. Biol. Rev. 86:543–48 [Google Scholar]
  119. McPherson JM, Jetz W. 2007. Type and spatial structure of distribution data and the perceived determinants of geographical gradients in ecology: the species richness of African birds. Glob. Ecol. Biogeogr. 16:657–67 [Google Scholar]
  120. Meyer C, Kreft H, Guralnick R, Jetz W. 2015. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6:82221 [Google Scholar]
  121. Michener WK. 2000. Metadata. Ecological Data: Design, Management and Processing WK Michener, J Brunt 92–116 London: Wiley-Blackwell [Google Scholar]
  122. Mora C, Tittensor DP, Adl S, Simpson AG, Worm B. 2011. How many species are there on Earth and in the ocean?. PLOS Biol. 9:e1001127 [Google Scholar]
  123. Morlon H. 2014. Phylogenetic approaches for studying diversification. Ecol. Lett. 17:508–25 [Google Scholar]
  124. Nee S, May RM. 1997. Extinction and the loss of evolutionary history. Science 278:692–94 [Google Scholar]
  125. Nee S, May RM, Harvey PH. 1994. The reconstructed evolutionary process. Philos. Trans. R. Soc. Lond. B 344:305–11 [Google Scholar]
  126. Nelson BW, Ferreira CAC, da Silva MF, Kawasaki ML. 1990. Endemism centres, refugia and botanical collection density in Brazilian Amazonia. Nature 345:714–16 [Google Scholar]
  127. Novotny V, Miller SE, Baje L, Balagawi S, Basset Y. et al. 2010. Guild-specific patterns of species richness and host specialization in plant-herbivore food webs from a tropical forest. J. Anim. Ecol. 79:1193–203 [Google Scholar]
  128. Ødegaard F. 2004. Species richness of phytophagous beetles in the tropical tree Brosimum utile (Moraceae): the effects of sampling strategy and the problem of tourists. Ecol. Entomol. 29:76–88 [Google Scholar]
  129. Pauly D, Palomares M-L. 2005. Fishing down marine food web: It is far more pervasive than we thought. Bull. Mar. Sci. 76:197–212 [Google Scholar]
  130. Pavoine S, Gasc A, Bonsall MB, Mason NWH. 2013. Correlations between phylogenetic and functional diversity: mathematical artefacts or true ecological and evolutionary processes?. J. Veg. Sci. 24:781–93 [Google Scholar]
  131. Pelayo-Villamil P, Guisande C, Vari RP, Manjarrés-Hernández A, García-Roselló E. et al. 2015. Global diversity patterns of freshwater fishes—potential victims of their own success. Divers. Distrib. 21:345–56 [Google Scholar]
  132. Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E. et al. 2011. Ecological Niches and Geographic Distributions Princeton, NJ: Princeton Univ. Press [Google Scholar]
  133. Petrou ZI, Kosmidou V, Manakos I, Stathaki T, Adamo M. et al. 2014. A rule-based classification methodology to handle uncertainty in habitat mapping employing evidential reasoning and fuzzy logic. Pattern Recognit. Lett. 48:24–33 [Google Scholar]
  134. Pimm SL, Lawton JH, Cohen JE. 1991. Food web patterns and their consequences. Nature 350:669–74 [Google Scholar]
  135. Pineda E, Lobo JM. 2012. The performance of range maps and species distribution models representing the geographic variation of species richness at different resolutions. Glob. Ecol. Biogeogr. 21:935–44 [Google Scholar]
  136. Pinzón-Navarro S, Jurado-Rivera JA, Gomez-Zurita J, Lyal CHC, Vogler AP. 2010. DNA profiling of host-herbivore interactions in tropical forests. Syst. Entomol. 35:18–32 [Google Scholar]
  137. Poelen JH, Simons JD, Mungall CJ. 2014. Global biotic interactions: an open infrastructure to share and analyze species-interaction datasets. Ecol. Inform. 24:148–59 [Google Scholar]
  138. Poff NL, Olden JD, Vieira NKM, Finn DS, Simmons MP, Kondratieff BC. 2006. Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. J. N. Am. Benthol. Soc. 25:730–55 [Google Scholar]
  139. Poorter L, Wright SJ, Paz H, Ackerly D, Condit R. et al. 2008. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89:1908–20 [Google Scholar]
  140. Post DM. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–18 [Google Scholar]
  141. Poulin B, Wright SJ, Lefebvre G, Calderon O. 1999. Interspecific synchrony and asynchrony in the fruiting phenologies of congeneric bird-dispersed plants in Panama. J. Trop. Ecol. 15:213–27 [Google Scholar]
  142. Poulin R. 2010. Network analysis shining light on parasite ecology and diversity. Trends Parasitol. 26:492–98 [Google Scholar]
  143. Prance GT. 1974. Phytogeographic support for the theory of Pleistocene forest refuges in the Amazon basin, based on evidence from distribution patterns in Caryocaraceae, Chrysobalanaceae, Dichapetalaceae and Lecythidaceae. Acta Amazonica 3:5–28 [Google Scholar]
  144. Prasad S, Pittet A, Sukumar R. 2010. Who really ate the fruit? A novel approach to camera trapping for quantifying frugivory by ruminants. Ecol. Res. 25:225–31 [Google Scholar]
  145. Pybus OG, Rambaut A, Harvey PH. 2000. An integrated framework for the inference of viral population history from reconstructed genealogies. Genetics 155:1429–37 [Google Scholar]
  146. Pyron RA, Wiens JJ. 2011. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Phylogenet. Evol. 61:543–83 [Google Scholar]
  147. Raffaelli D, Hall SJ. 1992. Compartments and predation in an estuarine food web. J. Anim. Ecol. 61:551–60 [Google Scholar]
  148. Raxworthy CJ, Martínez-Meyer E, Horning N, Nussbaum RA, Schneider GE. et al. 2003. Predicting distributions of known and unknown reptile species in Madagascar. Nature 426:837–41 [Google Scholar]
  149. Reed DH, O'Grady JJ, Brook BW, Ballou JD, Frankham R. 2003. Estimates of minimum viable population sizes for vertebrates and factors influencing those estimates. Biol. Conserv. 113:23–34 [Google Scholar]
  150. Rex MA, Etter RJ. 2010. Deep-Sea Biodiversity: Pattern and Scale Cambridge, MA: Harvard Univ. Press [Google Scholar]
  151. Rich TCG. 2006. Floristic changes in vascular plants in the British Isles: geographical and temporal variation in botanical activity 1836–1988. Bot. J. Linn. Soc. 152:303–30 [Google Scholar]
  152. Ricklefs RE. 2012. Species richness and morphological diversity of passerine birds. PNAS 109:14482–87 [Google Scholar]
  153. Riddle BR, Ladle RJ, Lourie SA, Whittaker RJ. 2011. Basic biogeography: estimating biodiversity and mapping nature. Conservation Biogeography RJ Ladle, RJ Whittaker 45–92 Oxford, UK: Wiley [Google Scholar]
  154. Rocchini D, Hortal J, Lengyel S, Lobo JM, Jimenez-Valverde A. et al. 2011. Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Prog. Phys. Geogr. 35:211–26 [Google Scholar]
  155. Rodrigues ASL, Andelman SJ, Bakarr MI, Boitani L, Brooks TM. et al. 2004. Effectiveness of the global protected area network in representing species diversity. Nature 428:640–43 [Google Scholar]
  156. Rodrigues ASL, Gray CL, Crowter BJ, Ewers RM, Stuart SN. et al. 2010. A global assessment of amphibian taxonomic effort and expertise. Bioscience 60:798–806 [Google Scholar]
  157. Rosen R. 1996. On the limitations of scientific knowledge. Boundaries and Barriers: On the Limits to Scientific Knowledge JL Casti, A Karlqvist 199–214 Reading, MA: Perseus [Google Scholar]
  158. Roskov Y, Abucay L, Orrell T, Nicolson D, Kunze T. et al. 2015. Species 2000 & ITIS Catalogue of Life: 2015 Annual Checklist Leiden, Neth: Catalogue of Life http://www.catalogueoflife.org/annual-checklist/2015 [Google Scholar]
  159. Rovero F, Martin E, Rosa M, Ahumada JA, Spitale D. 2014. Estimating species richness and modelling habitat preferences of tropical forest mammals from camera trap data. PLOS ONE 9:e103300 [Google Scholar]
  160. Roy K, Foote M. 1997. Morphological approaches to measuring biodiversity. Trends Ecol. Evol. 12:277–81 [Google Scholar]
  161. Sánchez-Fernández D, Aragón P, Bilton DT, Lobo JM. 2012. Assessing the congruence of thermal niche estimations derived from distribution and physiological data. A test using diving beetles. PLOS ONE 7:e48163 [Google Scholar]
  162. Sansom RS, Randle E, Donoghue PC. 2015. Discriminating signal from noise in the fossil record of early vertebrates reveals cryptic evolutionary history. Proc. R. Soc. B 282:20142245 [Google Scholar]
  163. Sastre P, Lobo JM. 2009. Taxonomist survey biases and the unveiling of biodiversity patterns. Biol. Conserv. 142:462–67 [Google Scholar]
  164. Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K. 2009. Is there a latitudinal gradient in the importance of biotic interactions?. Annu. Rev. Ecol. Evol. Syst. 40:245–69 [Google Scholar]
  165. Sechrest W, Brooks TM, da Fonseca GAB, Konstant WR, Mittermeier RA. et al. 2002. Hotspots and the conservation of evolutionary history. PNAS 99:2067–71 [Google Scholar]
  166. Slater GJ, Harmon LJ. 2013. Unifying fossils and phylogenies for comparative analyses of diversification and trait evolution. Methods Ecol. Evol. 4:699–702 [Google Scholar]
  167. Slatyer RA, Hirst M, Sexton JP. 2013. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16:1104–14 [Google Scholar]
  168. Soberón J. 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10:1115–23 [ Erratum] [Google Scholar]
  169. Soria-Auza RW, Kessler M. 2008. The influence of sampling intensity on the perception of the spatial distribution of tropical diversity and endemism: a case study of ferns from Bolivia. Divers. Distrib. 14:123–30 [Google Scholar]
  170. Sutherst R. 2014. Pest species distribution modelling: origins and lessons from history. Biol. Invasions 16:239–56 [Google Scholar]
  171. Swenson NG, Enquist BJ. 2009. Opposing assembly mechanisms in a Neotropical dry forest: implications for phylogenetic and functional community ecology. Ecology 90:2161–70 [Google Scholar]
  172. Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E. 2012. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21:2045–50 [Google Scholar]
  173. Thompson JN. 1997. Conserving interaction biodiversity. The Ecological Basis of Conservation: Heterogeneity, Ecosystems, and Biodiversity STA Pickett, RS Ostfeld, M Shachak, GE Likens 285–93 New York: Chapman & Hall [Google Scholar]
  174. Thompson PL, Davies TJ, Gonzalez A. 2015. Ecosystem functions across trophic levels are linked to functional and phylogenetic diversity. PLOS ONE 10:e0117595 [Google Scholar]
  175. Thomson JR, MacNally R, Fleishman E, Horrocks G. 2007. Predicting bird species distributions in reconstructed landscapes. Conserv. Biol. 21:752–66 [Google Scholar]
  176. Traugott M, Kamenova S, Ruess L, Seeber J, Plantegenest M. 2013. Empirically characterising trophic networks: what emerging DNA-based methods, stable isotope and fatty acid analyses can offer. Adv. Ecol. Res. 49:177–224 [Google Scholar]
  177. Valiente-Banuet A, Aizen MA, Alcántara JM, Arroyo J, Cocucci A. et al. 2014. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29:299–307 [Google Scholar]
  178. Verdú JR, Alba-Tercedor J, Jiménez-Manrique M. 2012. Evidence of different thermoregulatory mechanisms between two sympatric Scarabaeus species using infrared thermography and micro-computer tomography. PLOS ONE 7:e33914 [Google Scholar]
  179. Villeger S, Miranda JR, Hernández DF, Mouillot D. 2010. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol. Appl. 20:1512–22 [Google Scholar]
  180. Violle C, Navas ML, Vile D, Kazakou E, Fortunel C. et al. 2007. Let the concept of trait be functional!. Oikos 116:882–92 [Google Scholar]
  181. Walther BA, Moore JL. 2005. The definitions of bias, precision, and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28:815–29 [Google Scholar]
  182. Warren DL, Cardillo M, Rosauer DF, Bolnick DI. 2014. Mistaking geography for biology: inferring processes from species distributions. Trends Ecol. Evol. 29:572–80 [Google Scholar]
  183. Whittaker RJ, Araújo MB, Jepson P, Ladle RJ, Watson JEM, Willis KJ. 2005. Conservation biogeography: assessment and prospect. Divers. Distrib. 11:3–23 [Google Scholar]
  184. Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J. et al. 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol. Rev. 88:15–30 [Google Scholar]
  185. Wolfe DA, Champ MA, Flemer DA, Mearns AJ. 1987. Long-term biological data sets: their role in research, monitoring, and management of estuarine and coastal marine systems. Estuaries 10:181–93 [Google Scholar]
  186. Yahara T, Donoghue M, Zardoya R, Faith DP, Cracraft J. 2010. Genetic diversity assessments in the century of genome science. Curr. Opin. Environ. Sustain. 2:43–49 [Google Scholar]
  187. Yodzis P. 1988. The indeterminacy of ecological interactions as perceived through perturbation experiments. Ecology 69:508–15 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-112414-054400
Loading
/content/journals/10.1146/annurev-ecolsys-112414-054400
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error