Alien herpetofauna have a broad diversity of ecological and evolutionary impacts, involving seven mechanisms. Ecological impacts usually result from trophic disruptions and may be direct or indirect and top-down or bottom-up; they may vary in scale from single species to communities. A single species may impose impacts involving most or all of these categories. Evolutionary impacts most often result from hybridization and introgression but may include diverse changes in native fauna induced by selection. Impact magnitudes observed to date largely range from moderate to major, but massive impacts (including species extinction) are known for a handful of invasive species. Research remains skewed toward a small sample of all invaders, and major research gaps remain in understanding community-level impacts, the risk posed by competition, determinants of predation impact, the relevance of genetic diversity to impacts, and how to predict impacts.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abe T, Makino S, Okochi I. 2008. Why have endemic pollinators declined on the Ogasawara Islands?. Biodivers. Conserv. 17:1465–73 [Google Scholar]
  2. Abe T, Wada K, Kato Y, Makino S, Okochi I. 2011. Alien pollinator promotes invasive mutualism in an insular pollination system. Biol. Invasions 13:957–67 [Google Scholar]
  3. Adams MJ, Pearl CA, Bury RB. 2003. Indirect facilitation of an anuran invasion by non-native fishes. Ecol. Lett. 6:343–51 [Google Scholar]
  4. Arano B, Llorente G, García-Paris M, Herrero P. 1995. Species translocation menaces Iberian waterfrogs. Conserv. Biol. 9:196–98 [Google Scholar]
  5. Berger L, Speare R, Daszak P, Green DE, Cunningham AA. et al. 1998. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. PNAS 95:9031–36 [Google Scholar]
  6. Blackburn TM, Essl F, Evans T, Hulme PE, Jeschke JM. et al. 2014. A unified classification of alien species based on the magnitude of their environmental impacts. PLOS ONE 12:e1001850 [Google Scholar]
  7. Boland CRJ. 2004. Introduced cane toads Bufo marinus are active nest predators and competitors of rainbow bee-eaters Merops ornatus: observational and experimental evidence. Biol. Conserv. 120:53–62 [Google Scholar]
  8. Both C, Grant T. 2012. Biological invasions and the acoustic niche: the effect of bullfrog calls on the acoustic signals of white-banded tree frogs. Biol. Lett. 8:714–16 [Google Scholar]
  9. Breuil M. 2000. Lesser Antilles Iguana delicatissima and Iguana iguana. West Indian Iguana Specialist Group Newsl. 3:211–15 [Google Scholar]
  10. Breuil M. 2013. Caractérisation morphologique de l'iguane commun Iguana iguana (Linnaeus, 1758), de l'iguane des Petites Antilles Iguana delicatissima Laurenti, 1768 et de leurs hybrids. Bull. Soc. Herpétol. Fr. 147:309–46 [Google Scholar]
  11. Brown GP, Phillips BL, Shine R. 2011. The ecological impact of invasive cane toads on tropical snakes: Field data do not support laboratory-based predictions. Ecology 92:422–31 [Google Scholar]
  12. Cabrera-Guzmán E, Crossland MR, Brown GP, Shine R. 2013. Larger body size at metamorphosis enhances survival, growth and performance of young cane toads (Rhinella marina). PLOS ONE 8:e70121 [Google Scholar]
  13. Cadi A, Joly P. 2003. Competition for basking places between the endangered European pond turtle (Emys orbicularis galloitalica) and the introduced red-eared slider (Trachemys scripta elegans). Can. J. Zool. 81:1392–98 [Google Scholar]
  14. Cadi A, Joly P. 2004. Impact of the introduction of the red-eared slider (Trachemys scripta elegans) on survival rates of the European pond turtle (Emys orbicularis). Biodivers. Conserv. 13:2511–18 [Google Scholar]
  15. Campbell TS, Echternacht AC. 2003. Introduced species as moving targets: changes in body sizes of introduced lizards following experimental introductions and historical invasions. Biol. Invasions 5:193–212 [Google Scholar]
  16. Campbell EW III, Yackel Adams AA, Converse SJ, Fritts TH, Rodda GH. 2012. Do predators control prey species abundance? An experimental test with brown treesnakes on Guam. Ecology 93:1194–203 [Google Scholar]
  17. Capula M. 1993. Natural hybridization in Podarcis sicula and P. wagleriana (Reptilia: Lacertidae). Biochem. Syst. Ecol. 21:373–80 [Google Scholar]
  18. Caves EM, Jennings SB, HilleRisLambers J, Tewksbury JJ, Rogers HS. 2013. Natural experiment demonstrates that bird loss leads to cessation of dispersal of native seeds from intact to degraded forests. PLOS ONE 8:e65618 [Google Scholar]
  19. Cheng TL, Rovito SM, Wake DB, Vredenburg VT. 2011. Coincident mass extirpation of neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis. PNAS 108:9502–7 [Google Scholar]
  20. Choi RT, Beard KH. 2012. Coqui frog invasions change invertebrate communities in Hawaii. Biol. Invasions 14:939–48 [Google Scholar]
  21. Cole NC, Harris S. 2011. Environmentally-induced shifts in behavior intensify indirect competition by an invasive gecko in Mauritius. Biol. Invasions 13:2063–75 [Google Scholar]
  22. Cole NC, Jones CG, Harris S. 2005. The need for enemy-free space: the impact of an invasive gecko on island endemics. Biol. Conserv. 125:467–74 [Google Scholar]
  23. Crossland MR, Alford RA, Shine R. 2009. Impact of the invasive cane toad (Bufo marinus) on an Australian frog (Opisthodon ornatus) depends on minor variation in reproductive timing. Oecologia 158:625–32 [Google Scholar]
  24. D'Amore A, Hemingway V, Wasson K. 2010. Do a threatened native amphibian and its invasive congener differ in response to human alteration of the landscape?. Biol. Invasions 12:145–54 [Google Scholar]
  25. D'Amore A, Kirby E, Hemingway V. 2009a. Reproductive interference by an invasive species: an evolutionary trap?. Herpetol. Conserv. Biol. 4:325–30 [Google Scholar]
  26. D'Amore A, Kirby E, McNicholas M. 2009b. Invasive species shifts ontogenetic resource partitioning and microhabitat use of a threatened native amphibian. Aquat. Conserv. 19:534–41 [Google Scholar]
  27. Daszak P, Strieby A, Cunningham AA, Longcore JE, Brown CC, Porter D. 2004. Experimental evidence that the bullfrog (Rana catesbeiana) is a potential carrier of chytridiomycosis, an emerging fungal disease of amphibians. Herpetol. J. 14:201–7 [Google Scholar]
  28. Davis MA. 2003. Biotic globalization: Does competition from introduced species threaten biodiversity?. Bioscience 53:481–89 [Google Scholar]
  29. Dlugosch KM, Parker IM. 2008. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 17:431–49 [Google Scholar]
  30. Doody JS, Castellano CM, Rhind D, Green B. 2013. Indirect facilitation of a native mesopredator by an invasive species: Are cane toads re-shaping tropical riparian communities?. Biol. Invasions 15:559–68 [Google Scholar]
  31. Doody JS, Green B, Rhind D, Castellano CM, Sims R, Robinson T. 2009. Population-level declines in Australian predators caused by an invasive species. Anim. Conserv. 12:46–53 [Google Scholar]
  32. Doody JS, Green B, Sims R, Rhind D, West P, Steer D. 2006. Indirect impacts of invasive cane toads (Bufo marinus) on nest predation in pig-nosed turtles (Carettochelys insculpta). Wildl. Res. 33:349–54 [Google Scholar]
  33. Dorcas ME, Willson JD, Reed RN, Snow RW, Rochford MR. et al. 2012. Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park. PNAS 109:2418–22 [Google Scholar]
  34. Echternacht AC. 1999. Possible causes for the rapid decline in population density of green anoles, Anolis carolinensis (Sauria: Polychrotidae) following invasion by the brown anole, Anolis sagrei, in the southeastern United States. Anolis Newsl. 5:22–27 [Google Scholar]
  35. Fisher MC, Garner TWJ. 2007. The relationship between the emergence of Batrachochytrium dendrobatidis, the international trade in amphibians and introduced amphibian species. Fungal Biol. Rev. 21:2–9 [Google Scholar]
  36. Fitzpatrick BM, Johnson JR, Kump DK, Shaffer HB, Smith JJ, Voss SR. 2009. Rapid fixation of non-native alleles revealed by genome-wide SNP analysis of hybrid tiger salamanders. BMC Evol. Biol. 9:176 [Google Scholar]
  37. Fitzpatrick BM, Johnson JR, Kump DK, Smith JJ, Voss SR, Shaffer HB. 2010. Rapid spread of invasive genes into a threatened native species. PNAS 107:3606–10 [Google Scholar]
  38. Fitzpatrick BM, Shaffer HB. 2004. Environment-dependent admixture dynamics in a tiger salamander hybrid zone. Evolution 58:1282–93 [Google Scholar]
  39. Fitzpatrick BM, Shaffer HB. 2007a. Hybrid vigor between native and introduced salamanders raises new challenges for conservation. PNAS 104:15793–98 [Google Scholar]
  40. Fitzpatrick BM, Shaffer HB. 2007b. Introduction history and habitat variation explain the landscape genetics of hybrid tiger salamanders. Ecol. Appl. 17:598–608 [Google Scholar]
  41. Florance D, Webb JK, Dempster T, Kearney MR, Worthing A, Letnic M. 2011. Excluding access to invasion hubs can contain the spread of an invasive vertebrate. Proc. R. Soc. B 278:2900–8 [Google Scholar]
  42. Freeland WJ. 1986. Populations of cane toad, Bufo marinus, in relation to time since colonization. Austr. Wildl. Res. 12:321–29 [Google Scholar]
  43. Freeland WJ. 1994. Parasites, pathogens and the impacts of introduced organisms on the balance of nature in Australia. Conservation Biology in Australia and Oceania C Moritz, J Kikkawa 171–80 Sydney: Surrey Beatty [Google Scholar]
  44. Freeland WJ, Kerin SH. 1988. Within-habitat relationships between invading Bufo marinus and Australian species of frog during the tropical dry season. Austr. Wildl. Res 15:293–305 [Google Scholar]
  45. Fritts TH, Rodda GH. 1998. The role of introduced species in the degradation of island ecosystems: a case history of Guam. Annu. Rev. Ecol. Evol. Syst. 29:113–40 [Google Scholar]
  46. Garner TWJ, Perkins MW, Govindarajulu P, Seglie D, Walker S. et al. 2006. The emerging amphibian pathogen Batrachochytrium dendrobatidis globally infects introduced populations of the North American bullfrog, Rana catesbeiana. Biol. Lett. 2:455–59 [Google Scholar]
  47. Gerber GP, Echternacht AC. 2000. Evidence for asymmetrical intraguild predation between native and introduced Anolis lizards. Oecologia 124:599–607 [Google Scholar]
  48. González-Bernal E, Greenlees M, Brown GP, Shine R. 2012. Cane toads on cowpats: Commercial livestock production facilitates toad invasion in tropical Australia. PLOS ONE 7:e49351 [Google Scholar]
  49. Greenlees MJ, Brown GP, Webb JK, Phillips BL, Shine R. 2006. Effects of an invasive anuran [the cane toad (Bufo marinus)] on the invertebrate fauna of a tropical Australian floodplain. Anim. Conserv. 9:431–38 [Google Scholar]
  50. Greenlees MJ, Crossland MR, Shine R. 2014. Larval interactions with an invasive species (the cane toad Rhinella marina) affect life-history traits in an Australian anuran (the marbled frog Limnodynastes convexiusculus). Aust. Zool. 36:424–28 [Google Scholar]
  51. Greenlees MJ, Phillips BL, Shine R. 2010. An invasive species imposes selection on life-history traits of a native frog. Biol. J. Linn. Soc. Lond. 100:329–36 [Google Scholar]
  52. Griffiths RA, Schley L, Sharp PE, Dennis JL, Román A. 1998. Behavioural responses of Mallorcan midwife toad tadpoles to natural and unnatural snake predators. Anim. Behav. 55:207–14 [Google Scholar]
  53. Grosselet O, Thirion JM, Grillet P, Fouquet A. 2005. Résumé de l'étude sur les invasions biologiques: cas du Xénope commun ou Xénope du Cap, Xenopus laevis (Daudin, 1802). Poitiers, Fr: Conseil Général des Deux-Sèvres (Niort et Agence de l'Eau Loire-Bretagne) [Google Scholar]
  54. Hammerson GA. 1982. Bullfrog eliminating leopard frogs in Colorado?. Herpetol. Rev. 13:115–16 [Google Scholar]
  55. Handley LJL, Estoup A, Evans DM, Thomas CE, Lombaert E. et al. 2011. Ecological genetics of invasive alien species. Biocontrol 56:409–28 [Google Scholar]
  56. Hanselmann R, Rodríguez A, Lampo M, Fajardo-Ramos L, Aguirre AA. et al. 2004. Presence of an emerging pathogen of amphibians in introduced bullfrogs Rana catesbeiana in Venezuela. Biol. Conserv. 120:115–19 [Google Scholar]
  57. Hartigan A, Fiala I, Dyková I, Jirků M, Okimoto B. et al. 2011. A suspected parasite spill-back of two novel Myxidium spp. (Myxosporea) causing disease in Australian endemic frogs found in the invasive cane toad. PLOS ONE 6:e18871 [Google Scholar]
  58. Hayes MP, Jennings MR. 1986. Decline of ranid frog species in western North America: Are bullfrogs (Rana catesbeiana) responsible?. J. Herpetol. 20:490–509 [Google Scholar]
  59. Holsbeek G, Jooris R. 2010. Potential impact of genome exclusion by alien species in the hybridogenetic water frogs (Pelophylax esculentus complex). Biol. Invasions 12:1–13 [Google Scholar]
  60. Holsbeek G, Mergeay J, Hotz H, Plötner J, Volckaert FAM, de Meester L. 2008. A cryptic invasion within an invasion and widespread introgression in the European water frog complex: consequences of uncontrolled commercial trade and weak international legislation. Mol. Ecol. 17:5023–35 [Google Scholar]
  61. Huang S-C, Norval G, Tso I-M. 2008a. Predation by an exotic lizard, Anolis sagrei, alters the ant community structure in betelnut palm plantations in southern Taiwan. Ecol. Entomol. 33:569–76 [Google Scholar]
  62. Huang S-C, Norval G, Wei C-S, Tso I-M. 2008b. Effects of the brown anole invasion and betelnut palm planting on arthropod diversity in southern Taiwan. Zool. Sci. 25:1121–29 [Google Scholar]
  63. Jancovich JK, Davidson EW, Parameswaran N, Mao J, Chinchar VG. et al. 2005. Evidence for emergence of an amphibian iridoviral disease because of human-enhanced spread. Mol. Ecol. 14:213–24 [Google Scholar]
  64. Johnson JR, Fitzpatrick BM, Shaffer HB. 2010. Retention of low-fitness genotypes over six decades of admixture between native and introduced tiger salamanders. BMC Evol. Biol. 10:147 [Google Scholar]
  65. Karube H. 2005. The influence of the introduced lizard, Anolis carolinensis, on the native insect fauna of the Ogasawara Islands. Bull. Herpetol. Soc. Japan 2005:163–68 (in Japanese) [Google Scholar]
  66. Karube H, Suda S. 2004. A preliminary report on influence of an introduced lizard, Anolis carolinensis on the native insect fauna of the Ogasawara Islands. Res. Rep. Kanagawa Pref. Mus. Nat. Hist. 12:21–30 (in Japanese) [Google Scholar]
  67. Kerr AM. 1993. Low frequency of stabilimenta in orb webs of Argiope appensa (Araneae: Araneidae) from Guam: an indirect effect of an introduced avian predator. Pac. Sci. 47:328–37 [Google Scholar]
  68. Kiesecker JM, Blaustein AR. 1997. Population differences in responses of red-legged frogs (Rana aurora) to introduced bullfrogs. Ecology 78:1752–60 [Google Scholar]
  69. Kiesecker JM, Blaustein AR, Miller CL. 2001. Potential mechanisms underlying the displacement of native red-legged frogs by introduced bullfrogs. Ecology 82:1964–70 [Google Scholar]
  70. Knight CM, Parris MJ, Gutzke WHN. 2009. Influence of priority effects and pond location on invaded larval amphibian communities. Biol. Invasions 11:1033–44 [Google Scholar]
  71. Kolbe JJ, Glor RE, Rodriguez Schettino L, Chamizo Lara A, Larson A, Losos JB. 2004. Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–81 [Google Scholar]
  72. Kolbe JJ, Larson A, Losos JB. 2007. Differential admixture shapes morphological variation among invasive populations of the lizard Anolis sagrei. Mol. Ecol. 16:1579–91 [Google Scholar]
  73. Kolbe JJ, Larson A, Losos JB, de Queiroz K. 2008. Admixture determines genetic diversity and population differentiation in the biological invasion of a lizard species. Biol. Lett. 4:434–37 [Google Scholar]
  74. Kraus F. 2009. Alien Reptiles and Amphibians: A Scientific Compendium and Analysis Dordrecht: Neth.: Springer
  75. Kupferberg SJ. 1997. The role of larval diet in anuran metamorphosis. Am. Zool. 37:146–59 [Google Scholar]
  76. Lee CE. 2002. Evolutionary genetics of invasive species. Trends Ecol. Evol. 17:386–91 [Google Scholar]
  77. Lobos G, Measey GJ. 2002. Invasive populations of Xenopus laevis (Daudin) in Chile. Herpetol. J 12:163–68 [Google Scholar]
  78. Makihara H, Kitajima H, Goto H, Kato T, Makino S. 2004. An evaluation of predation impact of the introduced lizard Anolis carolinensis on the endemic insect fauna of the Ogasawara Islands based on insect collection records and feeding experiments, with special reference to longicorn beetles (Insecta: Coleoptera: Cerambycidae). Bull. For. For. Prod. Res. Inst. 3:165–83 (in Japanese with English summary) [Google Scholar]
  79. Maret TJ, Snyder JD, Collins JP. 2006. Altered drying regime controls distribution of endangered salamanders and introduced predators. Biol. Conserv. 127:129–38 [Google Scholar]
  80. Meshaka WE Jr, Smith HT, Golden E, Moore JA, Fitchett S. et al. 2007. Green iguanas (Iguana iguana): the unintended consequence of sound wildlife management practices in a South Florida park. Herpetol. Conserv. Biol. 2:149–56 [Google Scholar]
  81. Moore RD, Griffiths RA, O'Brien CM, Murphy A, Jay D. 2004. Induced defences in an endangered amphibian in response to an introduced snake predator. Oecologia 141:139–47 [Google Scholar]
  82. Mortensen HS, Dupont YL, Olesen JM. 2008. A snake in paradise: disturbance of plant reproduction following extirpation of bird flower-visitors on Guam. Biol. Conserv. 141:2146–54 [Google Scholar]
  83. Okamoto T, Kuriyama T, Goka K. 2013. An impact assessment of the alien lizard Plestiodon japonicus (Scincidae, Reptilia) on a threatened island population of the native lizard P. latiscutatus at an early phase of the biological invasion. Biol. Invasions 15:2029–37 [Google Scholar]
  84. Okochi I, Yoshimura M, Abe T, Suzuki H. 2006. High population densities of an exotic lizard, Anolis carolinensis, and its possible role as a pollinator in the Ogasawara Islands. Bull. For. For. Prod. Res. Inst 5:265–69 [Google Scholar]
  85. Ovaska K. 1991. Reproductive phenology, population structure, and habitat use of the frog Eleutherodactylus johnstonei in Barbados, West Indies. J. Herpetol 25:424–30 [Google Scholar]
  86. Pagano A, Dubois A, Lesbarrères D, Lodé T. 2003. Frog alien species: a way for genetic invasion?. C. R. Biol. 326:S85–92 [Google Scholar]
  87. Pagano A, Schmeller D. 1999. Is recombination less negligible than previously described in hybridogenetic water frogs?. Current Studies in Herpetology: Proc. 9th Ordinary Gen. Meet. Soc. Eur. Herpetol., 25–29 Aug. 1998, Chambéry, Fr. C Miaud, R Guyetant 351–56 Le Bourget du Lac, Fr: Soc. Eur. Herpetol. [Google Scholar]
  88. Pearl CA, Hayes MP, Haycock R, Engler JD, Bowerman J. 2005. Observations of interspecific amplexus between western North American ranid frogs and the introduced American bullfrog (Rana catesbeiana) and an hypothesis concerning breeding interference. Am. Midl. Nat. 154:126–34 [Google Scholar]
  89. Pearson DJ, Greenlees M, Ward-Fear G, Shine R. 2009. Predicting the ecological impact of cane toads (Bufo marinus) on threatened camaenid land snails in north-western Australia. Wildl. Res. 36:533–40 [Google Scholar]
  90. Pérez-Santigosa N, Hidalgo-Vila HJ, Díaz-Paniagua C. 2013. Comparing activity patterns and aquatic home range areas among exotic and native turtles in southern Spain. Chelonian Conserv. Biol. 12:313–19 [Google Scholar]
  91. Phillips BL, Shine R. 2004. Adapting to an invasive species: Toxic cane toads induce morphological change in Australian snakes. PNAS 101:17150–55 [Google Scholar]
  92. Phillips BL, Shine R. 2006a. An invasive species induces rapid adaptive change in a native predator: cane toads and black snakes in Australia. Proc. R. Soc. B 273:1545–50 [Google Scholar]
  93. Phillips BL, Shine R. 2006b. Allometry and selection in a novel predator-prey system: Australian snakes and the invading cane toad. Oikos 112:122–30 [Google Scholar]
  94. Picco AM, Collins JP. 2008. Amphibian commerce as a likely source of pathogen pollution. Conserv. Biol. 22:1582–89 [Google Scholar]
  95. Polo-Cavia N, Gonazalo A, López P, Martín J. 2010a. Predator recognition of native but not invasive turtle predators by naïve anuran tadpoles. Anim. Behav. 80:461–66 [Google Scholar]
  96. Polo-Cavia N, López P, Martín J. 2010b. Competitive interactions during basking between native and invasive freshwater turtle species. Biol. Invasions 12:2141–52 [Google Scholar]
  97. Price-Rees SJ, Brown GP, Shine R. 2012. Interacting impacts of invasive plants and invasive toads on native lizards. Am. Nat. 179:413–22 [Google Scholar]
  98. Ramsay NF, Ng PKA, O'Riordan RM, Chou LM. 2007. The red-eared slider (Trachemys scripta elegans) in Asia: a review. Biological Invaders in Inland Waters: Profiles, Distribution, and Threats F Gherardi 161–74 Dordrecht, Neth: Springer [Google Scholar]
  99. Reed RN, Willson JD, Rodda GH, Dorcas ME. 2012. Ecological correlates of invasion impact for Burmese pythons in Florida. Integr. Zool. 7:254–70 [Google Scholar]
  100. Richter-Boix A, Garriga N, Montori A, Franch M, San Sebastián O. et al. 2013. Effects of the non-native amphibian species Discoglossus pictus on the recipient amphibian community: niche overlap, competition and community organization. Biol. Invasions 15:799–815 [Google Scholar]
  101. Riley SPD, Shaffer HB, Voss SR, Fitzpatrick BM. 2003. Hybridization between a rare, native tiger salamander (Ambystoma californiense) and its introduced congener. Ecol. Appl. 13:1263–75 [Google Scholar]
  102. Robert J, Abramowitz L, Gantress J, Morales HD. 2007. Xenopus laevis: a possible vector of ranavirus infection?. J. Wildl. Dis. 43:645–52 [Google Scholar]
  103. Rodda GH, McCoid MJ, Fritts TH, Campbell EW III. 1999. Population trends and limiting factors in Boiga irregularis. Problem Snake Management: The Habu and Brown Treesnake GH Rodda, Y Sawai, D Chiszar 236–56 Ithaca, NY: Cornell Univ. Press [Google Scholar]
  104. Rodda GH, Savidge JA. 2007. Biology and impacts of Pacific Island invasive species. 2. Boiga irregularis, the brown tree snake (Reptilia: Colubridae). Pac. Sci. 61:307–24 [Google Scholar]
  105. Rogers H, HilleRisLambers J, Miller R, Tewksbury JJ. 2012. ‘Natural experiment’ demonstrates top-down control of spiders by birds on a landscape level. PLOS ONE 7:e43446 [Google Scholar]
  106. Ryan ME, Johnson JR, Fitzpatrick BM, Lowenstine LJ, Picco AM, Shaffer HB. 2012. Lethal effects of water quality on threatened California salamanders but not on co-occurring hybrid salamanders. Conserv. Biol. 27:95–102 [Google Scholar]
  107. Schley L, Griffiths RA. 1998. Midwife toads (Alytes muletensis) avoid chemical cues from snakes (Natrix maura). J. Herpetol. 32:572–74 [Google Scholar]
  108. Schloegel LM, Ferreira CM, James TY, Hipolito M, Longcore JE. et al. 2010. The North American bullfrog as a reservoir for the spread of Batrachochytrium dendrobatidis in Brazil. Anim. Conserv. 13:Suppl. 153–61 [Google Scholar]
  109. Schloegel LM, Picco AM, Kilpatrick AM, Davies AJ, Hyatt AD, Daszak P. 2009. Magnitude of the US trade in amphibians and presence of Batrachochytrium dendrobatidis and ranavirus infection in imported North American bullfrogs (Rana catesbeiana). Biol. Conserv. 142:1420–26 [Google Scholar]
  110. Schmeller D, Pagano A, Plénet S, Veith M. 2007. Introducing water frogs—is there a risk for indigenous species in France?. C. R. Biol. 330:684–90 [Google Scholar]
  111. Shine R. 2010. The ecological impact of invasive cane toads (Bufo marinus) in Australia. Q. Rev. Biol. 85:253–91 [Google Scholar]
  112. Shine R. 2011. Invasive species as drivers of evolutionary change: cane toads in tropical Australia. Evol. Appl. 5:107–16 [Google Scholar]
  113. Sin H, Beard KH, Pitt WC. 2008. An invasive frog, Eleutherodactylus coqui, increases new leaf production and leaf litter decomposition rates through nutrient cycling in Hawaii. Biol. Invasions 10:335–45 [Google Scholar]
  114. Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR. et al. 2007. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4:125–34 [Google Scholar]
  115. Smith KG. 2006a. Patterns of nonindigenous herpetofaunal richness and biotic homogenization among Florida counties. Biol. Conserv. 127:327–35 [Google Scholar]
  116. Smith KG. 2006b. Keystone predators (eastern newts, Notophthalmus viridescens) reduce the impacts of an aquatic invasive species. Oecologia 148:342–49 [Google Scholar]
  117. Solís R, Lobos G, Walker SF, Fisher M, Bosch J. 2010. Presence of Batrachochytrium dendrobatidis in feral populations of Xenopus laevis in Chile. Biol. Invasions 12:1641–46 [Google Scholar]
  118. Somaweera R, Shine R, Webb J, Dempster T, Letnic M. 2013. Why does vulnerability to toxic invasive cane toads vary among populations of Australian freshwater crocodiles?. Anim. Conserv. 16:86–96 [Google Scholar]
  119. Somaweera R, Webb JK, Brown GP, Shine R. 2011. Hatchling Australian freshwater crocodiles rapidly learn to avoid toxic invasive cane toads. Behaviour 148:501–17 [Google Scholar]
  120. Storfer A, Mech SG, Reudink MW, Ziemba RE, Warren J, Collins JP. 2004. Evidence for introgression in the endangered Sonora tiger salamander, Ambystoma tigrinum stebbinsi (Lowe). Copeia 2004:783–96 [Google Scholar]
  121. Stuart YE, Campbell TS, Hohenlohe PA, Reynolds RG, Revell IJ, Losos JB. 2014. Rapid evolution of a native species following invasion by a congener. Science 345:463–66 [Google Scholar]
  122. Suzuki A, Nagoshi M. 1999. Habitat utilizations of the native lizard, Cryptoblepharus boutonii nigropunctatus, in areas with and without the introduced lizard, Anolis carolinensis, on Hahajima, the Ogasawara Islands, Japan. Tropical Island Herpetofauna: Origin, Current Diversity, and Conservation H Ota 155–68 Amsterdam: Elsevier [Google Scholar]
  123. Webb JK, Pearson D, Shine R. 2011. A small dasyurid predator (Sminthopsis virginiae) rapidly learns to avoid a toxic invader. Wildl. Res. 38:726–31 [Google Scholar]
  124. Weldon C, du Preez LH, Hyatt AD, Muller R, Speare R. 2004. Origin of the amphibian chytrid fungus. Emerg. Infect. Dis. 10:2100–5 [Google Scholar]
  125. Whitney KD, Gabler CA. 2008. Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Divers. Distrib. 14:569–80 [Google Scholar]
  126. Woolbright LL, Hara AH, Jacobsen CM, Mautz WJ, Benevides FL Jr. 2006. Population densities of the coquí, Eleutherodactylus coqui (Anura: Leptodactylidae), in newly invaded Hawaii and in native Puerto Rico. J. Herpetol 40:122–26 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error