Although their diversity greatly exceeds that of plants and animals, microbial organisms have historically received less attention in ecology and evolutionary biology research. This knowledge gap is rapidly closing, owing to recent technological advances and an increasing appreciation for the role microbes play in shaping ecosystems and human health. In this review, we examine when and how the process and patterns of bacterial adaptation might fundamentally differ from those of macrobes, highlight methods used to measure adaptation in natural microbial populations, and discuss the importance of examining bacterial adaptation across multiple scales. We emphasize the need to consider the scales of adaptation as continua, in which the genetic makeup of bacteria blur boundaries between populations, species, and communities and with them concepts of ecological and evolutionary time. Finally, we examine current directions of the field as we move beyond the stamp-collecting phase and toward a better understanding of microbial adaptation in nature.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Achtman M. 2008. Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu. Rev. Microbiol. 62:53–70 [Google Scholar]
  2. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. 2010. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8:251–59 [Google Scholar]
  3. Andersson MGI, Berga M, Lindström ES, Langenheder S. 2014. The spatial structure of bacterial communities is influenced by historical environmental conditions. Ecology 95:1134–40 [Google Scholar]
  4. Baas Becking LGM. 1934. Geobiologie of Inleiding Tot de Milieukunde. Den Haag, Neth: WP Van Stockum & Zoon
  5. Baltrus DA, Guillemin K, Phillips PC. 2008. Natural transformation increases the rate of adaptation in the human pathogen Helicobacter pylori. Evolution 62:39–49One of the few experimental studies that have demonstrated the adaptive benefits of bacterial recombination. [Google Scholar]
  6. Baumdicker F, Hess WR, Pfaffelhuber P. 2012. The infinitely many genes model for the distributed genome of bacteria. Genome Biol. Evol. 4:443–56 [Google Scholar]
  7. Becker JM, Parkin T, Nakatsu CH, Wilbur JD, Konopka A. 2006. Bacterial activity, community structure, and centimeter-scale spatial heterogeneity in contaminated soil. Microb. Ecol. 51:220–31 [Google Scholar]
  8. Beiko RG, Harlow TJ, Ragan MA. 2005. Highways of gene sharing in prokaryotes. PNAS 102:14332–37 [Google Scholar]
  9. Bell T. 2010. Experimental tests of the bacterial distance-decay relationship. ISME J. 4:1357–65A rare example of a study that combined traditional microcosm experiments with field experiments. [Google Scholar]
  10. Belotte D, Curien JB, Maclean RC, Bell G. 2003. An experimental test of local adaptation in soil bacteria. Evolution 57:27–36 [Google Scholar]
  11. Blanquart F, Gandon S. 2013. Time-shift experiments and patterns of adaptation across time and space. Ecol. Lett. 16:31–38 [Google Scholar]
  12. Bottomley PJ, Yarwood RR, Kageyama SA, Waterstripe KE, Williams MA. et al. 2006. Responses of soil bacterial and fungal communities to reciprocal transfers of soil between adjacent coniferous forest and meadow vegetation in the Cascade Mountains of Oregon. Plant Soil 289:35–45 [Google Scholar]
  13. Brockhurst MA, Morgan AD, Rainey PB, Buckling A. 2003. Population mixing accelerates coevolution. Ecol. Lett. 6:975–79 [Google Scholar]
  14. Buckling A, Maclean RC, Brockhurst MA, Colegrave N. 2009. The Beagle in a bottle. Nature 457:824–29 [Google Scholar]
  15. Buckling A, Rainey PB. 2002. Antagonistic coevolution between a bacterium and a bacteriophage. Proc. R. Soc. B 269:931–36 [Google Scholar]
  16. Celiker H, Gore J. 2014. Clustering in community structure across replicate ecosystems following a long-term bacterial evolution experiment. Nat. Commun. 5:4643 [Google Scholar]
  17. Charlesworth J, Eyre-Walker A. 2006. The rate of adaptive evolution in enteric bacteria. Mol. Biol. Evol. 23:1348–56 [Google Scholar]
  18. Culligan EP, Sleator RD, Marchesi JR, Hill C. 2012. Functional metagenomics reveals novel salt tolerance loci from the human gut microbiome. ISME J. 6:1916–25 [Google Scholar]
  19. De Wit R, Bouvier T. 2006. ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say?. Environ. Microbiol. 8:755–58 [Google Scholar]
  20. Diaz-Ravina M, Baath E. 1996. Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Appl. Environ. Microbiol. 62:2970–77 [Google Scholar]
  21. Dubey GP, Ben-Yehuda S. 2011. Intercellular nanotubes mediate bacterial communication. Cell 144:590–600 [Google Scholar]
  22. Dykhuizen DE. 1990. Experimental studies of natural selection in bacteria. Annu. Rev. Ecol. Syst. 21:373–98 [Google Scholar]
  23. El-Shehawy R, Lugomela C, Ernst A, Bergman B. 2003. Diurnal expression of hetR and diazocyte development in the filamentous non-heterocystous cyanobacterium Trichodesmium erythraeum. Microbiology 149:1139–46 [Google Scholar]
  24. Ellis RJ, Thompson IP, Bailey MJ. 1999. Temporal fluctuations in the pseudomonad population associated with sugar beet leaves. FEMS Microbiol. Ecol. 28:345–56 [Google Scholar]
  25. Finkel OM, Burch AY, Elad T, Huse SM, Lindow SE. et al. 2012. Distance-decay relationships partially determine diversity patterns of phyllosphere bacteria on Tamrix trees across the Sonoran Desert. Appl. Environ. Microbiol. 78:6187–93 [Google Scholar]
  26. Fox JW, Harder LD. 2015. Using a “time machine” to test for local adaptation of aquatic microbes to temporal and spatial environmental variation. Evolution 69:136–45 [Google Scholar]
  27. Giraud A, Matic I, Tenaillon O, Clara A, Radman M. et al. 2001a. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291:2606–8 [Google Scholar]
  28. Giraud A, Radman M, Matic I, Taddei F. 2001b. The rise and fall of mutator bacteria. Curr. Opin. Microbiol. 4:582–85 [Google Scholar]
  29. Gómez P, Buckling A. 2011. Bacteria-phage antagonistic coevolution in soil. Science 332:106–9 [Google Scholar]
  30. Gómez P, Buckling A. 2013. Real-time microbial adaptive diversification in soil. Ecol. Lett. 16:650–55 [Google Scholar]
  31. Gubry-Rangin C, Hai B, Quince C, Engel M, Thomson BC. et al. 2011. Niche specialization of terrestrial archaeal ammonia oxidizers. PNAS 108:21206–11 [Google Scholar]
  32. Hannam KD, Quideau SA, Kishchuk BE. 2007. The microbial communities of aspen and spruce forest floors are resistant to changes in litter inputs and microclimate. Appl. Soil Ecol. 35:635–47 [Google Scholar]
  33. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB. 2012. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10:497–506This article is an authoritative overview of microbial biogeography. [Google Scholar]
  34. Hehemann J-H, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. 2010. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:908–12 [Google Scholar]
  35. Hellweger FL, van Sebille E, Fredrick ND. 2014. Biogeographic patterns in ocean microbes emerge in a neutral agent-based model. Science 345:1346–49 [Google Scholar]
  36. Hemme CL, Deng Y, Gentry TJ, Fields MW, Wu L. et al. 2010. Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. ISME J. 4:660–72 [Google Scholar]
  37. Herlemann DPR, Labrenz M, Jurgens K, Bertilsson S, Waniek JJ, Andersson AF. 2011. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5:1571–79 [Google Scholar]
  38. Hillesland KL, Stahl DA. 2010. Rapid evolution of stability and productivity at the origin of a microbial mutualism. PNAS 107:2124–29 [Google Scholar]
  39. Hu XS, He F, Hubbell SP. 2006. Neutral theory in macroecology and population genetics. Oikos 113:548–56An exploration of the similarities between the neutral emergence of genetic diversity and species communities. [Google Scholar]
  40. Jannasch HW. 1969. Estimations of bacterial growth rates in natural waters. J. Bacteriol. 99:156–60 [Google Scholar]
  41. Jin DJ, Gross CA. 1988. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J. Mol. Biol. 202:45–58 [Google Scholar]
  42. Johnson CH, Golden SS, Kondo T. 1998. Adaptive significance of circadian programs in cyanobacteria. Trends Microbiol. 6:407–10 [Google Scholar]
  43. Johnston C, Martin B, Fichant G, Polard P, Claverys J-P. 2014. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat. Rev. Microbiol. 12:181–96 [Google Scholar]
  44. Kawecki TJ, Ebert D. 2004. Conceptual issues in local adaptation. Ecol. Lett. 7:1225–41 [Google Scholar]
  45. Keeling PJ, Palmer JD. 2008. Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9:605–18 [Google Scholar]
  46. Koskella B. 2013. Phage-mediated selection on microbiota of a long-lived host. Curr. Biol. 23:1256–60 [Google Scholar]
  47. Koskella B. 2014. Bacteria-phage interactions across time and space: merging local adaptation and time-shift experiments to understand phage evolution. Am. Nat. 184:S9–21 [Google Scholar]
  48. Koskella B, Thompson JN, Preston GM, Buckling A. 2011. Local biotic environment shapes the spatial scale of bacteriophage adaptation to bacteria. Am. Nat. 177:440–51 [Google Scholar]
  49. Kunin V, Raes J, Harris JK, Spear JR, Walker JJ. et al. 2008. Millimeter-scale genetic gradients and community-level molecular convergence in a hypersaline microbial mat. Mol. Syst. Biol. 4:198 [Google Scholar]
  50. Labrie SJ, Samson JE, Moineau S. 2010. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8:317–27 [Google Scholar]
  51. Lanfear R, Kokko H, Eyre-Walker A. 2014. Population size and the rate of evolution. Trends Ecol. Evol. 29:33–41 [Google Scholar]
  52. Lawrence D, Fiegna F, Behrends V, Bundy JG, Phillimore AB. et al. 2012. Species interactions alter evolutionary responses to a novel environment. PLOS Biol. 10:e1001330 [Google Scholar]
  53. Lee H, Popodi E, Tang H, Foster PL. 2012. Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. PNAS 109:E2774–E83 [Google Scholar]
  54. Lee M-C, Marx CJ. 2012. Repeated, selection-driven genome reduction of accessory genes in experimental populations. PLOS Genet. 8:e1002651 [Google Scholar]
  55. Lenski RE, Travisano M. 1994. Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. PNAS 91:6808–14 [Google Scholar]
  56. Lieberman TD, Michel J-B, Aingaran M, Potter-Bynoe G, Roux D. et al. 2011. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat. Genet. 43:1275–80 [Google Scholar]
  57. Linhart YB, Grant MC. 1996. Evolutionary significance of local genetic differentiation in plants. Annu. Rev. Ecol. Syst. 27:237–77 [Google Scholar]
  58. Lipson D, Schadt C, Schmidt S. 2002. Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt. Microb. Ecol. 43:307–14 [Google Scholar]
  59. López-Gutiérrez JC, Henry S, Hallet S, Martin-Laurent F, Catroux G, Philippot L. 2004. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. J. Microbiol. Methods 57:399–407 [Google Scholar]
  60. Lopez-Pascua L, Buckling A. 2008. Increasing productivity accelerates host–parasite coevolution. J. Evol. Biol. 21:853–60 [Google Scholar]
  61. Macel M, Lawson CS, Mortimer SR, Smilauerova M, Bischoff A. et al. 2007. Climate versus soil factors in local adaptation of two common plant species. Ecology 88:424–33 [Google Scholar]
  62. Marx CJ. 2013. Can you sequence ecology? Metagenomics of adaptive diversification. PLOS Biol. 11:e1001487 [Google Scholar]
  63. Mejáre M, Bülow L. 2001. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol. 19:67–73 [Google Scholar]
  64. Miller SR, Williams C, Strong AL, Carvey D. 2009. Ecological specialization in a spatially structured population of the thermophilic cyanobacterium Mastigocladus laminosus. Appl. Environ. Microbiol. 75:729–34 [Google Scholar]
  65. Morris JJ, Lenski RE, Zinser ER. 2012. The Black Queen hypothesis: evolution of dependencies through adaptive gene loss. mBio 3:e00036–12The presentation of an exciting new hypothesis marrying community ecology and genome evolution. [Google Scholar]
  66. Morrison W, Miller RV, Sayler G. 1978. Frequency of F116-mediated transduction of Pseudomonas aeruginosa in a freshwater environment. Appl. Environ. Microbiol. 36:724–30 [Google Scholar]
  67. Näsvall J, Sun L, Roth JR, Andersson DI. 2012. Real-time evolution of new genes by innovation, amplification, and divergence. Science 338:384–87 [Google Scholar]
  68. Nelson-Sathi S, Dagan T, Landan G, Janssen A, Steel M. et al. 2012. Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. PNAS 109:20537–42 [Google Scholar]
  69. Nielsen KM, Bøhn T, Townsend JP. 2013. Detecting rare gene transfer events in bacterial populations. Front. Microbiol. 4:415 [Google Scholar]
  70. Nikolausz M, Kappelmeyer U, Székely A, Rusznyák A, Márialigeti K, Kästner M. 2008. Diurnal redox fluctuation and microbial activity in the rhizosphere of wetland plants. Eur. J. Soil Biol. 44:324–33 [Google Scholar]
  71. Nowell RW, Green S, Laue BE, Sharp PM. 2014. The extent of genome flux and its role in the differentiation of bacterial lineages. Genome Biol. Evol. 6:1514–29 [Google Scholar]
  72. Oh S, Tandukar M, Pavlostathis SG, Chain PSG, Konstantinidis KT. 2013. Microbial community adaptation to quaternary ammonium biocides as revealed by metagenomics. Environ. Microbiol. 15:2850–64 [Google Scholar]
  73. Oliver A, Cantón R, Campo P, Baquero F, Blázquez J. 2000. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–53 [Google Scholar]
  74. Östman Ö, Drakare S, Kritzberg ES, Langenheder S, Logue JB, Lindström ES. 2010. Regional invariance among microbial communities. Ecol. Lett. 13:118–27 [Google Scholar]
  75. Pál C, Papp B, Pósfai G. 2014. The dawn of evolutionary genome engineering. Nat. Rev. Genet. 15:7504–12 [Google Scholar]
  76. Papatheodorou E, Argyropoulou M, Stamou G. 2004. The effects of large-and small-scale differences in soil temperature and moisture on bacterial functional diversity and the community of bacterivorous nematodes. Appl. Soil Ecol. 25:37–49 [Google Scholar]
  77. Pernthaler A, Pernthaler J. 2005. Diurnal variation of cell proliferation in three bacterial taxa from coastal North Sea waters. Appl. Environ. Microbiol. 71:4638–44 [Google Scholar]
  78. Pernthaler A, Pernthaler J, Eilers H, Amann R. 2001. Growth patterns of two marine isolates: adaptations to substrate patchiness?. Appl. Environ. Microbiol. 67:4077–83 [Google Scholar]
  79. Polz MF, Alm EJ, Hanage WP. 2013. Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet. 29:3170–75 [Google Scholar]
  80. Popa O, Hazkani-Covo E, Landan G, Martin W, Dagan T. 2011. Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes. Genome Res. 21:599–609 [Google Scholar]
  81. Prosser JI, Bohannan BJ, Curtis TP, Ellis RJ, Firestone MK. et al. 2007. The role of ecological theory in microbial ecology. Nat. Rev. Microbiol. 5:384–92 [Google Scholar]
  82. Puigbo P, Wolf Y, Koonin E. 2013. Seeing the tree of life behind the phylogenetic forest. BMC Biol. 11:46 [Google Scholar]
  83. Rousk J, Frey SD, Bååth E. 2012. Temperature adaptation of bacterial communities in experimentally warmed forest soils. Glob. Change Biol. 18:3252–58 [Google Scholar]
  84. Seitz P, Blokesch M. 2013. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol. Rev. 37:336–63 [Google Scholar]
  85. Shapiro BJ, Friedman J, Cordero OX, Preheim SP, Timberlake SC. et al. 2012. Population genomics of early events in the ecological differentiation of bacteria. Science 336:48–51One of the few comprehensive studies on the early stages of ecological differentiation of bacterial populations. [Google Scholar]
  86. Shapiro BJ, Polz MF. 2014. Ordering microbial diversity into ecologically and genetically cohesive units. Trends Microbiol. 22:235–47 [Google Scholar]
  87. Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ. 2011. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480:241–44 [Google Scholar]
  88. Smith DJ, Timonen HJ, Jaffe DA, Griffin DW, Birmele MN. et al. 2013. Intercontinental dispersal of bacteria and archaea by transpacific winds. Appl. Environ. Microbiol. 79:1134–39 [Google Scholar]
  89. Stefanic P, Decorosi F, Viti C, Petito J, Cohan FM, Mandic-Mulec I. 2012. The quorum sensing diversity within and between ecotypes of Bacillus subtilis. Environ. Microbiol. 14:1378–89 [Google Scholar]
  90. Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M. 2012. Drift-barrier hypothesis and mutation-rate evolution. PNAS 109:18488–92 [Google Scholar]
  91. Swain RA, Nolan JV, Klieve AV. 1996. Natural variability and diurnal fluctuations within the bacteriophage population of the rumen. Appl. Environ. Microbiol. 62:994–97 [Google Scholar]
  92. Telford RJ, Vandvik V, Birks HJB. 2006. Dispersal limitations matter for microbial morphospecies. Science 312:1015 [Google Scholar]
  93. Tiemann LK, Billings SA. 2011. Changes in variability of soil moisture alter microbial community C and N resource use. Soil Biol. Biochem. 43:1837–47 [Google Scholar]
  94. Toft C, Andersson SG. 2010. Evolutionary microbial genomics: insights into bacterial host adaptation. Nat. Rev. Genet. 11:465–75 [Google Scholar]
  95. Torsvik V, Øvreås L. 2002. Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol. 5:240–45 [Google Scholar]
  96. Treangen TJ, Rocha EP. 2011. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLOS Genet. 7:e1001284 [Google Scholar]
  97. Tripathi B, Lee-Cruz L, Kim M, Singh D, Go R. et al. 2014. Spatial scaling effects on soil bacterial communities in Malaysian tropical forests. Microb. Ecol. 68:247–58 [Google Scholar]
  98. Vasi F, Travisano M, Lenski RE. 1994. Long-term experimental evolution in Escherichia coli II. Changes in life-history traits during adaptation to a seasonal environment. Am. Nat. 144:432–56 [Google Scholar]
  99. Vos M. 2009. Why do bacteria engage in homologous recombination?. Trends Microbiol. 17:226–32 [Google Scholar]
  100. Vos M, Birkett PJ, Birch E, Griffiths RI, Buckling A. 2009. Local adaptation of bacteriophages to their bacterial hosts in soil. Science 325:833 [Google Scholar]
  101. Vos M, Didelot X. 2008. A comparison of homologous recombination rates in bacteria and archaea. ISME J. 3:199–208 [Google Scholar]
  102. Vos M, Wolf AB, Jennings SJ, Kowalchuk GA. 2013. Micro-scale determinants of bacterial diversity in soil. FEMS Microbiol. Rev. 37:936–54 [Google Scholar]
  103. Wallenstein MD, Hall EK. 2012. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry 109:35–47 [Google Scholar]
  104. Wandersman C, Delepelaire P. 2004. Bacterial iron sources: from siderophores to hemophores. Annu. Rev. Microbiol. 58:611–47 [Google Scholar]
  105. Wang P, Robert L, Pelletier J, Dang WL, Taddei F. et al. 2010. Robust growth of Escherichia coli. Curr. Biol. 20:1099–103 [Google Scholar]
  106. Ward DM, Weller R, Bateson MM. 1990. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65 [Google Scholar]
  107. West SA, Griffin AS, Gardner A, Diggle SP. 2006. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4:597–607 [Google Scholar]
  108. Winter C, Herndl GJ, Weinbauer MG. 2004. Diel cycles in viral infection of bacterioplankton in the North Sea. Aquat. Microb. Ecol. 35:207–16 [Google Scholar]
  109. Wright GD. 2005. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv. Drug Deliv. Rev. 57:1451–70 [Google Scholar]
  110. Yuen-Tsu NY, Yuan X, Velicer GJ. 2010. Adaptive evolution of an sRNA that controls Myxococcus development. Science 328:993 [Google Scholar]
  111. Zumsteg A, Bååth E, Stierli B, Zeyer J, Frey B. 2013. Bacterial and fungal community responses to reciprocal soil transfer along a temperature and soil moisture gradient in a glacier forefield. Soil Biol. Biochem. 61:121–32 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error