The Earth is warming, especially in polar areas in which winter temperatures and precipitation are expected to increase. Despite a growing research focus on winter climatic change, the impacts on Arctic terrestrial ecosystems remain poorly understood. Snow acts as an insulator, and depth changes affect the enhancement of thermally dependent reactions, such as microbial activity, affecting soil nutrient composition, respiration, and winter gas efflux. Snow depth and spring temperatures influence snowmelt timing, determining the start of plant growth and forage availability. Delays in winter onset affect tundra carbon balance, faunal hibernation, and migration but are unlikely to lengthen the plant growing season. Mild periods in winter followed by a return to freezing have negative consequences for plants and invertebrates, and the resultant ice layers act as barriers to foraging, triggering starvation of herbivores and their predators. In summary, knock-on effects between seasons and trophic levels have important consequences for biological activity, diversity, and ecosystem function.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aanes R, Sæther B-E, Smith FM, Cooper EJ, Wookey PA, Øritsland NA. 2002. The Arctic Oscillation predicts effects of climate change in two trophic levels in a high-arctic ecosystem. Ecol. Lett. 5:445–53 [Google Scholar]
  2. Abbandonato H. 2014. Autumn senescence response to a changing climate: effects of snow-depth on High Arctic plants MS thesis, Univ. Tromsø, Norway, 77 pp. [Google Scholar]
  3. Aerts R, Callaghan TV, Dorrepaal E, van Logtestijn RSP, Cornelissen JHC. 2009. Seasonal climate manipulations result in species-specific changes in leaf nutrient levels and isotopic composition in a sub-arctic bog. Funct. Ecol. 23:680–88 [Google Scholar]
  4. Arct. Clim. Impact Assess 2005. Arctic Climate Impact Assessment. New York: Cambridge Univ. Press1042 [Google Scholar]
  5. Avila-Jimenez ML, Coulson SJ. 2011. Can snow depth be used to predict the distribution of the high Arctic aphid Acyrthosiphon svalbardicum (Hemiptera: Aphididae) on Spitsbergen?. BMC Ecol. 11:13 [Google Scholar]
  6. Bale JS, Hayward SA. 2010. Insect overwintering in a changing climate. J. Exp. Biol. 213:980–94 [Google Scholar]
  7. Barber DG, Lukovich JV, Keogak J, Baryluk S, Fortier L, Henry GHR. 2008. The changing climate of the Arctic. Arctic 51:7–26 [Google Scholar]
  8. Beck PSA, Kalmbach E, Joly D, Stien A, Nilsen L. 2005. Modelling local distribution of an Arctic dwarf shrub indicates an important role for remote sensing of snow cover. Remote Sens. Environ. 98:110–21 [Google Scholar]
  9. Berdanier AB, Klein JA. 2011. Growing season length and soil moisture interactively constrain high elevation aboveground net primary production. Ecosystems 14:963–74 [Google Scholar]
  10. Bêty J, Gauthier G, Korpimäkki E, Giroux J-F. 2002. Shared predators and indirect trophic interactions: lemming cycles and arctic-nesting geese. J. Anim. Ecol. 71:88–98 [Google Scholar]
  11. Bewley JD, Black M. 1994. Seeds: Physiology of Development and Germination New York: Plenum Press445 pp. [Google Scholar]
  12. Bilbrough CJ, Welker JM, Bowman WD. 2000. Early spring nitrogen uptake by snow-covered plants: a comparison of arctic and alpine plant function under the snowpack. Arct. Antarct. Alp. Res. 32:4404–11 [Google Scholar]
  13. Bjerke JW. 2011. Winter climate change: ice encapsulation at mild subfreezing temperatures kills freeze-tolerant lichens. Environ. Exp. Bot. 72:404–8 [Google Scholar]
  14. Bjerke JW, Bokhorst S, Zielke M, Callaghan TV, Bowles FW, Phoenix GK. 2011. Contrasting sensitivity to extreme winter warming events of dominant sub-Arctic heathland bryophyte and lichen species. J. Ecol. 99:1481–88 [Google Scholar]
  15. Bokhorst S, Huiskes A, Jónsdóttir IS, Wahren H, Hollister R. et al. 2013. Variable temperature effects of Open Top Chambers at polar and alpine sites explained by irradiance and snow depth. Glob. Change Biol. 19:64–74 [Google Scholar]
  16. Bokhorst S, Phoenix GK, Bjerke JW, Callaghan TV, Huyer-Brugman F, Berg MP. 2012. Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa. Glob. Change Biol. 18:1152–62 [Google Scholar]
  17. Bokhorst SF, Bjerke JW, Tømmervik H, Callaghan TV, Phoenix GK. 2009. Winter warming events damage sub-Arctic vegetation: consistent evidence from an experimental manipulation and a natural event. J. Ecol. 97:1408–15 [Google Scholar]
  18. Boonstra R, Krebs CJ. 2006. Population limitation of the northern red-backed vole in the boreal forests of northern Canada. J. Anim. Ecol. 75:1269–84 [Google Scholar]
  19. Burke CM, Hedd A, Montevecchi WA, Regular PM. 2011. Effects of an Arctic Fox Visit to a Low Arctic Seabird Colony. Arctic 64:302–6 [Google Scholar]
  20. Camill P. 2005. Permafrost thaw accelerates in boreal peatlands during late 20th century. Clim. Change 68:135–52 [Google Scholar]
  21. Collins WB, Smith TS. 1991. Effects of wind-hardened snow on foraging by reindeer (Rangifer tarandus). Arctic 44:217–22 [Google Scholar]
  22. Convey P, Hopkins PW, Roberts SJ, Tyler AN. 2011. Global southern limit of flowering plants and moss peat accumulation. Polar Res. 30:10 [Google Scholar]
  23. Cooper EJ. 2004. Out of sight, out of mind: thermal acclimation of root respiration in Arctic Ranunculus. Arct. Antarct. Alp. Res. 36:308–13 [Google Scholar]
  24. Cooper EJ. 2006. Reindeer grazing reduces seed and propagule bank in the High Arctic. Can. J. Bot. 84:1740–52 [Google Scholar]
  25. Cooper EJ. 2010. Introduction to a special section: winter terrestrial ecology in Arctic and alpine tundra. Polar Res. 29:36–37 [Google Scholar]
  26. Cooper EJ, Dullinger S, Semenchuk P. 2011. Late snowmelt delays plant development and results in lower reproductive success in the High Arctic. Plant Sci. 180:157–67 [Google Scholar]
  27. Cooper EJ, Jónsdóttir IS, Pahud A. 2006. Grazing by captive Barnacle geese affects graminoid growth and productivity on Svalbard. Mem. Natl. Inst. Polar Res. 59:1–15 [Google Scholar]
  28. Cooper EJ, Smith FM, Wookey PA. 2001. Increased rainfall ameliorates the negative effect of trampling on the growth of High Arctic forage lichens. Symbiosis 31:153–71 [Google Scholar]
  29. Cooper EJ, Wookey PA. 2001. Field measurements of the growth rates of forage lichens, and the implications of grazing by Svalbard reindeer. Symbiosis 31:173–86 [Google Scholar]
  30. Coulson SJ, Hodkinson ID, Webb NR, Convey P. 2003. A high-Arctic population of Pyla fusca (Lepidoptera, Pyralidae) on Svalbard?. Polar Biol. 26:283–85 [Google Scholar]
  31. Coulson SJ, Leinaas HP, Ims RA, Søvik G. 2000. Experimental manipulation of the winter surface ice layer: the effects on a High Arctic soil microarthropod community. Ecography 23:299–306 [Google Scholar]
  32. Coumou D, Rahmstorf S. 2012. A decade of weather extremes. Nat. Clim. Change 2:491–96 [Google Scholar]
  33. Crawford RMM, Chapman HM, Hodge H. 1994. Anoxia tolerance in High Arctic vegetation. Arct. Alp. Res. 26:308–12 [Google Scholar]
  34. Czimczik CI, Welker JM. 2010. Radiocarbon content of CO2 respired from High Arctic tundra in Northwest Greenland. Arct. Antarct. Alp. Res. 42:342–50 [Google Scholar]
  35. DeMarco J, Mack MC, Bret-Harte MS. 2011. The effects of snow, soil microenvironment, and soil organic matter quality on N availability in three Alaskan Arctic plant communities. Ecosystems 14:804–17 [Google Scholar]
  36. den Herder M, Kytoviita M-M, Niemela P. 2003. Growth of reindeer lichens and effects of reindeer grazing on ground cover vegetation in a Scots pine forest and a subarctic heathland in Finnish Lapland. Ecography 26:3–12 [Google Scholar]
  37. Dollery R, Hodkinson ID, Jónsdóttir IS. 2006. Impact of warming and timing of snow melt on soil microarthropod assemblages associated with Dryas-dominated plant communities on Svalbard. Ecography 29:111–19 [Google Scholar]
  38. Duchesne D, Gauthier G, Berteaux D. 2011. Habitat selection, reproduction and predation of wintering lemmings in the Arctic. Oecologia 167:967–80 [Google Scholar]
  39. Ebbinge BS, Spaans B. 2002. How do Brent Geese (Branta b. bernicla) cope with evil? Complex relationships between predators and prey. J. Ornithol. 143:33–42 [Google Scholar]
  40. Eide NE, Stien A, Prestrud P, Yoccoz NG, Fuglei E. 2012. Reproductive responses to spatial and temporal prey availability in a coastal Arctic fox population. J. Anim. Ecol. 81:640–48 [Google Scholar]
  41. Euskirchen ES, McGuire AD, Chapin FS, Yi S, Thompson CC. 2009. Changes in vegetation in northern Alaska under scenarios of climate change, 2003–2100: implications for climate feedbacks. Ecol. App. 19:1022–43 [Google Scholar]
  42. Flessa H, Rodionov A, Guggenberger G, Fuchs H, Magdon P. et al. 2008. Landscape controls of CH4 fluxes in a catchment of the forest tundra ecotone in northern Siberia. Glob. Change Biol. 14:2040–56 [Google Scholar]
  43. Forchhammer MC, Post E, Berg TBG, Høye TT, Schmidt NM. 2005. Local-scale and short-term herbivore-plant spatial dynamics reflect influences of large scale climate. Ecology 86:2644–51 [Google Scholar]
  44. Franz TP, Eisenreich SJ. 1998. Snow scavenging of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in Minnesota. Environ. Sci. Technol. 32:1771–78 [Google Scholar]
  45. Fuglei E, Øritsland NA, Prestrud P. 2003. Local variation in arctic fox abundance on Svalbard, Norway. Polar Biol. 26:93–98 [Google Scholar]
  46. Gauthier G, Bêty J, Giroux JF, Rochefort L. 2004. Trophic interactions in a High Arctic snow goose colony. Integr. Comp. Biol. 44:119–29 [Google Scholar]
  47. Gilg O, Sittler BT, Hanski I. 2009. Climate change and cyclic predator-prey population dynamics in the High Arctic. Glob. Change Biol. 15:2634–52 [Google Scholar]
  48. Graae BJ, Alsos IG, Ejrnaes R. 2008. The impact of temperature regimes on development, dormancy breaking and germination of dwarf shrub seeds from arctic, alpine and boreal sites. Plant Ecol. 198:275–84 [Google Scholar]
  49. Groendahl L, Friborg T, Soegaard H. 2006. Temperature and snow-melt controls on interannual variability in carbon exchange in the high Arctic. Theor. Appl. Climatol. 88:111–25 [Google Scholar]
  50. Haei M, Rousk J, Ilstedt U, Öquist M, Bååth E, Laudon H. 2011. Effects of soil frost on growth, composition and respiration of the soil microbial decomposer community. Soil Biol. Biochem. 43:2069–77 [Google Scholar]
  51. Hallinger M, Manthey M, Wilmking M. 2010. Establishing a missing link: warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytol. 186:890–99 [Google Scholar]
  52. Hansen BB, Aanes R, Sæther B-E. 2010. Feeding-crater selection by high-arctic reindeer facing ice-blocked pastures. Can. J. Zool. 88:170–77 [Google Scholar]
  53. Hansen BS, Grøtan V, Aanes R, Sæther B-E, Stien A. et al. 2013. Climate events synchronize the dynamics of a resident vertebrate community in the High Arctic. Science 339:313–15 [Google Scholar]
  54. Hartley IP, Hopkins DW, Garnett MH, Sommerkorn M, Wookey PA. 2008. Soil microbial respiration in arctic soil does not acclimate to temperature. Ecol. Lett. 11:1092–100 [Google Scholar]
  55. Helle T, Aspi A. 1983. Effects of winter grazing by reindeer on vegetation. Oikos 40:337–43 [Google Scholar]
  56. Helle T, Kojola I. 2008. Demographics in an alpine reindeer herd: effects of density and winter weather. Ecography 31:221–30 [Google Scholar]
  57. Henry HAL. 2008. Climate change and soil freezing dynamics: historical trends and projected changes. Clim. Change 87:421–34 [Google Scholar]
  58. Hinkel KM, Hurd JK Jr. 2006. Permafrost destabilization and thermokarst following snow fence installation, Barrow, Alaska, U. S.A. Arct. Antarct. Alp. Res. 38:530–39 [Google Scholar]
  59. Høye TT, Mølgaard Ellebjerg S, Philipp M. 2007. The impact of climate on flowering in the High Arctic—the case of Dryas in a hybrid zone. Arct. Antarct. Alp. Res. 39:412–21 [Google Scholar]
  60. Ims RA, Henden JA, Killengreen ST. 2008. Collapsing population cycles. Trends Ecol. Evol. 23:79–86 [Google Scholar]
  61. Inouye DW. 2000. The ecological and evolutionary significance of frost in the context of climate change. Ecol. Lett. 3:457–63 [Google Scholar]
  62. Inouye DW. 2008. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89:353–62 [Google Scholar]
  63. Int. Arct. Sci. Comm 2010. Arctic climate change scenarios for the 21st century projected by the ACIA-designated models. Encyclopedia of Earth CJ Cleveland. Washington, DC: Environ. Inf. Coalit., Natl. Counc. Sci. Environ. [Google Scholar]
  64. Jentsch A, Kreyling J, Beirerkuhnlein C. 2007. A new generation of climate change experiments: events, not trends. Front. Ecol. Environ. 5:365–74 [Google Scholar]
  65. Jepsen JU, Kapari L, Hagen SB, Schott T, Vindstad OPL. et al. 2011. Rapid northwards expansion of a forest insect pest attributed to spring phenology matching with sub-Arctic birch. Glob. Change Biol. 17:2071–83 [Google Scholar]
  66. Juntilla O, Robberecht R. 1993. The influence of season and phenology on freezing tolerance in Silene acaulis L., a subarctic and arctic cushion plant of circumpolar distribution. Ann. Bot. 71:423–26 [Google Scholar]
  67. Kalberer SR, Wisniewski M, Arora R. 2006. Deacclimation and reacclimation of cold-hardy plants: current understanding and emerging concepts. Plant Sci. 171:3–16 [Google Scholar]
  68. Kohler J, Aanes R. 2004. Effect of winter snow and ground-icing on a Svalbard reindeer population: results of a simple snowpack model. Arct. Antarct. Alp. Res. 36:333–41 [Google Scholar]
  69. Kreyling J. 2010. Winter climate change: a critical factor for temperate vegetation performance. Ecology 91:1939–48 [Google Scholar]
  70. Lafleur PM, Humphreys ER. 2007. Spring warming and carbon dioxide exchange over low Arctic tundra in central Canada. Glob. Change Biol. 14:740–56 [Google Scholar]
  71. Larsen KS, Jonasson S, Michelsen A. 2002. Repeated freeze–thaw cycles and their effects on biological processes in two arctic ecosystem types. Appl. Soil Ecol. 21:187–95 [Google Scholar]
  72. Larter N, Nagy JA. 2001. Variation between snow conditions at Peary caribou and muskox feeding sites and elsewhere in foraging habitats on Banks Island in the Canadian High Arctic. Arct. Antarct. Alp. Res. 33:123–30 [Google Scholar]
  73. Lemke P, Ren J, Alley RB, Allison I, Carrasco J. et al. 2007. Observations: changes in snow, ice and frozen ground. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change DQS Solomon, M Manning, Z Chan, M Marquis, KB Averyt, N Tignor, HL Miller Jr 337–83 Cambridge, UK and New York: Cambridge Univ. Press [Google Scholar]
  74. Loison A, Langvatn R. 1998. Short and long term effects of winter and spring weather on growth and survival of red deer in Norway. Oecologia 116:489–500 [Google Scholar]
  75. Loonen MJJE, Tombre IM, Mehlum F. 1998. Development of an arctic barnacle goose colony: interactions between density and predation. Svalbard Goose Symposium F Mehlum, JM Black, J Madsen 67–79 Tromsø, Norway: Norsk Polarinstitutt Skrifter [Google Scholar]
  76. Løvenskiold HL. 1964. Avifauna Svalbardensis: With a Discussion on Graphical Distribution of the Birds in Spitsbergen and Adjacent Islands Oslo: Norsk Polarinstitutt460 pp. [Google Scholar]
  77. Mallik AU, Wdowiak JV, Cooper EJ. 2011. Growth and reproductive responses of Cassiope tetragona, a circumpolar evergreen shrub, to experimentally delayed snowmelt. Arct. Antarct. Alp. Res. 43:404–9 [Google Scholar]
  78. Mårell A, Hofgaard A, Danell K. 2006. Nutrient dynamics of reindeer forage species along snowmelt gradients at different ecological scales. Basic Appl. Ecol. 7:13–30 [Google Scholar]
  79. Martin K, Wiebe JL. 2004. Coping mechanisms of alpine and Arctic breeding birds: extreme weather and limitations to reproductive resilience. Integr. Comp. Biol. 44:177–85 [Google Scholar]
  80. Mastepanov M, Sigsgaard C, Dlugokencky EJ, Houweling S, Strom L. et al. 2008. Large tundra methane burst during onset of freezing. Nature 456:628–30 [Google Scholar]
  81. McMahon SK, Wallenstein MD, Schimel JP. 2009. Microbial growth in Arctic tundra soil at −2°C. Environ. Microbiol. Rep. 1:162–66 [Google Scholar]
  82. Mertens S, Nijs I, Heuer M, Kockelbergh F, Beyens L. et al. 2001. Influence of high temperature on end-of-season tundra CO2 exchange. Ecosystems 4:226–36 [Google Scholar]
  83. Mikan CJ, Schimel JP, Doyle AP. 2002. Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biol. Biochem. 34:1785–95 [Google Scholar]
  84. Miller FL, Gunn A. 2003. Catastrophic die-off of Peary caribou on the Western Queen Elizabeth Islands, Canadian High Arctic. Arctic 4:381–90 [Google Scholar]
  85. Mjaaseth RR, Hagen SB, Yoccoz NG, Ims RA. 2005. Phenology and abundance in relation to climatic variation in a sub-Arctic insect herbivore: mountain birch system. Oecologia 145:53–65 [Google Scholar]
  86. Molau U. 1997. Phenology and reproductive success in arctic plants: susceptibility to climate change. Global Change and Arctic Terrestrial Ecosystems WC Oechel, T Callaghan, T Gilmanov, JI Holten, B Maxwell, U Molau, B Sveinbjornsson 153–70 New York: Springer [Google Scholar]
  87. Morgner E, Elberling B, Strebel D, Cooper EJ. 2010. The importance of winter in annual ecosystem respiration in the High Arctic: effects of snow depth in two vegetation types. Polar Res. 29:58–74 [Google Scholar]
  88. Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T. et al. 2011. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6:15 [Google Scholar]
  89. Natali SM, Schuur EAG, Trucco C, Hicks Pries CE, Crummer KG, Baron Lopez AF. 2011. Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra. Glob. Change Biol. 17:1394–407 [Google Scholar]
  90. Nellemann CERPE. 1997. Predicting late winter distribution of muskoxen using an index of terrain ruggedness. Arct. Alp. Res. 29:334–38 [Google Scholar]
  91. Nielsen UN, Wall DH. 2013. The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic. Ecol. Lett. 16:409–19 [Google Scholar]
  92. Nilsen J. 1985. Light climate in Northern Areas. Plant Production in the North. Proc. Plant Adapt. Workshop, Tromsø, Norway, Sept. 4–9, 1983 A Kaurin, O Juntilla, J Nilsen 62–72 Tromsø, Norway: Nor. Univ. Press [Google Scholar]
  93. Nowinski NS, Taneva L, Trumbore SE, Welker JM. 2010. Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment. Oecologia 163:785–92 [Google Scholar]
  94. Olofsson J, Ericson L, Torp M, Stark S, Baxter R. 2011. Carbon remainder, rest Arctic tundra under increased snow cover mediated by a plant pathogen. Nat. Clim. Change 1:220–23 [Google Scholar]
  95. Olsson PQ, Sturm M, Racine CH, Romanovsky V, Liston GE. 2003. Five stages of the Alaskan arctic cold season with ecosystem implications. Arct. Antarct. Alp. Res. 35:74–81 [Google Scholar]
  96. Owen M, Black JM. 1989. Factors affecting the survival of Barnacle geese on migration from the breeding grounds. J. Anim. Ecol. 58:603–17 [Google Scholar]
  97. Parmentier FJW, van der Molen MK, van Huissteden J, Karsanaev SA, Kononov AV. et al. 2011. Longer growing seasons do not increase net carbon uptake in the northeastern Siberian tundra. J. Geophys. Res. 116:G04013 [Google Scholar]
  98. Pedersen ÅØ, Lier M, Routti H, Christiansen HH, Fuglei E. 2006. Co-feeding between Svalbard rock ptarmigan (Lagopus muta hyperborea) and Svalbard reindeer (Rangifer tarandus platyrhynchus). Arctic 59:61–64 [Google Scholar]
  99. Post E, Forchhammer MC. 2008. Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. 363:2369–75 [Google Scholar]
  100. Rayback S, Lini A, Henry GHR. 2011. Spatial variability of the dominant climate signal in Cassiope tetragona from sites in Arctic Canada. Arctic 64:98–114 [Google Scholar]
  101. Reid DG, Bilodeau F, Krebs CJ, Gauthier G, Kenney AJ. et al. 2012. Lemming winter habitat choice: a snow-fencing experiment. Oecologia 168:935–46 [Google Scholar]
  102. Repo T, Roitto M, Sutinen S. 2011. Does the removal of snowpack and the consequent changes in soil frost affect the physiology of Norway spruce needles. Environ. Exp. Bot. 72:387–96 [Google Scholar]
  103. Rieley G, Welker JM, Callaghan TV, Eglinton G. 1995. Epicuticular waxes of two arctic species: compositional differences in relation to winter snow cover. Phytochemistry 38:45–52 [Google Scholar]
  104. Rogers MC, Sullivan PF, Welker JM. 2011. Evidence of nonlinearity in the response of net ecosystem CO2 exchange to increasing levels of winter snow depth in the High Arctic of northwest Greenland. Arct. Antarct. Alp. Res. 43:95–106 [Google Scholar]
  105. Rumpf SB, Semenchuk SR, Dullinger S, Cooper EJ. 2014. Idiosyncratic responses of high arctic plants to changing snow regimes. PLOS ONE 9:2e86281 [Google Scholar]
  106. Saarinen T, Lundell R. 2010. Overwintering of Vaccinium vitis-idaea in two sub-Arctic microhabitats: a reciprocal transplantation experiment. Polar Res. 29:38–45 [Google Scholar]
  107. Saha SK, Rinke A, Dethloff K. 2006. Future winter extreme temperature and precipitation events in the Arctic. Geophys. Res. Lett. 33:15818 [Google Scholar]
  108. Saikkonen K, Taulavuori K, Hyvönen T, Gundel PE, Hamilton CE. et al. 2012. Climate change-driven species' range shifts filtered by photoperiodism. Nat. Clim. Change 2:239–42 [Google Scholar]
  109. Schaefer JA, Messier F. 1995. Winter foraging by muskoxen: a hierarchical approach to patch residence time and cratering behaviour. Oecologia 104:39–44 [Google Scholar]
  110. Schimel J, Balser TC, Wallenstein M. 2007. Microbial stress response physiology and its implications for ecosystem function. Ecology 88:1386–94 [Google Scholar]
  111. Schimel JP, Bilbrough C, Welker JM. 2004. The effect of increased snow depth on microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biol. Biochem. 36:217–27 [Google Scholar]
  112. Schmidt IK. 1999. Mineralization and microbial immobilization of N and P in arctic soils in relation to season, temperature and nutrient amendment. Appl. Soil Ecol. 11:147–60 [Google Scholar]
  113. Semenchuk PR, Christiansen CT, Morgner E, Grogan P, Elberling B, Cooper EJ. 2013a. Long-term experimentally deepened snow decreases summertime CO2 release rates in distinct High and Low Arctic tundra ecosystems. The influence of snow cover and cold-season temperatures on growing season processes PhD Thesis, Univ. Tromsø, Tromsø, Norway 110–54 [Google Scholar]
  114. Semenchuk PR, Elberling B, Amtorp C, Winkler J, Michelsen A, Cooper EJ. 2013b. Deeper snow alters soil nutrient availability, leaf nutrient status and plant growth in high Arctic tundra. The influence of snow cover and cold-season temperatures on growing season processes PhD Thesis, Univ. Tromsø, Tromsø, Norway 85–106 [Google Scholar]
  115. Semenchuk PR, Elberling B, Cooper EJ. 2013c. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard. Ecol. Evol. 3:2586–99 [Google Scholar]
  116. Serreze MC, Walsh JE, Chapin FS, Osterkamp T, Dyurgerov M. et al. 2000. Observational evidence of recent change in the northern high-latitude environment. Clim. Change 46:159–207 [Google Scholar]
  117. Sheriff MJ, Kenagy GJ, Richter M, Lee T, Toien O. et al. 2011. Phenological variation in annual timing of hibernation and breeding in nearby populations of Arctic ground squirrels. Proc. R. Soc. B-Biol. Sci. 278:2369–75 [Google Scholar]
  118. Shindell D, Miller R, Schmidt G, Pandolfo L. 1999. Simulations of recent northern winter climate trends by greenhouse-gas forcing. Nature 399:452–55 [Google Scholar]
  119. Skre O, Taulavuori K, Taulavuori E, Nilsen J, Igeland B, Laine K. 2008. The importance of hardening and winter temperature for growth in mountain birch populations. Environ. Exp. Bot. 62:254–66 [Google Scholar]
  120. Solomon S, Qin D, Manning M, Chan Z, Marquis M. et al. 2007. The physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change1–996 Cambridge, UK and New York: Cambridge Univ. Press [Google Scholar]
  121. Starr G, Oberbauer SF, Pop EW. 2000. Effects of lengthened growing season and soil warming on the phenology of Polygonum bistorta. Glob. Change Biol. 6:357–69 [Google Scholar]
  122. Stempniewicz L. 2006. Polar bear predatory behaviour toward molting barnacle geese and nesting glaucous gulls on Spitsbergen. Arctic 59:247–51 [Google Scholar]
  123. Sturm M, Schimel J, Michaelson G, Welker JM, Oberbauer SF. et al. 2005. Winter biological processes could help convert Arctic tundra to shrubland. BioScience 55:117–26 [Google Scholar]
  124. Sullivan PF, Welker JM, Arens SJT, Sveinbjörnsson B. 2008. Continuous estimates of CO2 efflux from arctic and boreal soils during the snow-covered season in Alaska. J. Geophys. Res. 113:G04009: [Google Scholar]
  125. Tews J, Ferguson MAD, Fahrig L. 2007a. Modeling density dependence and climatic disturbances in caribou: a case study from the Bathurst Island complex, Canadian High Arctic. J. Zool. 272:209–17 [Google Scholar]
  126. Tews J, Ferguson MAD, Fahrig L. 2007b. Potential net effects of climate change on High Arctic Peary caribou: lessons from a spatially explicit simulation model. Ecol. Model. 207:85–98 [Google Scholar]
  127. Thompson DWJ. 2001. Regional climate impacts of the Northern Hemisphere annular mode. Science 293:85–89 [Google Scholar]
  128. Tombre IM, Black MJ, Loonen MJJE. 1998a. Critical components in the dynamics of a barnacle goose colony: a sensitivity analysis. Proc. Svalbard Goose Symp., Oslo, Norway, Sept. 23–26, 1997. 20081–89 Tromsø, Norway: Norsk Polarinstitutt Skrifter [Google Scholar]
  129. Tombre IM, Mehlum F, Loonen MJJE. 1998b. The Kongsfjorden colony of barnacle geese: nest distributions and the use of breeding islands 1980–1997. Proc. Svalbard Goose Symp., Oslo, Norway, Sept. 23–26, 1997. 20057–65 Tromsø, Norway: Norsk Polarinstitutt Skrifter [Google Scholar]
  130. Torp M, Olofsson J, Witzell J, Baxter R. 2010. Snow-induced changes in dwarf birch chemistry increase moth larval growth rate and level of herbivory. Polar Biol. 33:693–702 [Google Scholar]
  131. Van Der Jeugd HP, Eichhorn G, Litvin KE, Stahl J, Larsson K. et al. 2009. Keeping up with early springs: rapid range expansion in an avian herbivore incurs a mismatch between reproductive timing and food supply. Glob. Change Biol. 15:1057–71 [Google Scholar]
  132. Van der Wal R, Madan N, Van Lieshout S, Dormann C, Langvatn R, Albon SD. 2000. Trading forage quality for quantity? Plant phenology and patch choice by Svalbard reindeer. Oecologia 123:108–15 [Google Scholar]
  133. Vindstad OP, Hagen SB, Jepsen JU, Kapari L, Schott T, Ims RA. 2011. Phenological diversity in the interactions between winter moth (Operophtera brumata) larvae and parasitoid wasps in sub-arctic mountain birch forest. Bull. Entomol. Res. 101:705–14 [Google Scholar]
  134. Vors LS, Boyce MS. 2009. Global declines of caribou and reindeer. Glob. Change Biol. 15:2626–33 [Google Scholar]
  135. Wahren CHA, Walker MD, Bret-Harte MS. 2005. Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment. Glob. Change Biol. 11:537–52 [Google Scholar]
  136. Walker MD, Walker DA, Welker JM, Arft AM, Bardsley T. et al. 1999. Long-term experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundra. Hydrol. Process. 13:2315–30 [Google Scholar]
  137. Walsh NE, McCabe TR, Welker JM, Parsons AN. 1997. Experimental manipulations of snow-depth: effects on nutrient content of caribou forage. Glob. Change Biol. 3:158–64 [Google Scholar]
  138. Ware C, Bergstrom DM, Müller E, Alsos IG. 2011. Humans introduce viable seeds to the Arctic on footwear. Biol. Invasions 14:567–77 [Google Scholar]
  139. Welker JM, Fahnestock JT, Jones MH. 2000. Annual CO2 flux in dry and moist arctic tundra: field responses to increases in summer temperatures and winter snow depth. Clim. Change 44:139–50 [Google Scholar]
  140. Welker JM, Rayback S, Henry GHR. 2005. Arctic and North Atlantic Oscillation phase changes are recorded in the isotopes (delta18O and delta13C) of Cassiope tetragona plants. Glob. Change Biol. 11:997–1002 [Google Scholar]
  141. Windsor J, Moore TR, Roulet NT. 1992. Episodic fluxes of methane from subarctic fens. Can. J. Soil Sci. 72:441–52 [Google Scholar]
  142. Wipf S. 2009. Phenology, growth, and fecundity of eight subarctic tundra species in response to snowmelt manipulations. Plant Ecol. 207:53–66 [Google Scholar]
  143. Wipf S, Rixen C. 2010. A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Res. 29:95–109 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error