We review patterns and causes of β-diversity in the deep-sea benthos at different spatial scales and for different body sizes. Changes in species composition occurring with depth are generally gradual, the rate of change being a function of the rate of descent. This gradual change can be interrupted by abrupt environmental shifts, such as oxygen minimum zones, and by major topographic features that alter oceanographic conditions. Changes in species composition with depth can involve both species replacement and species loss, leading to nestedness. Horizontal β-diversity is more moderate than that occurring with depth, except at upper bathyal zones impacted by coastal influences. At very large oceanic scales, both environmental filtering and dispersal limitation influence β-diversity. Although many ecological and evolutionary–historical factors must shape β-diversity in the deep sea, energy availability appears to structure community makeup at all scales examined. We recommend that standardized sampling protocols, statistical methods, and data archiving be used to direct future research.

[Erratum, Closure]

An erratum has been published for this article:
Toward a Conceptual Understanding of β-Diversity in the Deep-Sea Benthos

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aldea C, Olabarria C, Troncoso JS. 2008. Bathymetric zonation and diversity gradient of gastropods and bivalves in West Antarctica from the South Shetland Islands to the Bellingshausen Sea. Deep-Sea Res. I 55:350–68 [Google Scholar]
  2. Allen JA. 2008. Bivalvia of the deep Atlantic. Malacololgia 50:57–173 [Google Scholar]
  3. Atmar W, Patterson BD. 1993. The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96:373–82 [Google Scholar]
  4. Baselga A. 2010. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19:134–43 [Google Scholar]
  5. Baselga A. 2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob. Ecol. Biogeogr. 21:1223–32 [Google Scholar]
  6. Bett BJ. 2001. UK Atlantic Margin Environmental Survey: introduction and overview of bathyal benthic ecology. Cont. Shelf Res. 21:917–56 [Google Scholar]
  7. Billett DSM, Bett BJ, Rice AL, Thurston MH, Galéron J. et al. 2001. Long-term change in the megafauna of the Porcupine Abyssal Plain (NE Atlantic). Prog. Oceanogr. 50:325–48 [Google Scholar]
  8. Blake JA, Grassle JF. 1994. Benthic community structure on the U.S. South Atlantic slope off the Carolinas: spatial heterogeneity in a current-dominated system. Deep-Sea Res. II 41:835–74 [Google Scholar]
  9. Brandt A, Brökeland W, Brix S, Malyutina M. 2004. Diversity of Southern Ocean deep-sea Isopoda (Crustacea, Malacostraca)—a comparison with shelf data. Deep-Sea Res. II 51:1753–68 [Google Scholar]
  10. Brault S, Stuart CT, Wagstaff MC, McClain CR, Allen JA. et al. 2013a. Contrasting patterns of α- and β-diversity in deep-sea bivalves of the eastern and western North Atlantic. Deep-Sea Res. II 92:157–64 [Google Scholar]
  11. Brault S, Stuart CT, Wagstaff MC, Rex MA. 2013b. Geographic evidence for source-sink dynamics in deep-sea neogastropods of the eastern North Atlantic: an approach using nested analysis. Glob. Ecol. Biogeogr. 22:433–39 [Google Scholar]
  12. Brown JH. 1995. Macroecology Chicago: Univ. Chicago Press
  13. Buzas MA, Hayek L-AC, Culver SJ, Hayward BW, Osterman LE. 2013. Ecological and evolutionary consequences of benthic community stasis in the very deep sea. Paleobiology 40:102–12 [Google Scholar]
  14. Campbell Watts MC, Etter RJ, Rex MA. 1992. Effects of spatial and temporal scale on the relationship of surface pigment biomass to community structure in the deep-sea benthos. Deep-Sea Food Chains and the Global Carbon Cycle GT Rowe, V Pariente 245–54 London: Kluwer [Google Scholar]
  15. Carney RS. 2005. Zonation of deep biota on continental margins. Oceanogr. Mar. Biol. 43:211–78 [Google Scholar]
  16. Cartes JE, Sardà F. 1993. Zonation of deep-sea decapod fauna in the Catalan Sea (Western Mediterranean). Mar. Ecol. Prog. Ser. 94:27–34 [Google Scholar]
  17. Danovaro R, Bianchelli S, Gambi CC, Mea M, Zeppilli D. 2009. a-, β-, γ-, δ- and ϵ-diversity of deep-sea nematodes in canyons and open slopes of Northeast Atlantic and Mediterranean margins. Mar. Ecol. Prog. Ser. 396:197–209 [Google Scholar]
  18. Danovaro R, Della Croce N, Dell'Anno A, Pusceddu A. 2003. A depocenter of organic matter at 7800 m depth in the SE Pacific Ocean. Deep-Sea Res. I 50:1411–20 [Google Scholar]
  19. Danovaro R, Gambi CC, Lampadariou N, Tselepides A. 2008. Deep-sea nematode biodiversity in the Mediterranean basin: testing for longitudinal, bathymetric and energetic gradients. Ecography 31:231–44 [Google Scholar]
  20. De Leo FC, Smith CR, Rowden AA, Bowden DA, Clark MR. 2010. Submarine canyons: hotspots of benthic biomass and productivity in the deep sea. Proc. R. Soc. B 277:2738–92 [Google Scholar]
  21. Diaz R, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321:926–29 [Google Scholar]
  22. Etter RJ, Grassle JF. 1992. Patterns of species diversity in the deep sea as a function of sediment particle size diversity. Nature 360:576–78 [Google Scholar]
  23. Etter RJ, Mullineaux LS. 2001. Deep-sea communities. Marine Community Ecology MD Bertness, SD Gaines, ME Hay 367–94 Sunderland, MA: Sinauer [Google Scholar]
  24. Forbes E, Godwin-Austen R. 1859. The Natural History of the European Seas London: Van Voorst
  25. Gage JD, Tyler PA. 1981. Non-viable seasonal settlement of larvae of the upper bathyal brittlestar Ophiocten gracilis in the Rockall Trough abyssal. Mar. Biol. 64:153–61 [Google Scholar]
  26. Gage JD, Tyler PA. 1991. Deep-Sea Biology: A Natural History of Organisms at the Deep-Sea Floor. Cambridge UK: Cambridge Univ. Press
  27. Gambi CC, Pusceddu A, Benedetti-Cecchi L, Danovaro R. 2013. Species richness, species turnover and functional diversity in nematodes of the deep Mediterranean Sea: searching for drivers at different spatial scales. Glob. Ecol. Biogeogr. 23:24–39 [Google Scholar]
  28. Gooday AJ, Bett BJ, Escobar E, Ingole B, Levin LA. et al. 2010. Habitat heterogeneity and its influence on benthic biodiversity in oxygen minimum zones. Mar. Ecol. 31:125–47 [Google Scholar]
  29. Grassle JF. 1989. Species diversity in deep-sea communities. Trends Ecol. Evol. 4:12–15 [Google Scholar]
  30. Grassle JF, Maciolek NJ. 1992. Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples. Am. Nat. 193:313–41 [Google Scholar]
  31. Grassle JF, Sanders HL. 1973. Life histories and the role of disturbance. Deep-Sea Res. 34:313–41 [Google Scholar]
  32. Grassle JF, Sanders HL, Hessler RR, Rowe GT, McLellan T. 1975. Pattern and zonation: a study of the bathyal megafauna using the research submersible Alvin. Deep-Sea Res. 22:457–81 [Google Scholar]
  33. Grassle JF, Sanders HL, Smith WK. 1979. Faunal changes with depth in the deep-sea benthos. Ambio Special Rep. 6:47–50 [Google Scholar]
  34. Haedrich RL, Rowe GT, Polloni PT. 1975. Zonation and faunal composition of epibenthic populations on the continental slope south of New England. J. Mar. Res. 33:191–212 [Google Scholar]
  35. Haedrich RL, Rowe GT, Polloni PT. 1980. The megabenthic fauna in the deep sea south of New England, USA. Mar. Biol. 57:165–79 [Google Scholar]
  36. Hecker B. 1990. Variation in megafaunal assemblages on the continental margin south of New England. Deep-Sea Res. A 37:37–57 [Google Scholar]
  37. Hecker B. 1994. Unusual megafaunal assemblages on the continental slope off Cape Hatteras. Deep-Sea Res. II 41:809–34 [Google Scholar]
  38. Helly JJ, Levin LA. 2004. Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Res. I 51:1159–68 [Google Scholar]
  39. Hurlbert SH. 1990. Spatial distribution of the montane unicorn. Oikos 58:257–71 [Google Scholar]
  40. Johnson NA, Campbell JW, Moore TS, Rex MA, Etter RJ. et al. 2007. The relationship between the standing stock of deep-sea macrobenthos and surface production in the western North Atlantic. Deep-Sea Res. I 54:1350–60 [Google Scholar]
  41. Jones NS, Sanders HL. 1972. Distribution of Cumacea in the deep Atlantic. Deep-Sea Res. 19:737–45 [Google Scholar]
  42. Jumars PA. 1975. Environmental grain and polychaete species' diversity in a bathyal community. Mar. Biol. 30:253–66 [Google Scholar]
  43. Jumars PA. 1976. Deep-sea species diversity: Does it have a characteristic scale?. J. Mar. Res. 34:217–46 [Google Scholar]
  44. Jumars PA. 1978. Spatial autocorrelation with RUM: vertical and horizontal structure of a bathyal benthic community. Deep-Sea Res. 25:589–604 [Google Scholar]
  45. Jumars PA, Eckman J. 1983. Spatial structure within deep-sea benthic communities. The Sea GT Rowe 399–451 New York: Wiley [Google Scholar]
  46. Jumars PA, Wheatcroft RA. 1989. Responses of benthos to changing food quality and quantity, with a focus on deposit feeding and bioturbation. Productivity of the Ocean: Past and Present WH Berger, VS Smetacek, G Wefer 235–53 New York: Wiley [Google Scholar]
  47. Knudsen J. 1970. The systematics and biology of abyssal and hadal Bivalvia. Galathea Rep. 11:7–241 [Google Scholar]
  48. Lamont PA, Gage JD, Tyler PA. 1995. Deep-sea macrobenthic communities at contrasting sites off Portugal, preliminary results: II Spatial dispersion. Int. Rev. gesamten Hydrobiol. Hydrogr. 80:251–65 [Google Scholar]
  49. Leduc D, Rowden AA, Bowden DA, Nodder SD, Probert PK. et al. 2012. Nematode beta diversity on the continental slope of New Zealand: spatial patterns and environmental drivers. Mar. Ecol. Prog. Ser. 454:37–52 [Google Scholar]
  50. Legendre P. 2008. Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis. J. Plant Ecol. 1:3–8 [Google Scholar]
  51. Leprieur F, Tedesco PA, Hugueny B, Beauchard O, Durr HH. et al. 2011. Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecol. Lett. 14:325–34 [Google Scholar]
  52. Levin L. 2003. Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanogr. Mar. Biol. 41:1–45 [Google Scholar]
  53. McClain CR. 2005. Bathymetric patterns of morphological disparity in deep-sea gastropods from the western North Atlantic basin. Evolution 59:1492–99 [Google Scholar]
  54. McClain CR, Allen AP, Tittensor DP, Rex MA. 2012a. Energetics of life on the deep seafloor. PNAS 109:15366–71 [Google Scholar]
  55. McClain CR, Barry J. 2010. Habitat heterogeneity, biogenic disturbance, and resource availability work in concert to regulate biodiversity in deep submarine canyons. Ecology 91:964–76 [Google Scholar]
  56. McClain CR, Hardy S. 2010. The dynamics of biogeographic ranges in the deep sea. Proc. R. Soc. B 277:3533–46 [Google Scholar]
  57. McClain CR, Nekola JC, Kuhnz L, Barry JP. 2011. Local-scale turnover on the deep Pacific floor. Mar. Ecol. Prog. Ser. 442:193–200 [Google Scholar]
  58. McClain CR, Stegen JC, Hurlbert AH. 2012b. Dispersal, niche dynamics, and oceanic patterns in beta-diversity in deep-sea bivalves. Proc. R. Soc. B 279:1933–2002 [Google Scholar]
  59. Moreno RA, Rivadeneira MM, Hernández CE, Sampértegui S, Rozbaczylo N. 2008. Bathymetric gradient of polychaete richness on the southeastern Pacific coast of Chile. Glob. Ecol. Biogeogr. 17:415–23 [Google Scholar]
  60. Narayanaswamy BE, Bett BJ, Hughes DJ. 2010. Deep-water macrofaunal diversity in the Faroe–Shetland region (NE Atlantic): a margin subject to an unusual thermal regime. Mar. Ecol. 31:237–46 [Google Scholar]
  61. Nekola JC, White PS. 1999. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26:867–78 [Google Scholar]
  62. Olabarria C. 2005. Patterns of bathymetric zonation of bivalves in the Porcupine Seabight and adjacent Abyssal Plain, NE Atlantic. Deep-Sea Res. I 52:15–31 [Google Scholar]
  63. Patterson GLJ, Wilson GDF, Cosson N, Lamont PA. 1998. Hessler and Jumars (1974) revisited: abyssal polychaete assemblages from the Atlantic and Pacific. Deep-Sea Res. II 45:1–3225–51 [Google Scholar]
  64. Rex MA. 1977. Zonation in deep-sea gastropods: the importance of biological interactions to rates of zonation. Eur. Symp. Mar. Biol. 11:521–30 [Google Scholar]
  65. Rex MA. 1981. Community structure in the deep-sea benthos. Annu. Rev. Ecol. Syst. 12:331–53 [Google Scholar]
  66. Rex MA, Etter RJ. 2010. Deep-Sea Biodiversity: Pattern and Scale Cambridge, MA: Harvard Univ. Press
  67. Rex MA, Etter RJ, Morris JS, Crouse J, McClain CR. et al. 2006. Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Mar. Ecol. Prog. Ser. 317:1–8 [Google Scholar]
  68. Rex MA, McClain CR, Johnson NA, Etter RJ, Allen JA. et al. 2005. A source–sink hypothesis for abyssal biodiversity. Am. Nat. 165:163–78 [Google Scholar]
  69. Rodríguez-Gironés MA, Santamaría L. 2006. A new algorithm to calculate the nestedness temperature of presence–absence matrices. J. Biogeogr. 33:924–35 [Google Scholar]
  70. Rowe GT, Kennicutt MC. 2008. The Deep Gulf of Mexico Benthos Program. Deep-Sea Res. II 55:2536–711 [Google Scholar]
  71. Rowe GT, Menzies RJ. 1969. Zonation of large benthic invertebrates in the deep sea off the Carolinas. Deep-Sea Res. 16:531–37 [Google Scholar]
  72. Smith CR. 1985. Food for the deep sea: utilization, dispersal, and flux of nekton falls at the Santa Catalina Basin floor. Deep-Sea Res. 32:417–22 [Google Scholar]
  73. Smith CR, Jumars PA, DeMaster DJ. 1986. In situ studies of megafaunal mounds indicate rapid sediment turnover and community response at the deep-sea floor. Nature 323:251–53 [Google Scholar]
  74. Snelgrove PVR, Grassle JF, Petrecca RF. 1992. The role of food patches in maintaining high deep-sea diversity: field experiments with hydrodynamically unbiased colonization trays. Limnol. Oceanogr. 37:1543–50 [Google Scholar]
  75. Snelgrove PVR, Smith CR. 2002. A riot of species in an environmental calm: the paradox of the species-rich deep-sea floor. Oceanogr. Mar. Biol. 40:311–42 [Google Scholar]
  76. Soininen J, Lennon JJ, Hillebrand H. 2007a. A multivariate analysis of beta diversity across organisms and environments. Ecology 88:2830–38 [Google Scholar]
  77. Soininen J, McDonald R, Hillebrand H. 2007b. The distance decay of similarity in ecological communities. Ecography 30:3–12 [Google Scholar]
  78. Stramma L, Schmidtko S, Levin LA, Johnson GC. 2010. Ocean oxygen minima expansions and their biological impacts. Deep-Sea Res. I 57:587–97 [Google Scholar]
  79. Sun X, Corliss BH, Brown CW, Showers WJ. 2006. The effect of primary productivity and seasonality on the distribution of deep-sea benthic foraminifera in the North Atlantic. Deep-Sea Res. I 53:28–47 [Google Scholar]
  80. Swenson NG. 2011. Phylogenetic beta diversity metrics, trait evolution and inferring the functional beta diversity of communities. PLOS ONE 6:e21264 [Google Scholar]
  81. Thistle D. 1978. Harpacticoid dispersion patterns: implications for deep-sea diversity maintenance. J. Mar. Res. 36:377–97 [Google Scholar]
  82. Thistle D. 1983. The role of biologically produced habitat heterogeneity in deep-sea diversity maintenance. Deep-Sea Res. 30:1235–45 [Google Scholar]
  83. Thomas E, Gooday AJ. 1996. Cenozoic deep-sea benthic foraminifers: tracers for changes in ocean productivity?. Geology 24:355–58 [Google Scholar]
  84. Tittensor DP, Rex MA, Stuart CT, McClain CR, Smith CR. 2011. Species–energy relationships in deep-sea molluscs. Biol. Lett. 7:718–22 [Google Scholar]
  85. Ulrich W, Almeida-Neto M, Gotelli NJ. 2009. A consumer's guide to nestedness analysis. Oikos 118:3–17 [Google Scholar]
  86. Vanreusel A, Fonseca G, Danovaro R, da Silva MC, Estreves A. et al. 2010. The contribution of deep-sea macrohabitat heterogeneity to global nematode diversity. Mar. Ecol. 31:6–20 [Google Scholar]
  87. Vetter EW, Smith CR, De Leo FC. 2010. Hawaiian hotspots: enhanced megafaunal abundance and diversity in submarine canyons on the oceanic islands of Hawaii. Mar. Ecol. 31:183–99 [Google Scholar]
  88. Wagstaff MC, Howell KL, Bett BJ, Billett DSM, Brault S. et al. 2014. β-diversity of deep-sea holothurians and asteroids along a bathymetric gradient (NE Atlantic). Mar. Ecol. Prog. Ser. 508:177–185 [Google Scholar]
  89. Watling L. 2009. Biogeographic provinces in the Atlantic deep sea determined from cumacean distribution patterns. Deep-Sea Res. II 56:1747–53 [Google Scholar]
  90. Wei C-L, Rowe GT. 2009. Faunal zonation of large epibenthic invertebrates off North Carolina revisited. Deep-Sea Res. II 56:1830–33 [Google Scholar]
  91. Wei C-L, Rowe GT, Haedrich RL, Boland GS. 2012. Long-term observations of epibenthic fish zonation in the deep Northern Gulf of Mexico. PLOS ONE 7:e46707 [Google Scholar]
  92. Wei C-L, Rowe GT, Escobar-Briones E, Boetius A, Soltwedel T. et al. 2010a. Global patterns and predictions of seafloor biomass using random forests. PLOS ONE 5:e15323 [Google Scholar]
  93. Wei C-L, Rowe GT, Hubbard GF, Scheltema AH, Wilson GDF. et al. 2010b. Bathymetric zonation of deep-sea macrofauna in relation to export of surface phytoplankton production. Mar. Ecol. Prog. Ser. 399:1–14 [Google Scholar]
  94. Weisshappel JBF, Svavarsson J. 1998. Benthic amphipods (Crustacea: Malacostraca) in Icelandic waters: diversity in relation to faunal patterns from shallow to intermediate deep Arctic and North Atlantic Oceans. Mar. Biol. 131:133–43 [Google Scholar]
  95. Wilson GDF. 1991. Functional morphology and evolution of isopod genitalia. Crustacean Sexual Biology R Bauer, J Martin 228–45 New York: Columbia Univ. Press [Google Scholar]
  96. Wilson GDF. 1998. Historical influences on deep-sea isopod diversity in the Atlantic Ocean. Deep-Sea Res. II 45:279–301 [Google Scholar]
  97. Wilson GDF. 2008. Local and regional species diversity of benthic Isopoda (Crustacea) in the deep Gulf of Mexico. Deep-Sea Res. II 55:2634–49 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error