Biologists have long observed that physiological and developmental processes are insensitive, or robust, to many genetic and environmental perturbations. A complete understanding of the evolutionary causes and consequences of this robustness is lacking. Recent progress has been made in uncovering the regulatory mechanisms that underlie environmental robustness in particular. Less is known about robustness to the effects of mutations, and indeed the evolution of mutational robustness remains a controversial topic. The controversy has spread to related topics, in particular the evolutionary relevance of cryptic genetic variation. This review aims to synthesize current understanding of robustness mechanisms and to cut through the controversy by shedding light on what is and is not known about mutational robustness. Some studies have confused mutational robustness with nonadditive interactions between mutations (epistasis). We conclude that a profitable way forward is to focus investigations (and rhetoric) less on mutational robustness and more on epistasis.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alon U. 2007. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8:450–61 [Google Scholar]
  2. Ancel LW, Fontana W. 2000. Plasticity, evolvability, and modularity in RNA. J. Exp. Zool. 288:242–83 [Google Scholar]
  3. Baldwin JM. 1896. A new factor in evolution. Am. Nat. 30:441–51 [Google Scholar]
  4. Bar-Even A, Paulsson J, Maheshri N, Carmi M, O'Shea E. et al. 2006. Noise in protein expression scales with natural protein abundance. Nat. Genet. 38:636–43 [Google Scholar]
  5. Becskei A, Serrano L. 2000. Engineering stability in gene networks by autoregulation. Nature 405:590–93 [Google Scholar]
  6. Behera N, Nanjundiah V. 2004. Phenotypic plasticity can potentiate rapid evolutionary change. J. Theor. Biol. 226:177–84 [Google Scholar]
  7. Benazet JD, Bischofberger M, Tiecke E, Goncalves A, Martin JF. et al. 2009. A self-regulatory system of interlinked signaling feedback loops controls mouse limb patterning. Science 323:1050–53 [Google Scholar]
  8. Bergman A, Siegal ML. 2003. Evolutionary capacitance as a general feature of complex gene networks. Nature 424:549–52 [Google Scholar]
  9. Blake WJ, Balazsi G, Kohanski MA, Isaacs FJ, Murphy KF. et al. 2006. Phenotypic consequences of promoter-mediated transcriptional noise. Mol. Cell 24:853–65 [Google Scholar]
  10. Blake WJ, Kærn M, Cantor CR, Collins JJ. 2003. Noise in eukaryotic gene expression. Nature 422:633–37 [Google Scholar]
  11. Bloom JD, Lu Z, Chen D, Raval A, Venturelli OS, Arnold FH. 2007. Evolution favors protein mutational robustness in sufficiently large populations. BMC Biol. 5:29 [Google Scholar]
  12. Borenstein E, Ruppin E. 2006. Direct evolution of genetic robustness in microRNA. Proc. Natl. Acad. Sci. USA 103:6593–98 [Google Scholar]
  13. Burch CL, Chao L. 2004. Epistasis and its relationship to canalization in the RNA virus φ6. Genetics 167:559–67 [Google Scholar]
  14. Carey LB, van Dijk D, Sloot PM, Kaandorp JA, Segal E. 2013. Promoter sequence determines the relationship between expression level and noise. PLOS Biol. 11:e1001528 [Google Scholar]
  15. Cassidy JJ, Jha AR, Posadas DM, Giri R, Venken KJ. et al. 2013. miR-9a minimizes the phenotypic impact of genomic diversity by buffering a transcription factor. Cell 155:1556–67 [Google Scholar]
  16. Charles H, Heddi A, Guillaud J, Nardon C, Nardon P. 1997. A molecular aspect of symbiotic interactions between the weevil Sitophilus oryzae and its endosymbiotic bacteria: over-expression of a chaperonin. Biochem. Biophys. Res. Commun. 239:769–74 [Google Scholar]
  17. Chen B, Wagner A. 2012. Hsp90 is important for fecundity, longevity, and buffering of cryptic deleterious variation in wild fly populations. BMC Evol. Biol. 12:25 [Google Scholar]
  18. Clark NL, Alani E, Aquadro CF. 2012. Evolutionary rate covariation reveals shared functionality and coexpression of genes. Genome Res. 22:714–20 [Google Scholar]
  19. Cooper TF, Morby AP, Gunn A, Schneider D. 2006. Effect of random and hub gene disruptions on environmental and mutational robustness in Escherichia coli. BMC Genomics 7:237 [Google Scholar]
  20. Denby CM, Im JH, Yu RC, Pesce CG, Brem RB. 2012. Negative feedback confers mutational robustness in yeast transcription factor regulation. Proc. Natl. Acad. Sci. USA 109:3874–78 [Google Scholar]
  21. Deutschbauer AM, Jaramillo DF, Proctor M, Kumm J, Hillenmeyer ME. et al. 2005. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169:1915–25 [Google Scholar]
  22. Dickinson WJ, Seger J. 1999. Cause and effect in evolution. Nature 399:30 [Google Scholar]
  23. Draghi JA, Parsons TL, Wagner GP, Plotkin JB. 2010. Mutational robustness can facilitate adaptation. Nature 463:353–55 [Google Scholar]
  24. ENCODE Proj. Consort., Bernstein BE, Birney E, Dunham I, Green ED et al. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74 [Google Scholar]
  25. Fares MA, Moya A, Barrio E. 2004. GroEL and the maintenance of bacterial endosymbiosis. Trends Genet. 20:413–16 [Google Scholar]
  26. Fares MA, Ruiz-Gonzalez MX, Moya A, Elena SF, Barrio E. 2002. Endosymbiotic bacteria: groEL buffers against deleterious mutations. Nature 417:398 [Google Scholar]
  27. Ferrada E, Wagner A. 2010. Evolutionary innovations and the organization of protein functions in genotype space. PLOS ONE 5:e14172 [Google Scholar]
  28. Ferrada E, Wagner A. 2012. A comparison of genotype-phenotype maps for RNA and proteins. Biophys. J. 102:1916–25 [Google Scholar]
  29. Fraser D, Kærn M. 2009. A chance at survival: gene expression noise and phenotypic diversification strategies. Mol. Microbiol. 71:1333–40 [Google Scholar]
  30. Fraser HB, Hirsh AE, Giaever G, Kumm J, Eisen MB. 2004. Noise minimization in eukaryotic gene expression. PLOS Biol. 2:E137 [Google Scholar]
  31. Fraser HB, Schadt EE. 2010. The quantitative genetics of phenotypic robustness. PLOS ONE 5:e8635 [Google Scholar]
  32. Freeman M. 2000. Feedback control of intercellular signalling in development. Nature 408:313–19 [Google Scholar]
  33. Gangaraju VK, Yin H, Weiner MM, Wang J, Huang XA, Lin H. 2011. Drosophila Piwi functions in Hsp90-mediated suppression of phenotypic variation. Nat. Genet. 43:153–58 [Google Scholar]
  34. Giacomelli MG, Hancock AS, Masel J. 2007. The conversion of 3′ UTRs into coding regions. Mol. Biol. Evol. 24:457–64 [Google Scholar]
  35. Gibson G. 2009. Decanalization and the origin of complex disease. Nat. Rev. Genet. 10:134–40 [Google Scholar]
  36. Goldsmith M, Tawfik DS. 2009. Potential role of phenotypic mutations in the evolution of protein expression and stability. Proc. Natl. Acad. Sci. USA 106:6197–202 [Google Scholar]
  37. Griswold CK, Masel J. 2009. Complex adaptations can drive the evolution of the capacitor [PSI+], even with realistic rates of yeast sex. PLOS Genet. 5:e1000517 [Google Scholar]
  38. Hartl DL, Dykhuizen DE, Dean AM. 1985. Limits of adaptation: the evolution of selective neutrality. Genetics 111:655–74 [Google Scholar]
  39. Hayden EJ, Ferrada E, Wagner A. 2011. Cryptic genetic variation promotes rapid evolutionary adaptation in an RNA enzyme. Nature 474:92–95 [Google Scholar]
  40. Hermisson J, Wagner GP. 2004. The population genetic theory of hidden variation and genetic robustness. Genetics 168:2271–84 [Google Scholar]
  41. Hertel J, Lindemeyer M, Missal K, Fried C, Tanzer A. et al. 2006. The expansion of the metazoan microRNA repertoire. BMC Genomics 7:25 [Google Scholar]
  42. Hilgers V, Bushati N, Cohen SM. 2010. Drosophila microRNAs 263a/b confer robustness during development by protecting nascent sense organs from apoptosis. PLOS Biol. 8:e1000396 [Google Scholar]
  43. Hornstein E, Shomron N. 2006. Canalization of development by microRNAs. Nat. Genet. 38:Suppl.S20–24 [Google Scholar]
  44. Hornung G, Bar-Ziv R, Rosin D, Tokuriki N, Tawfik DS. et al. 2012. Noise-mean relationship in mutated promoters. Genome Res. 22:2409–17 [Google Scholar]
  45. Hsieh YY, Hung PH, Leu JY. 2013. Hsp90 regulates nongenetic variation in response to environmental stress. Mol. Cell 50:82–92 [Google Scholar]
  46. Jarosz DF, Lindquist S. 2010. Hsp90 and environmental stress transform the adaptive value of natural genetic variation. Science 330:1820–24 [Google Scholar]
  47. Jarosz DF, Taipale M, Lindquist S. 2010. Protein homeostasis and the phenotypic manifestation of genetic diversity: principles and mechanisms. Annu. Rev. Genet. 44:189–216 [Google Scholar]
  48. Kacser H, Burns JA. 1981. The molecular basis of dominance. Genetics 97:639–66 [Google Scholar]
  49. Kawecki TJ. 2000. The evolution of genetic canalization under fluctuating selection. Evolution 54:1–12 [Google Scholar]
  50. Kellis M, Birren BW, Lander ES. 2004. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617–24 [Google Scholar]
  51. Lancaster AK, Bardill JP, True HL, Masel J. 2010. The spontaneous appearance rate of the yeast prion [PSI+] and its implications for the evolution of the evolvability properties of the [PSI+] system. Genetics 184:393–400 [Google Scholar]
  52. Landry CR, Rifkin SA. 2012. The genotype-phenotype maps of systems biology and quantitative genetics: distinct and complementary. Adv. Exp. Med. Biol. 751:371–98 [Google Scholar]
  53. Lauring AS, Frydman J, Andino R. 2013. The role of mutational robustness in RNA virus evolution. Nat. Rev. Microbiol. 11:327–36 [Google Scholar]
  54. Lehner B. 2010. Genes confer similar robustness to environmental, stochastic, and genetic perturbations in yeast. PLOS ONE 5:e9035 [Google Scholar]
  55. Levy SF, Siegal ML. 2008. Network hubs buffer environmental variation in Saccharomyces cerevisiae. PLOS Biol. 6:e264 [Google Scholar]
  56. Levy SF, Siegal ML. 2012. The robustness continuum. Adv. Exp. Med. Biol. 751:431–52 [Google Scholar]
  57. Levy SF, Ziv N, Siegal ML. 2012. Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant. PLOS Biol. 10:e1001325 [Google Scholar]
  58. Li X, Cassidy JJ, Reinke CA, Fischboeck S, Carthew RW. 2009. A microRNA imparts robustness against environmental fluctuation during development. Cell 137:273–82 [Google Scholar]
  59. Liefting M, Hoffmann AA, Ellers J. 2009. Plasticity versus environmental canalization: population differences in thermal responses along a latitudinal gradient in Drosophila serrata. Evolution 63:1954–63 [Google Scholar]
  60. Macneil LT, Walhout AJ. 2011. Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression. Genome Res. 21:645–57 [Google Scholar]
  61. Maisnier-Patin S, Roth JR, Fredriksson A, Nystrom T, Berg OG, Andersson DI. 2005. Genomic buffering mitigates the effects of deleterious mutations in bacteria. Nat. Genet. 37:1376–79 [Google Scholar]
  62. Masel J. 2005. Evolutionary capacitance may be favored by natural selection. Genetics 170:1359–71 [Google Scholar]
  63. Masel J. 2006. Cryptic genetic variation is enriched for potential adaptations. Genetics 172:1985–91 [Google Scholar]
  64. Masel J. 2013. Q&A: evolutionary capacitance. BMC Biol. 11:103 [Google Scholar]
  65. Masel J, Bergman A. 2003. The evolution of the evolvability properties of the yeast prion [PSI+]. Evolution 57:1498–512 [Google Scholar]
  66. Masel J, Siegal ML. 2009. Robustness: mechanisms and consequences. Trends Genet. 25:395–403 [Google Scholar]
  67. McBride RC, Ogbunugafor CB, Turner PE. 2008. Robustness promotes evolvability of thermotolerance in an RNA virus. BMC Evol. Biol. 8:231 [Google Scholar]
  68. Meiklejohn CD, Hartl DL. 2002. A single mode of canalization. Trends Ecol. Evol. 17:468–73 [Google Scholar]
  69. Milloz J, Duveau F, Nuez I, Felix MA. 2008. Intraspecific evolution of the intercellular signaling network underlying a robust developmental system. Genes Dev. 22:3064–75 [Google Scholar]
  70. Montville R, Froissart R, Remold SK, Tenaillon O, Turner PE. 2005. Evolution of mutational robustness in an RNA virus. PLOS Biol. 3:e381 [Google Scholar]
  71. Moran NA. 1992. The evolutionary maintenance of alternative phenotypes. Am. Nat. 139:971–89 [Google Scholar]
  72. Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M. et al. 2006. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441:840–46 [Google Scholar]
  73. Osella M, Bosia C, Cora D, Caselle M. 2011. The role of incoherent microRNA-mediated feedforward loops in noise buffering. PLOS Comput. Biol. 7:e1001101 [Google Scholar]
  74. Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A. 2002. Regulation of noise in the expression of a single gene. Nat. Genet. 31:69–73 [Google Scholar]
  75. Paaby AB, Rockman MV. 2014. Cryptic genetic variation: evolution's hidden substrate. Nat. Rev. Genet. 15247–58 [Google Scholar]
  76. Paulsen M, Legewie S, Eils R, Karaulanov E, Niehrs C. 2011. Negative feedback in the bone morphogenetic protein 4 (BMP4) synexpression group governs its dynamic signaling range and canalizes development. Proc. Natl. Acad. Sci. USA 108:10202–7 [Google Scholar]
  77. Pelaez N, Carthew RW. 2012. Biological robustness and the role of microRNAs: a network perspective. Curr. Top. Dev. Biol. 99:237–55 [Google Scholar]
  78. Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP. 2010. Phenotypic plasticity's impacts on diversification and speciation. Trends Ecol. Evol. 25:459–67 [Google Scholar]
  79. Phillips PC. 2008. Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat. Rev. Genet. 9:855–67 [Google Scholar]
  80. Plotkin JB, Dushoff J. 2003. Codon bias and frequency-dependent selection on the hemagglutinin epitopes of influenza A virus. Proc. Natl. Acad. Sci. USA 100:7152–57 [Google Scholar]
  81. Plotkin JB, Dushoff J, Desai MM, Fraser HB. 2006. Codon usage and selection on proteins. J. Mol. Evol. 63:635–53 [Google Scholar]
  82. Plotkin JB, Dushoff J, Fraser HB. 2004. Detecting selection using a single genome sequence of M. tuberculosis and P. falciparum. Nature 428:942–45 [Google Scholar]
  83. Price N, Cartwright RA, Sabath N, Graur D, Azevedo RB. 2011. Neutral evolution of robustness in Drosophila microRNA precursors. Mol. Biol. Evol. 28:2115–23 [Google Scholar]
  84. Price TD, Qvarnstrom A, Irwin DE. 2003. The role of phenotypic plasticity in driving genetic evolution. Proc. R. Soc. B-Biol. Sci. 270:1433–40 [Google Scholar]
  85. Ramsey SA, Smith JJ, Orrell D, Marelli M, Petersen TW. et al. 2006. Dual feedback loops in the GAL regulon suppress cellular heterogeneity in yeast. Nat. Genet. 38:1082–87 [Google Scholar]
  86. Raser JM, O'Shea EK. 2004. Control of stochasticity in eukaryotic gene expression. Science 304:1811–14 [Google Scholar]
  87. Richardson JB, Uppendahl LD, Traficante MK, Levy SF, Siegal ML. 2013. Histone variant HTZ1 shows extensive epistasis with, but does not increase robustness to, new mutations. PLOS Genet. 9:e1003733 [Google Scholar]
  88. Rohner N, Jarosz DF, Kowalko JE, Yoshizawa M, Jeffery WR. et al. 2013. Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish. Science 342:1372–75 [Google Scholar]
  89. Rutherford SL. 2000. From genotype to phenotype: buffering mechanisms and the storage of genetic information. Bioessays 22:1095–105 [Google Scholar]
  90. Rutherford SL, Lindquist S. 1998. Hsp90 as a capacitor for morphological evolution. Nature 396:336–42 [Google Scholar]
  91. Sangster TA, Bahrami A, Wilczek A, Watanabe E, Schellenberg K. et al. 2007. Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels. PLOS ONE 2:e648 [Google Scholar]
  92. Sangster TA, Lindquist S, Queitsch C. 2004. Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays 26:348–62 [Google Scholar]
  93. Sanjuan R, Cuevas JM, Furio V, Holmes EC, Moya A. 2007. Selection for robustness in mutagenized RNA viruses. PLOS Genet. 3:e93 [Google Scholar]
  94. Santoso A, Chien P, Osherovich LZ, Weissman JS. 2000. Molecular basis of a yeast prion species barrier. Cell 100:277–88 [Google Scholar]
  95. Schuster P, Fontana W, Stadler PF, Hofacker IL. 1994. From sequences to shapes and back: a case study in RNA secondary structures. Proc. R. Soc. B-Biol. Sci. 255:279–84 [Google Scholar]
  96. Sgrò CM, Wegener B, Hoffmann AA. 2010. A naturally occurring variant of Hsp90 that is associated with decanalization. Proc. R. Soc. B-Biol. Sci. 277:2049–57 [Google Scholar]
  97. Siegal ML. 2013. Crouching variation revealed. Mol. Ecol. 22:1187–89 [Google Scholar]
  98. Siegal ML, Bergman A. 2002. Waddington's canalization revisited: developmental stability and evolution. Proc. Natl. Acad. Sci. USA 99:10528–32 [Google Scholar]
  99. Siegal ML, Masel J. 2012. Hsp90 depletion goes wild. BMC Biol. 10:14 [Google Scholar]
  100. Specchia V, Piacentini L, Tritto P, Fanti L, D'Alessandro R. et al. 2010. Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature 463:662–65 [Google Scholar]
  101. Springer M, Weissman JS, Kirschner MW. 2010. A general lack of compensation for gene dosage in yeast. Mol. Syst. Biol. 6:368 [Google Scholar]
  102. Stearns SC, Kaiser M, Kawecki TJ. 1995. The differential genetic and environmental canalization of fitness components in Drosophila melanogaster. J. Evol. Biol. 8:539–57 [Google Scholar]
  103. Stephens CR, Waelbroeck H. 1999. Codon bias and mutability in HIV sequences. J. Mol. Evol. 48:390–97 [Google Scholar]
  104. Sultan SE, Spencer HG. 2002. Metapopulation structure favors plasticity over local adaptation. Am. Nat. 160:271–83 [Google Scholar]
  105. Sumedha, Martin OC, Wagner A. 2007. New structural variation in evolutionary searches of RNA neutral networks. Biosystems 90:475–85 [Google Scholar]
  106. Suzuki Y, Nijhout HF. 2006. Evolution of a polyphenism by genetic accommodation. Science 311:650–52 [Google Scholar]
  107. Szollosi GJ, Derenyi I. 2009. Congruent evolution of genetic and environmental robustness in micro-RNA. Mol. Biol. Evol. 26:867–74 [Google Scholar]
  108. Taipale M, Jarosz DF, Lindquist S. 2010. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell Biol. 11:515–28 [Google Scholar]
  109. Takahashi KH. 2013. Multiple capacitors for natural genetic variation in Drosophila melanogaster. Mol. Ecol. 22:1356–65 [Google Scholar]
  110. Takahashi KH, Daborn PJ, Hoffmann AA, Takano-Shimizu T. 2011a. Environmental stress-dependent effects of deletions encompassing Hsp70Ba on canalization and quantitative trait asymmetry in Drosophila melanogaster. PLOS ONE 6:e17295 [Google Scholar]
  111. Takahashi KH, Okada Y, Teramura K. 2011b. Genome-wide deficiency mapping of the regions responsible for temporal canalization of the developmental processes of Drosophila melanogaster. J. Hered. 102:448–57 [Google Scholar]
  112. Takahashi KH, Okada Y, Teramura K. 2012. Deficiency screening for genomic regions with effects on environmental sensitivity of the sensory bristles of Drosophila melanogaster. Evolution 66:2878–90 [Google Scholar]
  113. Takahashi KH, Rako L, Takano-Shimizu T, Hoffmann AA, Lee SF. 2010. Effects of small Hsp genes on developmental stability and microenvironmental canalization. BMC Evol. Biol. 10:284 [Google Scholar]
  114. Tirosh I, Reikhav S, Sigal N, Assia Y, Barkai N. 2010. Chromatin regulators as capacitors of interspecies variations in gene expression. Mol. Syst. Biol. 6:435 [Google Scholar]
  115. Torres EM, Dephoure N, Panneerselvam A, Tucker CM, Whittaker CA. et al. 2010. Identification of aneuploidy-tolerating mutations. Cell 143:71–83 [Google Scholar]
  116. True HL, Lindquist SL. 2000. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407:477–83 [Google Scholar]
  117. True JR, Haag ES. 2001. Developmental system drift and flexibility in evolutionary trajectories. Evol. Dev. 3:109–19 [Google Scholar]
  118. Tsang J, Zhu J, van Oudenaarden A. 2007. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol. Cell 26:753–67 [Google Scholar]
  119. van Nimwegen E, Crutchfield JP, Huynen M. 1999. Neutral evolution of mutational robustness. Proc. Natl. Acad. Sci. USA 96:9716–20 [Google Scholar]
  120. von Dassow G, Meir E, Munro EM, Odell GM. 2000. The segment polarity network is a robust developmental module. Nature 406:188–92 [Google Scholar]
  121. Waddington CH. 1942. Canalization of development and the inheritance of acquired characters. Nature 150:563–65 [Google Scholar]
  122. Waddington CH. 1953. Genetic assimilation of an acquired character. Evolution 7:118–26 [Google Scholar]
  123. Waddington CH. 1957. The Strategy of the Genes London: George Allen & Unwin Ltd262 [Google Scholar]
  124. Wagner A. 2007. Robustness and Evolvability in Living Systems Princeton: Princeton Univ. Press367 [Google Scholar]
  125. Wagner A. 2011. The molecular origins of evolutionary innovations. Trends Genet. 27:397–410 [Google Scholar]
  126. Wagner A. 2012. The role of robustness in phenotypic adaptation and innovation. Proc. Biol. Sci. 279:1249–58 [Google Scholar]
  127. Wagner GP, Booth G, Bagheri-Chaichian H. 1997. A population genetic theory of canalization. Evolution 51:329–47 [Google Scholar]
  128. Wilke CO, Wang JL, Ofria C, Lenski RE, Adami C. 2001. Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412:331–33 [Google Scholar]
  129. Wilkins AS. 1997. Canalization: a molecular genetic perspective. Bioessays 19:257–62 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error