1932

Abstract

Evolutionary constraint due to pleiotropy refers to a situation in which mutations in genes shared among traits generate trait covariance; therefore, traits that are not directly exposed to selective challenge show a correlated response. When such a correlated response is deleterious, it may constrain the trait from evolving. Here, we argue that the idea of absolute constraints draws from the perception that gene effects are inherent to alleles and thus invariant across genetic and environmental backgrounds. However, evidence from studies involving genetic effects on multiple traits, observed across different genetic backgrounds and environments, supports the notion that genes' effects on traits change. Consequently, pleiotropy also varies across backgrounds. We argue for a stronger emphasis on interaction effects when describing a trait's genetic basis and its evolutionary potential. By discussing different cases of trait individuation, we demonstrate how this approach can lead to new insights.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-120213-091721
2015-12-04
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/46/1/annurev-ecolsys-120213-091721.html?itemId=/content/journals/10.1146/annurev-ecolsys-120213-091721&mimeType=html&fmt=ahah

Literature Cited

  1. Alberch P. 1983. Development and evolution: embryos, genes, and evolution. Science 221:257–58 [Google Scholar]
  2. Alon U. 2007. An Introduction to Systems Biology: Design Principles of Biological Circuits Boca Raton, FL: Chapman & Hall [Google Scholar]
  3. Barrett RD, Rogers SM, Schluter D. 2009. Environment specific pleiotropy facilitates divergence at the Ectodysplasin locus in threespine stickleback. Evolution 63:2831–37 [Google Scholar]
  4. Barrick JE, Lenski RE. 2013. Genome dynamics during experimental evolution. Nat. Rev. Genet. 14:827–39 [Google Scholar]
  5. Barriere A, Gordon KL, Ruvinsky I. 2012. Coevolution within and between regulatory loci can preserve promoter function despite evolutionary rate acceleration. PLOS Genet. 8:e1002961 [Google Scholar]
  6. Berg R. 1960. The ecological significance of correlation pleiades. Evolution 17:171–80 [Google Scholar]
  7. Bergland AO, Genissel A, Nuzhdin SV, Tatar M. 2008. Quantitative trait loci affecting phenotypic plasticity and the allometric relationship of ovariole number and thorax length in Drosophila melanogaster. Genetics 180:567–82 [Google Scholar]
  8. Bloom JD, Gong LI, Baltimore D. 2010. Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science 328:1272–75 [Google Scholar]
  9. Bonduriansky R, Chenoweth SF. 2009. Intralocus sexual conflict. Trends Ecol. Evol. 24:280–88 [Google Scholar]
  10. Bridgham JT, Carroll SM, Thornton JW. 2006. Evolution of hormone-receptor complexity by molecular exploitation. Science 312:97–101 [Google Scholar]
  11. Bridgham JT, Ortlund EA, Thornton JW. 2009. An epistatic ratchet constrains the direction of glucocorticoid receptor evolution. Nature 461:515–19 [Google Scholar]
  12. Bullaughey K. 2013. Multidimensional adaptive evolution of a feed-forward network and the illusion of compensation. Evolution 67:49–65 [Google Scholar]
  13. Burch CL, Chao L. 2000. Evolvability of an RNA virus is determined by its mutational neighbourhood. Nature 406:625–28 [Google Scholar]
  14. Camps M, Herman A, Loh E, Loeb LA. 2007. Genetic constraints on protein evolution. Crit. Rev. Biochem. Mol. Biol. 42:313–26 [Google Scholar]
  15. Cao Y, Wei P, Bailey M, Kauwe JS, Maxwell TJ. 2014. A versatile omnibus test for detecting mean and variance heterogeneity. Genet. Epidemiol. 38:51–59 [Google Scholar]
  16. Carter AJ, Hermisson J, Hansen TF. 2005. The role of epistatic gene interactions in the response to selection and the evolution of evolvability. Theor. Popul. Biol. 68:179–96 [Google Scholar]
  17. Cheverud JM. 1982. Phenotypic, genetic and environmental morphological integration in the cranium. Evolution 36:499–516 [Google Scholar]
  18. Cheverud JM. 1984. Quantitative genetics and developmental constraints on evolution by selection. J. Theor. Biol. 110:155–71 [Google Scholar]
  19. Cheverud JM, Ehrich TH, Vaughn TT, Koreishi SF, Linsey RB, Pletscher LS. 2004. Pleiotropic effects on mandibular morphology II: differential epistasis and genetic variation in morphological integration. J. Exp. Zool. B 302:424–35 [Google Scholar]
  20. Cheverud JM, Routman EJ. 1995. Epistasis and its contribution to genetic variance components. Genetics 139:1455–61 [Google Scholar]
  21. Clune J, Mouret JB, Lipson H. 2013. The evolutionary origins of modularity. Proc. R. Soc. B 280:20122863 [Google Scholar]
  22. Cordero OX, Hogeweg P. 2006. Feed-forward loop circuits as a side effect of genome evolution. Mol. Biol. Evol. 23:1931–36 [Google Scholar]
  23. Cowley DE, Atchley WR. 1992. Comparison of quantitative genetic parameters. Evolution 46:1965–67 [Google Scholar]
  24. Darwin C. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life London: Murray [Google Scholar]
  25. Dean AM, Thornton JW. 2007. Mechanistic approaches to the study of evolution: the functional synthesis. Nat. Rev. Genet. 8:675–88 [Google Scholar]
  26. DePristo MA, Weinreich DM, Hartl DL. 2005. Missense meanderings in sequence space: a biophysical view of protein evolution. Nat. Rev. Genet. 6:678–87 [Google Scholar]
  27. Duboc V, Logan MP. 2011. Regulation of limb bud initiation and limb-type morphology. Dev. Dyn. 240:1017–27 [Google Scholar]
  28. Ehrich TH, Vaughn TT, Koreishi SF, Linsey RB, Pletscher LS, Cheverud JM. 2003. Pleiotropic effects on mandibular morphology I. Developmental morphological integration and differential dominance. J. Exp. Zool. B 296:58–79 [Google Scholar]
  29. Falconer DS. 1952. The problem of environment and selection. Am. Nat. 86:293–98 [Google Scholar]
  30. Flatt T, Tu MP, Tatar M. 2005. Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. BioEssays 27:999–1010 [Google Scholar]
  31. Forsyth IA, Wallis M. 2002. Growth hormone and prolactin—molecular and functional evolution. J. Mammary Gland Biol. Neoplasia 7:291–312 [Google Scholar]
  32. Gibbon BC, Larkins BA. 2005. Molecular genetic approaches to developing quality protein maize. Trends Genet. 21:227–33 [Google Scholar]
  33. Gierer A, Meinhardt H. 1972. A theory of biological pattern formation. Kybernetik 12:30–39 [Google Scholar]
  34. Gjuvsland AB, Vik JO, Woolliams JA, Omholt SW. 2011. Order-preserving principles underlying genotype-phenotype maps ensure high additive proportions of genetic variance. J. Evol. Biol. 24:2269–79 [Google Scholar]
  35. Gjuvsland AB, Wang Y, Plahte E, Omholt SW. 2013. Monotonicity is a key feature of genotype-phenotype maps. Front. Genet. 4:216 [Google Scholar]
  36. Glass B. 1957. In pursuit of a gene. Science 126:683–89 [Google Scholar]
  37. Gosden TP, Shastri KL, Innocenti P, Chenoweth SF. 2012. The B-matrix harbors significant and sex-specific constraints on the evolution of multicharacter sexual dimorphism. Evolution 66:2106–16 [Google Scholar]
  38. Gromko MH. 1995. Unpredictability of correlated response to selection: pleiotropy and sampling interact. Evolution 49:685–93 [Google Scholar]
  39. Guillaume F, Otto SP. 2012. Gene functional trade-offs and the evolution of pleiotropy. Genetics 192:1389–409 [Google Scholar]
  40. Hallgrimsson B, Willmore K, Dorval C, Cooper DM. 2004. Craniofacial variability and modularity in macaques and mice. J. Exp. Zool. B 302:207–25 [Google Scholar]
  41. Hansen TF. 2003. Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems 69:83–94 [Google Scholar]
  42. Hansen TF. 2006. The evolution of genetic architecture. Annu. Rev. Ecol. Evol. Syst. 37:123–57 [Google Scholar]
  43. Hansen TF. 2013. Why epistasis is important for selection and adaptation. Evolution 67:3501–11 [Google Scholar]
  44. Hansen TF, Armbruster WS, Carlson ML, Pélabon C. 2003. Evolvability and genetic constraint in Dalechampia blossoms: genetic correlations and conditional evolvability. J. Exp. Zool. B 296:23–39 [Google Scholar]
  45. Hansen TF, Houle D. 2008. Measuring and comparing evolvability and constraint in multivariate characters. J. Evol. Biol. 21:1201–19 [Google Scholar]
  46. Hansen TF, Wagner GP. 2001. Modeling genetic architecture: a multilinear theory of gene interaction. Theor. Popul. Biol. 59:61–86 [Google Scholar]
  47. Hazel LN, Lush JL. 1942. The efficiency of three methods of selection. J. Hered. 33:393–99 [Google Scholar]
  48. Hill WG, Zhang XS. 2012. On the pleiotropic structure of the genotype-phenotype map and the evolvability of complex organisms. Genetics 190:1131–37 [Google Scholar]
  49. Holmberg J, Perlmann T. 2012. Maintaining differentiated cellular identity. Nat. Rev. Genet. 13:429–39 [Google Scholar]
  50. Hughes CL, Kaufman TC. 2002. Hox genes and the evolution of the arthropod body plan. Evol. Dev. 4:459–99 [Google Scholar]
  51. Huxley J. 1932. The Problems of Relative Growth New York: Dial [Google Scholar]
  52. Jensen H, Saether BE, Ringsby TH, Tufto J, Griffith SC, Ellegren H. 2003. Sexual variation in heritability and genetic correlations of morphological traits in house sparrow (Passer domesticus). J. Evol. Biol. 16:1296–307 [Google Scholar]
  53. Johnson NA, Porter AH. 2007. Evolution of branched regulatory genetic pathways: directional selection on pleiotropic loci accelerates developmental system drift. Genetica 129:57–70 [Google Scholar]
  54. Jones AG, Burger R, Arnold SJ. 2014. Epistasis and natural selection shape the mutational architecture of complex traits. Nat. Commun. 5:3709 [Google Scholar]
  55. Kashtan N, Alon U. 2005. Spontaneous evolution of modularity and network motifs. PNAS 102:13773–78 [Google Scholar]
  56. Kelly EM, Sears KE. 2011. Reduced phenotypic covariation in marsupial limbs and the implications for mammalian evolution. Biol. J. Linn. Soc. 102:22–36 [Google Scholar]
  57. Ketterson ED, Nolan V Jr, Sandell M. 2005. Testosterone in females: mediator of adaptive traits, constraint on sexual dimorphism, or both?. Am. Nat. 166:Suppl. 4S85–98 [Google Scholar]
  58. Kim HS, Huh J, Fay JC. 2009. Dissecting the pleiotropic consequences of a quantitative trait nucleotide. FEMS Yeast Res. 9:713–22 [Google Scholar]
  59. Kim MS, Kim JR, Kim D, Lander AD, Cho KH. 2012. Spatiotemporal network motif reveals the biological traits of developmental gene regulatory networks in Drosophila melanogaster. BMC Syst. Biol. 6:31 [Google Scholar]
  60. Kopp A. 2011. Drosophila sex combs as a model of evolutionary innovations. Evol. Dev. 13:504–22 [Google Scholar]
  61. Kuo D, Licon K, Bandyopadhyay S, Chuang R, Luo C. et al. 2010. Coevolution within a transcriptional network by compensatory trans and cis mutations. Genome Res. 20:1672–78 [Google Scholar]
  62. Lande R. 1979. Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry. Evolution 33:402–16 [Google Scholar]
  63. Lande R. 1980. Sexual dimorphism, sexual selection and adaptation in polygenic characters. Evolution 38:292–305 [Google Scholar]
  64. Landry CR, Wittkopp PJ, Taubes CH, Ranz JM, Clark AG, Hartl DL. 2005. Compensatory cis-trans evolution and the dysregulation of gene expression in interspecific hybrids of Drosophila. Genetics 171:1813–22 [Google Scholar]
  65. Lawson HA, Cady JE, Partridge C, Wolf JB, Semenkovich CF, Cheverud JM. 2011. Genetic effects at pleiotropic loci are context-dependent with consequences for the maintenance of genetic variation in populations. PLOS Genet. 7:e1002256 [Google Scholar]
  66. Le Nagard H, Chao L, Tenaillon O. 2011. The emergence of complexity and restricted pleiotropy in adapting networks. BMC Evol. Biol. 11:326 [Google Scholar]
  67. Leamy LJ, Pomp D, Lightfoot JT. 2009. Genetic variation in the pleiotropic association between physical activity and body weight in mice. Genet. Sel. Evol. 41:41 [Google Scholar]
  68. Lehner B. 2011. Molecular mechanisms of epistasis within and between genes. Trends Genet. 27:323–31 [Google Scholar]
  69. Lenski RE. 1988. Experimental studies of pleiotropy and epistasis in Escherichia coli. II. Compensation for maladaptive effects associated with resistance to virus T4. Evolution 42:433–40 [Google Scholar]
  70. Leutenegger W, Cheverud J. 1982. Correlates of sexual dimorphism in primates: ecological and size variables. Int. J. Primatol. 3:387–402 [Google Scholar]
  71. Li R, Tsaih SW, Shockley K, Stylianou IM, Wergedal J. et al. 2006. Structural model analysis of multiple quantitative traits. PLOS Genet. 2:e114 [Google Scholar]
  72. Mann RS, Lelli KM, Joshi R. 2009. Hox specificity: unique roles for cofactors and collaborators. Curr. Top. Dev. Biol. 88:63–101 [Google Scholar]
  73. Marroig G, Cheverud JM. 2001. A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology, and ontogeny during cranial evolution of New World monkeys. Evolution 55:2576–600 [Google Scholar]
  74. Maxwell TJ, Ballantyne CM, Cheverud JM, Guild CS, Ndumele CE, Boerwinkle E. 2013. APOE modulates the correlation between triglycerides, cholesterol, and CHD through pleiotropy, and gene-by-gene interactions. Genetics 195:1397–405 [Google Scholar]
  75. Mayr E. 1970. Populations, Species, and Evolution: An Abridgment of Animal species and Evolution Cambridge, MA: Harvard Univ. Press [Google Scholar]
  76. Mezey JG, Houle D. 2005. The dimensionality of genetic variation for wing shape in Drosophila melanogaster. Evolution 59:1027–38 [Google Scholar]
  77. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. 2002. Network motifs: simple building blocks of complex networks. Science 298:824–27 [Google Scholar]
  78. Minguillon C, Gibson-Brown JJ, Logan MP. 2009. Tbx4/5 gene duplication and the origin of vertebrate paired appendages. PNAS 106:21726–30 [Google Scholar]
  79. Mitterocker P, Gunz P, Neubauer S, Müller G. 2012. How to explore morphological integration in human evolution and development?. Evol. Biol. 39:536–53 [Google Scholar]
  80. Monteiro A, Chen B, Scott LC, Vedder L, Prijs HJ. et al. 2007. The combined effect of two mutations that alter serially homologous color pattern elements on the fore and hindwings of a butterfly. BMC Genet. 8:22 [Google Scholar]
  81. Neph S, Stergachis AB, Reynolds A, Sandstrom R, Borenstein E, Stamatoyannopoulos JA. 2012. Circuitry and dynamics of human transcription factor regulatory networks. Cell 150:1274–86 [Google Scholar]
  82. Niall HD, Hogan ML, Sauer R, Rosenblum IY, Greenwood FC. 1971. Sequences of pituitary and placental lactogenic and growth hormones: evolution from a primordial peptide by gene reduplication. PNAS 68:866–70 [Google Scholar]
  83. Ohde T, Yaginuma T, Niimi T. 2013. Insect morphological diversification through the modification of wing serial homologs. Science 340:495–98 [Google Scholar]
  84. Olson EC, Miller RL. 1958. Morphological Integration. Chicago: Chicago Univ. Press [Google Scholar]
  85. Olson-Manning CF, Wagner MR, Mitchell-Olds T. 2012. Adaptive evolution: evaluating empirical support for theoretical predictions. Nat. Rev. Genet. 13:867–77 [Google Scholar]
  86. Omholt SW, Plahte E, Oyehaug L, Xiang K. 2000. Gene regulatory networks generating the phenomena of additivity, dominance and epistasis. Genetics 155:969–80 [Google Scholar]
  87. Paaby AB, Rockman MV. 2013. The many faces of pleiotropy. Trends Genet. 29:66–73 [Google Scholar]
  88. Parker NF, Shingleton AW. 2011. The coordination of growth among Drosophila organs in response to localized growth-perturbation. Dev. Biol. 357:318–25 [Google Scholar]
  89. Parker TH, Garant D. 2004. Quantitative genetics of sexually dimorphic traits and capture of genetic variance by a sexually-selected condition-dependent ornament in red junglefowl (Gallus gallus). J. Evol. Biol. 17:1277–85 [Google Scholar]
  90. Pavličev M, Cheverud JM, Wagner GP. 2011a. Evolution of adaptive phenotypic variation patterns by direct selection for evolvability. Proc. R. Soc. B 278:1903–12 [Google Scholar]
  91. Pavličev M, Hansen TF. 2011. Genotype-phenotype maps maximizing evolvability: modularity revisited. Evol. Biol. 38:371–89 [Google Scholar]
  92. Pavličev M, Kenney-Hunt JP, Norgard EA, Roseman CC, Wolf JB, Cheverud JM. 2008. Genetic variation in pleiotropy: differential epistasis as a source of variation in the allometric relationship between long bone lengths and body weight. Evolution 62:199–213 [Google Scholar]
  93. Pavličev M, Le Rouzic A, Cheverud JM, Wagner GP, Hansen TF. 2010. Directionality of epistasis in a murine intercross population. Genetics 185:1489–1505 [Google Scholar]
  94. Pavličev M, Norgard EA, Fawcett GL, Cheverud JM. 2011b. Evolution of pleiotropy: epistatic interaction pattern supports a mechanistic model underlying variation in genotype-phenotype map. J. Exp. Zool. B 316:371–85 [Google Scholar]
  95. Pavličev M, Wagner GP. 2012. A model of developmental evolution: selection, pleiotropy and compensation. Trends Ecol. Evol. 27:316–22 [Google Scholar]
  96. Pavličev M, Wagner GP, Noonan JP, Hallgrimsson B, Cheverud JM. 2013. Genomic correlates of relationship QTL involved in fore- versus hind limb divergence in mice. Genome Biol. Evol. 5:1926–36 [Google Scholar]
  97. Pavličev M, Widder S. 2015. Wiring for independence: positive feedback motifs facilitate individuation of traits in development and evolution. J. Exp. Zool. B: 324:104–13 [Google Scholar]
  98. Pellmyr O, Krenn HW. 2002. Origin of a complex key innovation in an obligate insect-plant mutualism. PNAS 99:5498–502 [Google Scholar]
  99. Pepin KM, Samuel MA, Wichman HA. 2006. Variable pleiotropic effects from mutations at the same locus hamper prediction of fitness from a fitness component. Genetics 172:2047–56 [Google Scholar]
  100. Porto A, de Oliveira FB, Shirai LT, De Conto V, Marroig G. 2009. The evolution of modularity in the mammalian skull I: morphological integration patterns and magnitudes. Evol. Biol. 36:118–35 [Google Scholar]
  101. Prud'homme B, Gompel N, Carroll SB. 2007. Emerging principles of regulatory evolution. PNAS 104:Suppl. 18605–12 [Google Scholar]
  102. Rajon E, Masel J. 2013. Compensatory evolution and the origins of innovations. Genetics 193:1209–20 [Google Scholar]
  103. Riedl RJ. 1978. Order in Living Organisms: A Systems Analysis of Evolution New York: Wiley [Google Scholar]
  104. Ronnegard L, Valdar W. 2012. Recent developments in statistical methods for detecting genetic loci affecting phenotypic variability. BMC Genet. 13:63 [Google Scholar]
  105. Ruvinsky I, Gibson-Brown JJ. 2000. Genetic and developmental bases of serial homology in vertebrate limb evolution. Development 127:5233–44 [Google Scholar]
  106. Sanger TJ, Sherratt E, McGlothlin JW, Brodie ED 3rd, Losos JB, Abzhanov A. 2013. Convergent evolution of sexual dimorphism in skull shape using distinct developmental strategies. Evolution 67:2180–93 [Google Scholar]
  107. Schluter D. 1996. Adaptive radiation along genetic lines of least resistance. Evolution 50:1766–74 [Google Scholar]
  108. Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW. 2013. Pleiotropy in complex traits: challenges and strategies. Nat. Rev. Genet. 14:483–95 [Google Scholar]
  109. Stearns FW. 2010. One hundred years of pleiotropy: a retrospective. Genetics 186:767–73 [Google Scholar]
  110. Stern DL. 2000. Evolutionary developmental biology and the problem of variation. Evolution 54:1079–91 [Google Scholar]
  111. Steven JC, Delph LF, Brodie ED 3rd. 2007. Sexual dimorphism in the quantitative-genetic architecture of floral, leaf, and allocation traits in Silene latifolia. Evolution 61:42–57 [Google Scholar]
  112. Templeton AR, Crease TJ, Shah F. 1985. The molecular through ecological genetics of abnormal abdomen in Drosophila mercatorum. I. Basic genetics. Genetics 111:805–18 [Google Scholar]
  113. Thornton JW. 2001. Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. PNAS 98:5671–76 [Google Scholar]
  114. Tobler A, Nijhout HF. 2010. Developmental constraints on the evolution of wing-body allometry in Manduca sexta. Evol. Dev. 12:592–600 [Google Scholar]
  115. Tulchinsky AY, Johnson NA, Porter AH. 2014. Hybrid incompatibility despite pleiotropic constraint in a sequence-based bioenergetic model of transcription factor binding. Genetics 198:1645–54 [Google Scholar]
  116. Turing AM. 1952. The chemical basis of morphogenesis. Phil. Trans. R. Soc. B 237:37–72 [Google Scholar]
  117. Turner PE, Chao L. 1999. Prisoner's dilemma in an RNA virus. Nature 398:441–43 [Google Scholar]
  118. Tyler AL, Asselbergs FW, Williams SM, Moore JH. 2009. Shadows of complexity: what biological networks reveal about epistasis and pleiotropy. BioEssays 31:220–27 [Google Scholar]
  119. Voje KL, Hansen TF. 2013. Evolution of static allometries: adaptive change in allometric slopes of eye span in stalk-eyed flies. Evolution 67:453–67 [Google Scholar]
  120. Wagner GP. 2001. The Character Concept in Evolutionary Biology San Diego, CA: Academic [Google Scholar]
  121. Wagner GP. 2014. Homology, Genes and Evolutionary Innovation Princeton, NJ: Princeton Univ. Press [Google Scholar]
  122. Wagner GP, Lynch VJ. 2008. The gene regulatory logic of transcription factor evolution. Trends Ecol. Evol. 23:377–85 [Google Scholar]
  123. Wagner GP, Zhang J. 2011. The pleiotropic structure of the genotype-phenotype map: the evolvability of complex organisms. Nat. Rev. Genet. 12:204–13 [Google Scholar]
  124. Wallis M. 2008. Mammalian genome projects reveal new growth hormone (GH) sequences. Characterization of the GH-encoding genes of armadillo (Dasypus novemcinctus), hedgehog (Erinaceus europaeus), bat (Myotis lucifugus), hyrax (Procavia capensis), shrew (Sorex araneus), ground squirrel (Spermophilus tridecemlineatus), elephant (Loxodonta africana), cat (Felis catus) and opossum (Monodelphis domestica). Gen. Comp. Endocrinol. 155:271–79 [Google Scholar]
  125. Watson RA, Wagner GP, Pavličev M, Weinreich DM, Mills R. 2014. The evolution of phenotypic correlations and “developmental memory.”. Evolution 68:1124–38 [Google Scholar]
  126. Welsh P, Polisecki E, Robertson M, Jahn S, Buckley BM. et al. 2010. Unraveling the directional link between adiposity and inflammation: a bidirectional Mendelian randomization approach. J. Clin. Endocrinol. Metab. 95:93–99 [Google Scholar]
  127. Widder S, Solé R, Macia J. 2012. Evolvability of feed-forward loop architecture biases its abundance in transcription networks. BMC Syst. Biol. 6:7 [Google Scholar]
  128. Willmore KE, Roseman CC, Rogers J, Richtsmeier JT, Cheverud JM. 2009. Genetic variation in baboon craniofacial sexual dimorphism. Evolution 63:799–806 [Google Scholar]
  129. Wilson LA. 2013. Allometric disparity in rodent evolution. Ecol. Evol. 3:971–84 [Google Scholar]
  130. Wiser MJ, Ribeck N, Lenski RE. 2013. Long-term dynamics of adaptation in asexual populations. Science 342:1364–67 [Google Scholar]
  131. Wray GA. 2007. The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8:206–16 [Google Scholar]
  132. Wright S. 1968. Evolution and Genetics of Populations Chicago: Chicago Univ. Press [Google Scholar]
  133. Wyman MJ, Stinchcombe JR, Rowe L. 2013. A multivariate view of the evolution of sexual dimorphism. J. Evol. Biol. 26:2070–80 [Google Scholar]
  134. Young NM, Wagner GP, Hallgrimsson B. 2010. Development and the evolvability of human limbs. PNAS 107:3400–5 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-120213-091721
Loading
/content/journals/10.1146/annurev-ecolsys-120213-091721
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error