1932

Abstract

The evolution of multicellular life from unicellular ancestral types involves a hierarchical shift in the level at which selection operates. The shift, from cells to collectives, depends on the emergence of Darwinian properties at the level of nascent collectives. However, from the very earliest phases—even before the emergence of higher-level Darwinian properties—the stage is set for the evolution of conflict. Here we consider the range of ways by which cooperation and conflict manifest at different levels of biological organization. We give prominence to the emerging idea that conflict is a central driver in the evolution of biological complexity and, in particular, that solutions to conflict, notably those that arise from selection operating at different temporal scales, have fueled the evolution of individuality.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-120213-091740
2014-11-23
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/45/1/annurev-ecolsys-120213-091740.html?itemId=/content/journals/10.1146/annurev-ecolsys-120213-091740&mimeType=html&fmt=ahah

Literature Cited

  1. Allen B, Nowak MA, Wilson EO. 2013. Limitations of inclusive fitness. Proc. Natl. Acad. Sci. USA 110:20135–39 [Google Scholar]
  2. Aravind L, Anantharaman V, Zhang DP, de Souza RF, Iyer LM. 2012. Gene flow and biological conflict systems in the origin and evolution of eukaryotes. Front. Cell Infect. Microbiol. 2:89 [Google Scholar]
  3. Aviles L. 2002. Solving the freeloaders paradox: genetic associations and frequency-dependent selection in the evolution of cooperation among nonrelatives. Proc. Natl. Acad. Sci. USA 99:14268–73 [Google Scholar]
  4. Axelrod R, Hamilton WD. 1981. The evolution of cooperation. Science 211:1390–96 [Google Scholar]
  5. Bantinaki E, Kassen R, Knight C, Robinson Z, Spiers AJ, Rainey PB. 2007. Adaptive divergence in experimental populations of Pseudomonas fluorescens. III. Mutational origins of wrinkly spreader diversity. Genetics 176:441–53 [Google Scholar]
  6. Bonner JT. 1974. On Development: The Biology of Form Cambridge, MA: Harvard Univ. Press
  7. Bonner JT. 1982. Evolution and Development Berlin: Springer
  8. Bonner JT. 1998. The origins of multicellularity. Integr. Biol. 1:27–36 [Google Scholar]
  9. Bonner JT. 2000. First Signals: The Evolution of Multicellular Development Princeton, NJ: Princeton Univ. Press
  10. Boraas ME, Seale DB, Boxhorn JE. 1998. Phagotrophy by a flagellate selects for colonial prey: a possible origin of multicellularity. Evol. Ecol. 12:153–64 [Google Scholar]
  11. Bowles S, Choi JK, Hopfensitz A. 2003. The co-evolution of individual behaviors and social institutions. J. Theor. Biol. 223:135–47 [Google Scholar]
  12. Brenner K, You LC, Arnold FH. 2008. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 26:483–89 [Google Scholar]
  13. Buss LW. 1987. The Evolution of Individuality Princeton, NJ: Princeton Univ. Press
  14. Carroll SB. 2001. Chance and necessity: the evolution of morphological complexity and diversity. Nature 409:1102–9 [Google Scholar]
  15. Chao L, Levin BR. 1981. Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc. Natl. Acad. Sci. USA 78:6324–28 [Google Scholar]
  16. Charlesworth B. 1980. Models of kin selection. Evolution of Social Behaviour H Markl 11–26 Weinheim: Verlag Chemie [Google Scholar]
  17. Clarke E. 2010. The problem of biological individuality. Biol. Theory 5:312–25 [Google Scholar]
  18. Clarke E. 2014. Origins of evolutionary transitions. J. Biosci. 39:1–14 [Google Scholar]
  19. Conway Morris S. 1998. The Crucible of Creation Oxford, UK: Oxford Univ. Press
  20. Damuth J, Heisler IL. 1988. Alternative formulations of multi-level selection. Biol. Philos. 3:407–30 [Google Scholar]
  21. Dawkins R. 1976. The Selfish Gene Oxford, UK: Oxford Univ. Press
  22. Dawkins R. 1982. The Extended Phenotype Oxford, UK: Oxford Univ. Press
  23. Monte S, Rainey PB. De 2014. Nascent multicellular life and the emergence of individuality. J. Biosci. 39:2237–48 [Google Scholar]
  24. de Vienne DM, Giraud T, Gouyon PH. 2013. Lineage selection and the maintenance of sex. PLOS ONE 8:e66906
  25. Dennett DC. 1995. Darwin's Dangerous Idea: Evolution and the Meanings of Life London: Penguin
  26. Doebeli M. 2010. Inclusive fitness is just bookkeeping. Nature 467:661 [Google Scholar]
  27. Dugatkin LA. 2002. Cooperation in animals: an evolutionary overview. Biol. Philos. 17:459–76 [Google Scholar]
  28. Ennis HL, Dao DN, Pukatzki SU, Kessin RH. 2000. Dictyostelium amoebae lacking an F-box protein form spores rather than stalk in chimeras with wild type. Proc. Natl. Acad. Sci. USA 97:3292–97 [Google Scholar]
  29. Eraso JM, Chidambaram M, Weinstock GM. 1996. Increased production of colicin E1 in stationary phase. J. Bacteriol. 178:1928–35 [Google Scholar]
  30. Extavour CGM. 2007. Evolution of the bilaterian germ line: lineage origin and modulation of specification mechanisms. Integr. Comp. Biol. 47:770–85 [Google Scholar]
  31. Fisher RM, Cornwallis CK, West SA. 2013. Group formation, relatedness, and the evolution of multicellularity. Curr. Biol. 23:1120–25 [Google Scholar]
  32. Fletcher JA, Doebeli M. 2009. A simple and general explanation for the evolution of altruism. Proc. R. Soc. B 276:13–19 [Google Scholar]
  33. Foster KR, Shaulsky G, Strassmann JE, Queller DC, Thompson CRL. 2004. Pleiotropy as a mechanism to stabilize cooperation. Nature 431:693–96 [Google Scholar]
  34. Frank S. 1998. Foundations of Social Evolution Princeton, NJ: Princeton Univ. Press
  35. Frank SA. 1995. Mutual policing and repression of competition in the evolution of cooperative groups. Nature 377:520–22 [Google Scholar]
  36. Frank SA. 2007. Dynamics of Cancer: Incidence, Inheritance and Evolution Princeton, NJ: Princeton Univ. Press
  37. Frénoy A, Taddei F, Misevic D. 2013. Genetic architecture promotes the evolution and maintenance of cooperation. PLOS Comput. Biol. 9:11e1003339 [Google Scholar]
  38. Friedl P, Gilmour D. 2009. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10:445–57 [Google Scholar]
  39. Garcia T, De Monte S. 2013. Group formation and the evolution of sociality. Evolution 67:131–41 [Google Scholar]
  40. Garcia T, Brunnet LG, De Monte S. 2014. Differential adhesion between moving particles as a mechanism for the evolution of social groups. PLOS Comput. Biol. 10:2e1003482 [Google Scholar]
  41. Gardner A, Grafen A. 2009. Capturing the superorganism: a formal theory of group adaptation. J. Evol. Biol. 22:659–71 [Google Scholar]
  42. Gardner A, West SA. 2010. Greenbeards. Evolution 64:25–38 [Google Scholar]
  43. Gardner A, West SA, Wild G. 2011. The genetical theory of kin selection. J. Evol. Biol. 24:1020–43 [Google Scholar]
  44. Gavrilets S. 2010. Rapid transition towards the division of labor via evolution of developmental plasticity. PLOS Comput. Biol. 6:e1000805 [Google Scholar]
  45. Godfrey-Smith P. 2009. Darwinian Populations and Natural Selection Oxford, UK: Oxford Univ. Press
  46. Goldsby HJ, Dornhaus A, Kerr B, Ofria C. 2012. Task-switching costs promote the evolution of division of labor and shifts in individuality. Proc. Natl. Acad. Sci. USA 109:13686–91 [Google Scholar]
  47. Goodnight CJ. 2005. Multilevel selection: the evolution of cooperation in non-kin groups. Popul. Ecol. 47:3–12 [Google Scholar]
  48. Goodnight CJ, Stevens L. 1997. Experimental studies of group selection: What do they tell us about group selection in nature?. Am. Nat. 150:S59–79 [Google Scholar]
  49. Gore J, Youk H, Van Oudenaarden A. 2009. Snowdrift game dynamics and facultative cheating in yeast. Nature 459:253–56 [Google Scholar]
  50. Griesemer J. 2000. The units of evolutionary transition. Selection 1:67–80 [Google Scholar]
  51. Griffin AS, West SA, Buckling A. 2004. Cooperation and competition in pathogenic bacteria. Nature 430:1024–27 [Google Scholar]
  52. Grosberg RK, Strathmann RR. 2007. The evolution of multicellularity: a minor major transition?. Annu. Rev. Ecol. Evol. Syst. 38:621–54 [Google Scholar]
  53. Guttal V, Couzin ID. 2010. Social interactions, information use, and the evolution of collective migration. Proc. Natl. Acad. Sci. USA 107:16172–77 [Google Scholar]
  54. Hamilton WD. 1964a. The genetical evolution of social behaviour. 1. J. Theor. Biol. 7:1–16 [Google Scholar]
  55. Hamilton WD. 1964b. The genetical evolution of social behaviour. 2. J. Theor. Biol. 7:17–52 [Google Scholar]
  56. Hammerschmidt K, Rose C, Kerr B, Rainey PB. 2014. Life cycles, fitness decoupling and the evolution of multicellularity. Nature. In press. doi: 10.1038/nature13884
  57. Hammerstein P. 2003. Genetic and Cultural Evolution of Cooperation Cambridge, MA: MIT Press
  58. Hardin G. 1968. The tragedy of the commons. Science 162:1243–48 [Google Scholar]
  59. Hauert C, De Monte S, Hofbauer J, Sigmund K. 2002. Volunteering as Red Queen mechanism for cooperation in public goods games. Science 296:1129–32 [Google Scholar]
  60. Heisler IL, Damuth J. 1987. A method for analyzing selection in hierarchically structured populations. Am. Nat. 130:582–602 [Google Scholar]
  61. Herron MD, Hackett JD, Aylward FO, Michod RE. 2009. Triassic origin and early radiation of multicellular volvocine algae. Proc. Natl. Acad. Sci. USA 106:3254–58 [Google Scholar]
  62. Herron MD, Michod RE. 2008. Evolution of complexity in the volvocine algae: transitions in individuality through Darwin's eye. Evolution 62:436–51 [Google Scholar]
  63. Herron MD, Rashidi A, Shelton DE, Driscoll WW. 2013. Cellular differentiation and individuality in the ‘minor’ multicellular taxa. Biol. Rev. 88:844–61 [Google Scholar]
  64. Hochberg ME, Rankin DJ, Taborsky M. 2008. The coevolution of cooperation and dispersal in social groups and its implications for the emergence of multicellularity. BMC Evol. Biol. 8:238 [Google Scholar]
  65. Hofbauer J, Sigmund K. 2003. Evolutionary game dynamics. Bull. Am. Math. Soc. 40:479–519 [Google Scholar]
  66. Honigberg SM. 2011. Cell signals, cell contacts, and the organization of yeast communities. Eukaryot. Cell 10:466–73 [Google Scholar]
  67. Hurst LD. 1994. Cytoplasmic genetics under inbreeding and outbreeding. Proc. R. Soc. B 258:287–98 [Google Scholar]
  68. Hurst LD, Atlan A, Bengtsson BO. 1996. Genetic conflicts. Q. Rev. Biol. 71:317–64 [Google Scholar]
  69. Jablonka E, Lamb MJ. 2006. The evolution of information in the major transitions. J. Theor. Biol. 239:236–46 [Google Scholar]
  70. Jansen VA, van Baalen M. 2006. Altruism through beard chromodynamics. Nature 440:663–66 [Google Scholar]
  71. Jiang Y, Levine H, Glazier J. 1998. Possible cooperation of differential adhesion and chemotaxis in mound formation of Dictyostelium. Biophys. J. 75:2615–25 [Google Scholar]
  72. Johnson AD, Richardson E, Bachvarova RF, Crother BI. 2011. Evolution of the germ line-soma relationship in vertebrate embryos. Reproduction 141:291–300 [Google Scholar]
  73. Kerr B, Neuhauser C, Bohannan BJ, Dean AM. 2006. Local migration promotes competitive restraint in a host-pathogen ‘tragedy of the commons.’. Nature 442:75–78 [Google Scholar]
  74. Kerr B, Riley MA, Feldman MW, Bohannan BJM. 2002. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418:171–74 [Google Scholar]
  75. Kerszberg M, Wolpert L. 1998. The origin of metazoa and the egg: a role for cell death. J. Theor. Biol. 193:535–37 [Google Scholar]
  76. Khare A, Santorelli LA, Strassmann JE, Queller DC, Kuspa A, Shaulsky G. 2009. Cheater-resistance is not futile. Nature 461:980–82 [Google Scholar]
  77. Knoll AH. 2011. The multiple origins of complex multicellularity. Annu. Rev. Earth Planet. Sci. 39:217–39 [Google Scholar]
  78. Knoll AH, Javaux EJ, Hewitt D, Cohen P. 2006. Eukaryotic organisms in Proterozoic oceans. Philos. Trans. R. Soc. Lond. B 361:1023–38 [Google Scholar]
  79. Koschwanez JH, Foster KR, Murray AW. 2013. Improved use of a public good selects for the evolution of undifferentiated multicellularity. eLife 2:e00367 [Google Scholar]
  80. Leigh EG. 1973. The evolution of mutation rates. Genetics 73:Suppl.1–18 [Google Scholar]
  81. Lewontin RC. 1970. The units of selection. Annu. Rev. Ecol. Syst. 1:1–18 [Google Scholar]
  82. Libby E, Rainey PB. 2013. A conceptual framework for the evolutionary origins of multicellularity. Phys. Biol. 10:035001 [Google Scholar]
  83. Lieberman E, Hauert C, Nowak MA. 2005. Evolutionary dynamics on graphs. Nature 433:312–16 [Google Scholar]
  84. Magliani W, Conti S, Gerloni M, Bertolotti D, Polonelli L. 1997. Yeast killer systems. Clin. Microbiol. Rev. 10:369–400 [Google Scholar]
  85. Martin W, Muller M. 1998. The hydrogen hypothesis for the first eukaryote. Nature 392:37–41 [Google Scholar]
  86. Maynard Smith J. 1964. Group selection and kin selection. Nature 201:1145–46 [Google Scholar]
  87. Maynard Smith J. 1976. Group selection. Q. Rev. Biol. 61:277–83 [Google Scholar]
  88. Maynard Smith J. 1978. The evolution of behavior. Sci. Am. 239:136–45 [Google Scholar]
  89. Maynard Smith J. 1988. Evolutionary progress and the levels of selection. Evolutionary Progress MH Nitecki 219–30 Chicago, IL: Univ. Chicago Press [Google Scholar]
  90. Maynard Smith J, Száthmary E. 1995. The Major Transitions in Evolution Oxford, UK: Freeman
  91. McDonald MJ, Gehrig SM, Meintjes PL, Zhang XX, Rainey PB. 2009. Adaptive divergence in experimental populations of Pseudomonas fluorescens. IV. Genetic constraints guide evolutionary trajectories in a parallel adaptive radiation. Genetics 183:1041–53 [Google Scholar]
  92. Mehdiabadi NJ, Jack CN, Farnham TT, Platt TG, Kalla SE. et al. 2006. Kin preference in a social microbe. Nature 442:881–82 [Google Scholar]
  93. Michod RE. 1996. Cooperation and conflict in the evolution of individuality. 2. Conflict mediation. Proc. R. Soc. B 263:813–22 [Google Scholar]
  94. Michod RE. 1999. Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality Princeton, NJ: Princeton Univ. Press
  95. Michod RE. 2003. Cooperation and conflict mediation during the origin of multicellularity. See Hammerstein 2003, pp. 291–307
  96. Michod RE. 2006a. The group covariance effect and fitness trade-offs during evolutionary transitions in individuality. Proc. Natl. Acad. Sci. USA 103:9113–17 [Google Scholar]
  97. Michod RE. 2006b. On the transfer of fitness from the cell to the multicellular organism. Biol. Philos. 20:967–87 [Google Scholar]
  98. Michod RE, Herron MD. 2006. Cooperation and conflict during evolutionary transitions in individuality. J. Evol. Biol. 19:1406–9; discussion 26–36 [Google Scholar]
  99. Michod RE, Roze D. 1997. Transitions in individuality. Proc. R. Soc. B 264:853–57 [Google Scholar]
  100. Michod RE, Roze D. 1999. Cooperation and conflict in the evolution of individuality III. Transitions in the unit of fitness. Mathematical and Computational Biology: Computational Morphogenesis, Hierarchical Complexity, and Digital Evolution CL Nehaniv 47–92 Providence, RI: Am. Math. Soc. [Google Scholar]
  101. Michod RE, Roze D. 2001. Cooperation and conflict in the evolution of multicellularity. Heredity 81:1–7 [Google Scholar]
  102. Newman SA. 2012. Physico-genetic determinants in the evolution of development. Science 338:217–19 [Google Scholar]
  103. Newman SA, Bhat R. 2008. Dynamical patterning modules: physico-genetic determinants of morphological development and evolution. Phys. Biol. 5:015008 [Google Scholar]
  104. Niklas KJ. 2014. The evolutionary-developmental origins of multicellularity. Am. J. Bot. 101:6–25 [Google Scholar]
  105. Niklas KJ, Newman SA. 2013. The origins of multicellular organisms. Evol. Dev. 15:41–52 [Google Scholar]
  106. Nowak MA. 2006. Five rules for the evolution of cooperation. Science 314:1560–63 [Google Scholar]
  107. Nowak MA, May RM. 1992. Evolutionary games and spatial chaos. Nature 359:826–29 [Google Scholar]
  108. Nowak MA, Ohtsuki H. 2008. Prevolutionary dynamics and the origin of evolution. Proc. Natl. Acad. Sci. USA 105:14924–27 [Google Scholar]
  109. Nowak MA, Tarnita CE, Wilson EO. 2010. The evolution of eusociality. Nature 466:1057–62 [Google Scholar]
  110. Nunney L. 1999a. Lineage selection and the evolution of multistage carcinogenesis. Proc. R. Soc. B 266:493–98 [Google Scholar]
  111. Nunney L. 1999b. Lineage selection: natural selection for long-term benefit. Levels of Selection in Evolution L Keller 238–52 Princeton, NJ: Princeton Univ. Press [Google Scholar]
  112. Nunney L. 2013. The real war on cancer: the evolutionary dynamics of cancer suppression. Evol. Appl. 6:11–19 [Google Scholar]
  113. Okasha S. 2006. Evolution and the Levels of Selection Oxford, UK: Oxford Univ. Press
  114. Olson M. 1965. The Logic of Collective Action: Public Goods and the Theory of Groups Cambridge, MA: Harvard Univ. Press
  115. Ostrowski EA, Katoh M, Shaulsky G, Queller DC, Strassmann JE. 2008. Kin discrimination increases with genetic distance in a social amoeba. PLOS Biol. 6:2376–82 [Google Scholar]
  116. Oud B, Guadalupe-Medina V, Nijkamp JF, de Ridder D, Pronk JT. et al. 2013. Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 110:E4223–31 doi: 10.1073/pnas.1305949110 [Google Scholar]
  117. Pande S, Merker H, Bohl K, Reichelt M, Schuster S. et al. 2013. Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME J. 8:953–62 [Google Scholar]
  118. Pepper JW, Herron MD. 2008. Does biology need an organism concept?. Biol. Rev. 83:621–27 [Google Scholar]
  119. Pfeiffer T, Bonhoeffer S. 2002. Evolutionary consequences of tradeoffs between yield and rate of ATP production. Z. Phys. Chem. 216:51–63 [Google Scholar]
  120. Pfeiffer T, Bonhoeffer S. 2003. An evolutionary scenario for the transition to undifferentiated multicellularity. Proc. Natl. Acad. Sci. USA 100:1095–98 [Google Scholar]
  121. Pfeiffer T, Schuster S, Bonhoeffer S. 2001. Cooperation and competition in the evolution of ATP-producing pathways. Science 292:504–7 [Google Scholar]
  122. Price GR. 1970. Selection and covariance. Nature 227:520–21 [Google Scholar]
  123. Price GR. 1972. Extension of covariance selection mathematics. Genetics 35:485–90 [Google Scholar]
  124. Price GR. 1995. The nature of selection. J. Theor. Biol. 175:389–96 [Google Scholar]
  125. Queller DC. 2000. Relatedness and the fraternal major transitions. Philos. Trans. R. Soc. Lond. B 355:1647–55 [Google Scholar]
  126. Queller DC, Ponte E, Bozzaro S, Strassmann JE. 2003. Single-gene greenbeard effects in the social amoeba Dictyostelium discoideum. Science 299:105–6 [Google Scholar]
  127. Queller DC, Strassmann JE. 2009. Beyond society: the evolution of organismality. Philos. Trans. R. Soc. Lond. B 364:3143–55 [Google Scholar]
  128. Rainey PB. 2007. Unity from conflict. Nature 446:616 [Google Scholar]
  129. Rainey PB, Kerr B. 2010. Cheats as first propagules: a new hypothesis for the evolution of individuality during the transition from single cells to multicellularity. BioEssays 32:872–80 [Google Scholar]
  130. Rainey PB, Kerr B. 2011. Conflicts among levels of selection as fuel for the evolution of individuality. The Major Transitions in Evolution Revisited (Vienna Series in Theoretical Biology) B Calcott, K Sterelny 141–62 London: MIT Press [Google Scholar]
  131. Rainey PB, Rainey K. 2003. Evolution of cooperation and conflict in experimental bacterial populations. Nature 425:72–74 [Google Scholar]
  132. Rainey PB, Travisano M. 1998. Adaptive radiation in a heterogeneous environment. Nature 394:69–72 [Google Scholar]
  133. Rankin DJ, Bargum K, Kokko H. 2007. The tragedy of the commons in evolutionary biology. Trends Ecol. Evol. 22:643–51 [Google Scholar]
  134. Ratcliff WC, Denison RF, Borrello M, Travisano M. 2012. Experimental evolution of multicellularity. Proc. Natl. Acad. Sci. USA 109:1595–600 [Google Scholar]
  135. Ratcliff WC, Herron MD, Howell K, Pentz JT, Rosenzweig F, Travisano M. 2013a. Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii. Nat. Commun. 4:2742 [Google Scholar]
  136. Ratcliff WC, Pentz JT, Travisano M. 2013b. Tempo and mode of multicellular adaptation in experimentally evolved Saccharomyces cerevisiae. Evolution 67:1573–81 [Google Scholar]
  137. Ratnieks FLW, Visscher PK. 1989. Worker policing in the honeybee. Nature 342:796–97 [Google Scholar]
  138. Riley MA, Wertz JE. 2002. Bacteriocins: evolution, ecology, and application. Annu. Rev. Microbiol. 56:117–37 [Google Scholar]
  139. Rokas A. 2008. The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu. Rev. Genet. 42:235–51 [Google Scholar]
  140. Sachs JL, Mueller UG, Wilcox TP, Bull JJ. 2004. The evolution of cooperation. Q. Rev. Biol. 79:135–60 [Google Scholar]
  141. Salles B, Weisemann JM, Weinstock GM. 1987. Temporal control of colicin-E1 induction. J. Bacteriol. 169:5028–34 [Google Scholar]
  142. Santorelli LA, Thompson CR, Villegas E, Svetz J, Dinh C. et al. 2008. Facultative cheater mutants reveal the genetic complexity of cooperation in social amoebae. Nature 451:1107–10 [Google Scholar]
  143. Santos FC, Santos MD, Pacheco JM. 2008. Social diversity promotes the emergence of cooperation in public goods games. Nature 454:213–16 [Google Scholar]
  144. Sebe-Pedros A, Irimia M, del Campo J, Parra-Acero H, Russ C. et al. 2013. Regulated aggregative multicellularity in a close unicellular relative of metazoa. eLife 2:e01287 [Google Scholar]
  145. Shou WY, Ram S, Vilar JMG. 2007. Synthetic cooperation in engineered yeast populations. Proc. Natl. Acad. Sci. USA 104:1877–82 [Google Scholar]
  146. Simon B, Fletcher JA, Doebeli M. 2012. Towards a general theory of group selection. Evolution 67:1561–72 [Google Scholar]
  147. Simpson C. 2012. The evolutionary history of division of labour. Proc. R. Soc. B 279:116–21 [Google Scholar]
  148. Smukalla S, Caldara M, Pochet N, Beauvais A, Guadagnini S. et al. 2008. FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 135:726–37 [Google Scholar]
  149. Sober E, Wilson DS. 1998. Unto Others: The Evolution and Psychology of Unselfish Behaviour Cambridge, MA: Harvard Univ. Press
  150. Sole RV, Valverde S. 2013. Before the endless forms: embodied model of transition from single cells to aggregates to ecosystem engineering. PLOS ONE 8:e59664 [Google Scholar]
  151. Spiers AJ, Kahn SG, Bohannon J, Travisano M, Rainey PB. 2002. Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness. Genetics 161:33–46 [Google Scholar]
  152. Száthmary E, Wolpert L. 2003. The evolution of multicellularity. See Hammerstein 2003 271–90
  153. Tarnita CE, Antal T, Ohtsuki H, Nowak MA. 2009. Evolutionary dynamics in set structured populations. Proc. Natl. Acad. Sci. USA 106:8601–4 [Google Scholar]
  154. Tarnita CE, Taubes CH, Nowak MA. 2012. Evolutionary construction by staying together and coming together. J. Theor. Biol. 320:10–22 [Google Scholar]
  155. Tomitani A, Knoll AH, Cavanaugh CM, Ohno T. 2006. The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc. Natl. Acad. Sci. USA 103:5442–47 [Google Scholar]
  156. Traulsen A, Nowak MA. 2006. Evolution of cooperation by multilevel selection. Proc. Natl. Acad. Sci. USA 103:10952–55 [Google Scholar]
  157. Trivers RL. 1971. The evolution of reciprocal altruism. Q. Rev. Biol. 46:35–57 [Google Scholar]
  158. Umen JG, Olson BJSC. 2012. Genomics of volvocine algae. Adv. Bot. Res. 64:185–243 [Google Scholar]
  159. van Baalen M, Rand DA. 1998. The unit of selection in viscous populations and the evolution of altruism. J. Theor. Biol. 193:631–48 [Google Scholar]
  160. van Veelen M, Garcia J, Aviles L. 2010. It takes grouping and cooperation to get sociality. J. Theor. Biol. 264:1240–53 [Google Scholar]
  161. Velicer GJ, Kroos L, Lenski RE. 1998. Loss of social behaviours by Myxococcus xanthus during evolution in an unstructured habitat. Proc. Natl. Acad. Sci. USA 95:12376–80 [Google Scholar]
  162. Wade MJ. 1978. A critical review of the models of group selection. Q. Rev. Biol. 53:101–14 [Google Scholar]
  163. West SA, Pen I, Griffin AS. 2002. Cooperation and competition between relatives. Science 296:72–75 [Google Scholar]
  164. Williams GC. 1966. Adaptation and Natural Selection Princeton, NJ: Princeton Univ. Press
  165. Wilson DS. 1975. A theory of group selection. Proc. Natl. Acad Sci. USA 72:143–46 [Google Scholar]
  166. Wilson DS, Dugatkin LA. 1997. Group selection and assortative interactions. Am. Nat. 149:336–51 [Google Scholar]
  167. Wilson DS, Pollock GB, Dugatkin LA. 1992. Can altruism evolve in purely viscous populations?. Evol. Ecol. 6:331–41 [Google Scholar]
  168. Wilson DS, Sober E. 1989. Reviving the superorganism. J. Theor. Biol. 136:337–56 [Google Scholar]
  169. Wolpert L, Száthmary E. 2002. Multicellularity: evolution and the egg. Nature 420:745 [Google Scholar]
  170. Wray GA. 2001. Dating branches on the tree of life using DNA. Genome Biol. 3:1–7 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-120213-091740
Loading
/content/journals/10.1146/annurev-ecolsys-120213-091740
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error