1932

Abstract

Coral reefs are considered one of the ecosystems most vulnerable to ongoing global climate change. However, geographic and taxonomic responses to climate change are highly variable, and fundamental aspects of key research approaches remain unresolved, leaving substantial uncertainty in our ability to predict the future of coral reefs. I review the ecological and evolutionary response of coral reefs to climate change in a broad temporal context, primarily focusing on tropical reef corals. I show critical gaps in our understanding that impede accurate prediction of future responses. These gaps include the response of past reefs to global change, the interpretation of coral response to thermal stress and ocean acidification, how corals and other reef organisms might respond evolutionarily, and our approach to evaluating response to climate in the context of multiple stressors. Reducing uncertainty by filling these gaps and by incorporating variation in geographic and taxonomic response will substantially improve our ability to model coral reef futures and manage coral reefs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-120213-091811
2015-12-04
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/46/1/annurev-ecolsys-120213-091811.html?itemId=/content/journals/10.1146/annurev-ecolsys-120213-091811&mimeType=html&fmt=ahah

Literature Cited

  1. Albright R, Mason B. 2013. Projected near-future levels of temperature and pCO2 reduce coral fertilization success. PLOS ONE 8:e56468 [Google Scholar]
  2. Andersson AJ, Gledhill D. 2013. Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annu. Rev. Mar. Sci. 5:321–48 [Google Scholar]
  3. Anthony K, Connolly SR, Hoegh-Guldberg O. 2007. Bleaching, energetics, and coral mortality risk: effects of temperature, light, and sediment regime. Limnol. Oceanogr. 52:716–26 [Google Scholar]
  4. Anthony KRN, Hoogenboom MO, Maynard JA, Grottoli AG, Middlebrook R. 2009. Energetics approach to predicting mortality risk from environmental stress: a case study of coral bleaching. Funct. Ecol. 23:539–50 [Google Scholar]
  5. Ateweberhan M, Feary DA, Keshavmurthy S, Chen A, Schleyer MH, Sheppard CRC. 2013. Climate change impacts on coral reefs: synergies with local effects, possibilities for acclimation, and management implications. Mar. Pollut. Bull. 74:526–39 [Google Scholar]
  6. Baird AH, Sommer B, Madin JS. 2012. Pole-ward range expansion of Acropora spp. along the east coast of Australia. Coral Reefs 31:1063 [Google Scholar]
  7. Baker AC, Glynn PW, Riegl B. 2008. Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar. Coast. Shelf Sci. 80:435–71 [Google Scholar]
  8. Ban SS, Graham NAJ, Connolly SR. 2014. Evidence for multiple stressor interactions and effects on coral reefs. Glob. Change Biol. 20:681–97 [Google Scholar]
  9. Barshis DJ, Ladner JT, Oliver TA, Seneca FO, Traylor-Knowles N, Palumbi SR. 2013. Genomic basis for coral resilience to climate change. PNAS 110:1387–92 [Google Scholar]
  10. Baums IB, Devlin-Durante MK, Lajeunesse TC. 2014. New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol. Ecol. 23:4203–15 [Google Scholar]
  11. Bay RA, Palumbi SR. 2014. Multilocus adaptation associated with heat resistance in reef-building corals. Curr. Biol. 24:2952–56 [Google Scholar]
  12. Beger M, Sommer B, Harrison PL, Smith SD, Pandolfi JM. 2014. Conserving potential coral reef refuges at high latitudes. Divers. Distrib. 20:245–57 [Google Scholar]
  13. Blanchon P, Granados-Corea M, Abbey E, Braga JC, Braithwaite C. et al. 2014. Postglacial fringing-reef to barrier-reef conversion on Tahiti links Darwin's reef types. Sci. Rep. 4:4997 [Google Scholar]
  14. Budd A, Pandolfi JM. 2010. Evolutionary novelty is concentrated at the edge of coral species distributions. Science 328:1558–61 [Google Scholar]
  15. Burge CA, Eakin CM, Friedman CS, Froelich B, Hershberger PK. et al. 2014. Climate change influences on marine infectious diseases: implications for management and society. Annu. Rev. Mar. Sci. 6:249–77 [Google Scholar]
  16. Burrows MT, Schoeman DS, Buckley L, Moore P, Poloczanska E. et al. 2011. The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652–55 [Google Scholar]
  17. Carilli JE, Norris RD, Black BA, Walsh SM, McField M. 2009. Local stressors reduce coral resilience to bleaching. PLOS ONE 4:e6324 [Google Scholar]
  18. Carilli JE, Norris RD, Black BA, Walsh SM, McField M. 2010. Century-scale records of coral growth rates indicate that local stressors reduce coral thermal tolerance threshold. Glob. Change Biol. 16:1247–57 [Google Scholar]
  19. Chan NCS, Connolly SR. 2013. Sensitivity of coral calcification to ocean acidification: a meta-analysis. Glob. Change Biol. 19:282–90 [Google Scholar]
  20. Chen PY, Chen CC, Chu L, McCarl B. 2015. Evaluating the economic damage of climate change on global coral reefs. Glob. Environ. Change 30:12–20 [Google Scholar]
  21. Comeau S, Edmunds PJ, Spindel NB, Carpenter RC. 2013. The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point. Limnol. Oceanogr. 58:388–98 [Google Scholar]
  22. Cooper TF, O'Leary RA, Lough JM. 2012. Growth of Western Australian corals in the Anthropocene. Science 335:593–96 [Google Scholar]
  23. Crook ED, Cohen AL, Rebolledo-Vieyra M, Hernandez L, Paytan A. 2013. Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification. PNAS 110:11044–49 [Google Scholar]
  24. Davies P, Hopley D. 1983. Growth facies and growth rates of Holocene reefs in the Great Barrier Reef. BMR J. Austr. Geol. Geophys. 8:237–51 [Google Scholar]
  25. De'ath G, Lough JM, Fabricius KE. 2009. Declining coral calcification on the Great Barrier Reef. Science 323:116–19 [Google Scholar]
  26. DeCarlo TM, Cohen AL, Barkley HC, Cobban Q, Young C. et al. 2015. Coral macrobioerosion is accelerated by ocean acidification and nutrients. Geology 43:7–10 [Google Scholar]
  27. Descombes P, Wisz MS, Leprieur F, Parravicini V, Heine C. et al. 2015. Forecasted coral reef decline in marine biodiversity hotspots under climate change. Glob. Change Biol. 21:2479–87 [Google Scholar]
  28. D'Olivo JP, McCulloch MT, Judd K. 2013. Long-term records of coral calcification across the central Great Barrier Reef: assessing the impacts of river runoff and climate change. Coral Reefs 32:999–1012 [Google Scholar]
  29. Donner SD. 2011. An evaluation of the effect of recent temperature variability on the prediction of coral bleaching events. Ecol. Appl. 21:1718–30 [Google Scholar]
  30. Dove SG, Kline DI, Pantos O, Angly FE, Tyson GW, Hoegh-Guldberg O. 2013. Future reef decalcification under a business-as-usual CO2 emission scenario. PNAS 110:15342–47 [Google Scholar]
  31. Dullo W. 2005. Coral growth and reef growth: a brief review. Facies 51:33–48 [Google Scholar]
  32. Eakin CM, Lough JM, Heron SF. 2009. Climate variability and change: monitoring data and evidence for increased coral bleaching stress. Coral Bleach. Ecol. Stud. 205:41–67 [Google Scholar]
  33. Edinger EN, Risk MJ. 1995. Preferential survivorship of brooding corals in a regional extinction. Paleobiology 21:200–19 [Google Scholar]
  34. Edmunds PJ. 2011. Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites spp. Limnol. Oceanogr. 56:2402–10 [Google Scholar]
  35. Edmunds PJ, Carpenter RC, Comeau S. 2013. Understanding the threats of ocean acidification to coral reefs. Oceanography 26:149–52 [Google Scholar]
  36. Eyre BD, Andersson AJ, Cyronak T. 2014. Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat. Clim. Change 4:969–76 [Google Scholar]
  37. Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S. et al. 2011. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat. Clim. Change 1:165–69 [Google Scholar]
  38. Fang JKH, Mello-Athayde MA, Schönberg CHL, Kline DI, Hoegh-Guldberg O, Dove S. 2013. Sponge biomass and bioerosion rates increase under ocean warming and acidification. Glob. Change Biol. 19:3581–91 [Google Scholar]
  39. Finnegan S, Anderson SC, Harnik PG, Simpson C, Tittensor DP. et al. 2015. Paleontological baselines for evaluating extinction risk in the modern oceans. Science 348:567–70 [Google Scholar]
  40. Foo SA, Dworjanyn SA, Khatkar MS, Poore AGB, Byrne M. 2014. Increased temperature, but not acidification, enhances fertilization and development in a tropical urchin: potential for adaptation to a tropicalized eastern Australia. Evol. Appl. 7:1226–37 [Google Scholar]
  41. Frieler K, Meinshausen M, Golly A, Mengel M, Lebek K. et al. 2012. Limiting global warming to 2°C is unlikely to save most coral reefs. Nat. Clim. Change 3:165–70 [Google Scholar]
  42. Furby KA, Apprill A, Cervino JM, Ossolinski JE, Hughen KA. 2014. Incidence of lesions on Fungiidae corals in the eastern Red Sea is related to water temperature and coastal pollution. Mar. Environ. Res. 98:29–38 [Google Scholar]
  43. Gattuso JP, Kirkwood W, Barry JP, Cox E, Gazeau F. et al. 2014. Free ocean CO2 enrichment (FOCE) systems: present status and future developments. Biogeosci. Discuss. 11:4001–46 [Google Scholar]
  44. Graham NA, Cinner JE, Norström AV, Nyström M. 2014. Coral reefs as novel ecosystems: embracing new futures. Curr. Opin. Environ. Sustain. 7:9–14 [Google Scholar]
  45. Graham NAJ, Jennings S, MacNeil MA, Mouillot D, Wilson SK. 2015. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518:94–97 [Google Scholar]
  46. Granados-Cifuentes C, Bellantuono AJ, Ridgway T, Hoegh-Guldberg O, Rodriguez-Lanetty M. 2013. High natural gene expression variation in the reef-building coral Acropora millepora: potential for acclimative and adaptive plasticity. BMC Genom. 14:228 [Google Scholar]
  47. Greenstein BJ, Pandolfi JM. 2008. Escaping the heat: range shifts of reef coral taxa in coastal Western Australia. Glob. Change Biol. 14:513–28 [Google Scholar]
  48. Hoegh-Guldberg O. 2012. The adaptation of coral reefs to climate change: Is the Red Queen being outpaced?. Sci. Mar. 76:403–8 [Google Scholar]
  49. Hoffmann AA, Sgrò CM. 2011. Climate change and evolutionary adaptation. Nature 470:479–85 [Google Scholar]
  50. Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, van Oppen MJH. 2011. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat. Clim. Change 2:116–20 [Google Scholar]
  51. Howells EJ, Berkelmans R, van Oppen MJH, Willis BL, Bay LK. 2013. Historical thermal regimes define limits to coral acclimatization. Ecology 94:1078–88 [Google Scholar]
  52. Hubbard DK. 2009. Depth-related and species-related patterns of Holocene reef accretion in the Caribbean and western Atlantic: a critical assessment of existing models. Perspectives in Carbonate Geology: A Tribute to the Career of Robert Nathan Ginsburg PK Swart, GP Eberli, JA McKenzie, I Jarvis, T Stevens 1–18 Chichester, UK: Wiley [Google Scholar]
  53. Hughes TP. 1994. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–51 [Google Scholar]
  54. Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS. 2010. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25:633–42 [Google Scholar]
  55. Hughes TP, Jackson JBC. 1980. Do corals lie about their age? Some demographic consequences of partial mortality, fission, and fusion. Science 209:713–15 [Google Scholar]
  56. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW. et al. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–37 [Google Scholar]
  57. Johnson KG, Budd AF, Stemman TA. 1995. Extinction selectivity and ecology of Neogene Caribbean reef corals. Paleobiology 21:52–73 [Google Scholar]
  58. Johnson KG, Jackson J, Budd A. 2008. Caribbean reef development was independent of coral diversity over 28 million years. Science 319:1521–23 [Google Scholar]
  59. Jones A, Berkelmans R. 2010. Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant versus sensitive symbiont types. PLOS ONE 5:e10437 [Google Scholar]
  60. Jones AM, Berkelmans R, Mieog JC, Van Oppen MJH, Sinclair W. 2008. A community change in the symbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc. R. Soc. B 275:1359–65 [Google Scholar]
  61. Kamya PZ, Dworjanyn SA, Hardy N, Mos B. 2014. Larvae of the coral eating crown-of-thorns starfish, Acanthaster planci in a warmer-high CO2 ocean. Glob. Change Biol. 20:3365–76 [Google Scholar]
  62. Kenkel CD, Goodbody-Gringley G, Caillaud D, Davies SW, Bartels E, Matz MV. 2013. Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (Porites astreoides) from different reef environments. Mol. Ecol. 22:4335–48 [Google Scholar]
  63. Keppel G, Wardell-Johnson GW. 2012. Refugia: keys to climate change management. Glob. Change Biol. 18:2389–91 [Google Scholar]
  64. Kiessling W, Eichenseer K. 2014. The scaling law of climate change and its relevance to assessing (palaeo)biological responses. EGU Gen. Assem. Conf. Abstr. 16:15790 [Google Scholar]
  65. Kiessling W, Simpson C. 2011. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob. Change Biol. 17:56–67 [Google Scholar]
  66. Kiessling W, Simpson C, Beck B, Mewis H, Pandolfi JM. 2012. Equatorial decline of reef corals during the last Pleistocene interglacial. PNAS 109:21378–83 [Google Scholar]
  67. Klaus JS, McNeill DF, Budd AF, Johnson KG. 2008. Assessing community change in Miocene to Pliocene coral assemblages of the northern Dominican Republic. Aims Scope Top. Geobiol. 30193–223 [Google Scholar]
  68. Knoll A, Bambach R, Payne J, Pruss S, Fischer W. 2007. Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 256:295–313 [Google Scholar]
  69. Kroeker KJ, Micheli F, Gambi MC, Martz TR. 2011. Divergent ecosystem responses within a benthic marine community to ocean acidification. PNAS 108:14515–20 [Google Scholar]
  70. LaJeunesse TC, Pettay DT, Sampayo EM, Phongsuwan N, Brown B. et al. 2010a. Long-standing environmental conditions, geographic isolation and host-symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J. Biogeogr. 37:785–800 [Google Scholar]
  71. LaJeunesse TC, Smith R, Walther M, Pinzón J, Pettay DT. et al. 2010b. Host-symbiont recombination versus natural selection in the response of coral-dinoflagellate symbioses to environmental disturbance. Proc. R. Soc. B 277:2925–34 [Google Scholar]
  72. Lough JM, Cantin NE. 2014. Perspectives on massive coral growth rates in a changing ocean. Biol. Bull. 226:187–202 [Google Scholar]
  73. Lough JM, Cooper TF. 2011. New insights from coral growth band studies in an era of rapid environmental change. Earth Sci. Rev. 108:170–84 [Google Scholar]
  74. Makino A, Yamano H, Beger M, Klein CJ, Yara Y, Possingham HP. 2014. Spatio-temporal marine conservation planning to support high-latitude coral range expansion under climate change. Divers. Distrib. 20:859–71 [Google Scholar]
  75. Marsh LM. 1992. The occurrence and growth of Acropora in extra-tropical waters off Perth, Western Australia. Proc. 7th Int. Coral Reef Symp. Guam 2 RH Richmond 1233–38 UOG Station, Guam: Univ. Guam Press [Google Scholar]
  76. Masson-Delmotte V, Schulz M, Abe-Ouchi A, Beer J, Ganopolski A. et al. 2013. Information from paleoclimate archives. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor , et al., pp. 383–464 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  77. McClanahan TR, Ateweberhan M, Darling ES, Graham NAJ, Muthiga NA. 2014. Biogeography and change among regional coral communities across the Western Indian Ocean. PLOS ONE 9:e93385 [Google Scholar]
  78. McKay NP, Overpeck JT, Otto-Bliesner BL. 2011. The role of ocean thermal expansion in Last Interglacial sea level rise. Geophys. Res. Lett. 38:L14605 [Google Scholar]
  79. Molinos JG, Halpern BS, Schoeman DS, Brown CJ, Kiessling W. et al. 2015. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change. In press. doi: 10.1038/nclimate2769 [Google Scholar]
  80. Mumby PJ, van Woesik R. 2014. Consequences of ecological, evolutionary and biogeochemical uncertainty for coral reef responses to climatic stress. Curr. Biol. 24:R413–23 [Google Scholar]
  81. Munday PL. 2014. Transgenerational acclimation of fishes to climate change and ocean acidification. F1000Prime Rep. 6:99 [Google Scholar]
  82. Munday PL, Warner RR, Monro K, Pandolfi JM, Marshall DJ. 2013. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16:1488–500 [Google Scholar]
  83. Muñoz NJ, Farrell AP, Heath JW, Neff BD. 2014. Adaptive potential of a Pacific salmon challenged by climate change. Nat. Clim. Change 5:163–66 [Google Scholar]
  84. Norris RD, Turner SK, Hull PM, Ridgwell A. 2013. Marine ecosystem responses to Cenozoic global change. Science 341:492–98 [Google Scholar]
  85. Ogawa D, Bobeszko T, Ainsworth T, Leggat W. 2013. The combined effects of temperature and CO2 lead to altered gene expression in Acropora aspera. Coral Reefs 32:895–907 [Google Scholar]
  86. Oliver J, Berkelmans R, Eakin C. 2009. Coral bleaching in space and time. Coral Bleach. Ecol. Stud. 205:21–39 [Google Scholar]
  87. Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA. 2014. Mechanisms of reef coral resistance to future climate change. Science 344:6186895–98 [Google Scholar]
  88. Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA. et al. 2003. Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–58 [Google Scholar]
  89. Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL. 2011. Projecting coral reef futures under global warming and ocean acidification. Science 333:418–22 [Google Scholar]
  90. Pandolfi JM, Jackson JBC, Geister J. 2001. Geologically sudden extinction of two widespread late Pleistocene Caribbean reef corals. Evolutionary Patterns: Growth, Form and Tempo in the Fossil Record JBC Jackson, S Lidgard, FK McKinney 120–58 Chicago: Chicago Univ. Press [Google Scholar]
  91. Pandolfi JM, Kiessling W. 2014. Gaining insights from past reefs to inform understanding of coral reef response to global climate change. Curr. Opin. Environ. Sustain. 7:52–58 [Google Scholar]
  92. Perry CT, Murphy GN, Kench PS, Smithers SG, Edinger EN. et al. 2013. Caribbean-wide decline in carbonate production threatens coral reef growth. Nat. Commun. 4:1402 [Google Scholar]
  93. Perry CT, Smithers SG. 2010. Cycles of coral reef ‘turn-on’, rapid growth and ‘turn-off’ over the past 8500 years: a context for understanding modern ecological states and trajectories. Glob. Change Biol. 17:76–86 [Google Scholar]
  94. Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS. et al. 2013. Global imprint of climate change on marine life. Nat. Clim. Change 3:919–25 [Google Scholar]
  95. Pratchett MS, Anderson K, Hoogenboom M, Widman E, Baird AH. et al. 2015. Spatial, temporal and taxonomic variation in coral growth: implications for the structure and function of coral reef ecosystems. Oceanogr. Mar. Biol. Annu. Rev. 53:215–96 [Google Scholar]
  96. Pratchett MS, McCowan D, Maynard JA, Heron SF. 2013. Changes in bleaching susceptibility among corals subject to ocean warming and recurrent bleaching in Moorea, French Polynesia. PLOS ONE 8:e70443 [Google Scholar]
  97. Precht W, Aronson R. 2004. Climate flickers and range shifts of reef corals. Front. Ecol. Environ. 2:307–14 [Google Scholar]
  98. Randall CJ, Jordan-Garza AG, Muller EM, van Woesik R. 2014. Relationships between the history of thermal stress and the relative risk of diseases of Caribbean corals. Ecology 95:1981–94 [Google Scholar]
  99. Reusch TBH. 2013. Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants. Evol. Appl. 7:104–22 [Google Scholar]
  100. Reyes-Nivia C, Diaz-Pulido G, Kline D, Hoegh-Guldberg O, Dove S. 2013. Ocean acidification and warming scenarios increase microbioerosion of coral skeletons. Glob. Change Biol. 19:1919–29 [Google Scholar]
  101. Reymond CE, Lloyd A, Kline DI, Dove SG, Pandolfi JM. 2012. Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios. Glob. Change Biol. 19:291–302 [Google Scholar]
  102. Rodolfo-Metalpa R, Hoogenboom MO, Rottier C, Ramos-Esplá A, Baker AC. et al. 2014. Thermally tolerant corals have limited capacity to acclimatize to future warming. Glob. Change Biol. 20:3036–49 [Google Scholar]
  103. Roff G, Zhao J-X, Pandolfi JM. 2015. Rapid, uninterrupted growth and expansion of inshore fringing reefs from the central Great Barrier Reef during the late Holocene. Geology 43:343–46 [Google Scholar]
  104. Schoepf V, Grottoli AG, Warner ME, Cai WJ, Melman TF. et al. 2013. Coral energy reserves and calcification in a high-CO2 world at two temperatures. PLOS ONE 8:e75049 [Google Scholar]
  105. Schwartz SA, Budd AF, Carlon DB. 2012. Molecules and fossils reveal punctuated diversification in Caribbean “faviid” corals. BMC Evol. Biol. 12:123 [Google Scholar]
  106. Sommer B, Harrison PL, Beger M, Pandolfi JM. 2014. Trait-mediated environmental filtering drives assembly at biogeographic transition zones. Ecology 95:1000–9 [Google Scholar]
  107. Sunday JM, Calosi P, Dupont S, Munday PL, Stillman JH, Reusch TBH. 2014. Evolution in an acidifying ocean. Trends Ecol. Evol. 29:117–25 [Google Scholar]
  108. Tanzil JTI, Brown BE, Dunne RP, Lee JN, Kaandorp JA, Todd PA. 2013. Regional decline in growth rates of massive Porites corals in Southeast Asia. Glob. Change Biol. 19:3011–23 [Google Scholar]
  109. Thompson DM, van Woesik R. 2009. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proc. R. Soc. B 276:2893–901 [Google Scholar]
  110. Thor P, Dupont S. 2015. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob. Change Biol. 21:2261–71 [Google Scholar]
  111. van Oppen MJH, Souter P, Howells EJ, Heyward A, Berkelmans R. 2011. Novel genetic diversity through somatic mutations: fuel for adaptation of reef corals?. Diversity 3:405–23 [Google Scholar]
  112. van Woesik R, Franklin EC, O'Leary J, McClanahan TR, Klaus JS, Budd AF. 2012. Hosts of the Plio-Pleistocene past reflect modern-day coral vulnerability. Proc. R. Soc. B 279:2448–56 [Google Scholar]
  113. van Woesik R, Sakai K, Ganase A, Loya Y. 2011. Revisiting the winners and the losers a decade after coral bleaching. Mar. Ecol. Prog. Ser. 434:67–76 [Google Scholar]
  114. Vargas-Angel B, Thomas J, Hoke S. 2003. High-latitude Acropora cervicornis thickets off Fort Lauderdale, Florida, USA. Coral Reefs 22:465–73 [Google Scholar]
  115. Veizer J, Godderis Y, François LM. 2000. Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature 408:698–701 [Google Scholar]
  116. Venn AA, Tambutte E, Holcomb M, Laurent J, Allemand D, Tambutte S. 2013. Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals. PNAS 110:1634–39 [Google Scholar]
  117. Veron JEN, Hoegh-Guldberg O, Lenton TM, Lough JM, Obura DO. et al. 2009. The coral reef crisis: the critical importance of <350 ppm CO2. Mar. Pollut. Bull. 58:1428–36 [Google Scholar]
  118. Wernberg T, Smale DA, Thomsen MS. 2012. A decade of climate change experiments on marine organisms: procedures, patterns and problems. Glob. Change Biol. 18:1491–98 [Google Scholar]
  119. Wiedenmann J, D'Angelo C, Smith EG, Hunt AN, Legiret FE. et al. 2012. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3:160–64 [Google Scholar]
  120. Williams GJ, Price NN, Ushijima B, Aeby GS, Callahan S. et al. 2014. Ocean warming and acidification have complex interactive effects on the dynamics of a marine fungal disease. Proc. R. Soc. B 281:20133069 [Google Scholar]
  121. Wisshak M, Schönberg C, Form A. 2013. Effects of ocean acidification and global warming on reef bioerosion—lessons from a clionaid sponge. Aquat. Biol. 19:111–27 [Google Scholar]
  122. Woodroffe CD, Webster JM. 2014. Coral reefs and sea-level change. Mar. Geol. 352:248–67 [Google Scholar]
  123. Yamano H, Sugihara K, Nomura K. 2011. Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys. Res. Lett. 38:L04601 [Google Scholar]
  124. Zeebe RE. 2012. History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annu. Rev. Earth Planet. Sci. 40:141–65 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-120213-091811
Loading
/content/journals/10.1146/annurev-ecolsys-120213-091811
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error