1932

Abstract

Originating most likely in the early Cretaceous, ants have diversified to become the world's most successful eusocial insects, occupying most terrestrial ecosystems and acquiring a global ecological footprint. Recent advances in our understanding of ant evolutionary history have been propelled by the use of molecular phylogenetic methods, in conjunction with a rich (and still growing) fossil record. Most extant ants belong to the formicoid clade, which contains ∼90% of described species and has produced the most socially advanced and dominant forms. The remaining ants are old lineages of predominantly cryptobiotic species whose relationships to one another and to the formicoids remain unclear. Rooting the ant tree is challenging because of () a long branch separating ants from their nearest outgroup, and () heterogeneity in evolutionary rates and base composition among ant lineages. These factors will need to be given careful consideration in future phylogenomic studies of ants.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-120213-091824
2014-11-23
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/45/1/annurev-ecolsys-120213-091824.html?itemId=/content/journals/10.1146/annurev-ecolsys-120213-091824&mimeType=html&fmt=ahah

Literature Cited

  1. AntCat 2014. AntCat. An Online Catalog of the Ants of the World. Accessed 1 May 2014. http://antcat.org/ [Google Scholar]
  2. Archibald SB, Johnson KR, Mathewes RW, Greenwood DR. 2011. Intercontinental dispersal of giant thermophilic ants across the Arctic during early Eocene hyperthermals. Proc. R. Soc. B-Biol. Sci. 278:3679–86 [Google Scholar]
  3. Aria C, Perrichot V, Nel A. 2011. Fossil Ponerinae (Hymenoptera: Formicidae) in Early Eocene amber of France. Zootaxa 2870:53–62 [Google Scholar]
  4. Arillo A, Ortuño VM. 2005. Catalogue of fossil insect species described from Dominican amber (Miocene). Stuttg. Beitr. Naturkd. Ser. B (Geol. Paläontol.) 352:1–68 [Google Scholar]
  5. Barden P, Grimaldi D. 2012. Rediscovery of the bizarre Cretaceous ant Haidomyrmex Dlussky (Hymenoptera: Formicidae), with two new species. Am. Mus. Novit. 3755:1–16 [Google Scholar]
  6. Baroni Urbani C, Bolton B, Ward PS. 1992. The internal phylogeny of ants (Hymenoptera: Formicidae). Syst. Entomol. 17:301–29 [Google Scholar]
  7. Bergsten J. 2005. A review of long-branch attraction. Cladistics 21:163–93 [Google Scholar]
  8. Blaimer BB. 2012. Acrobat ants go global—origin, evolution and systematics of the genus Crematogaster (Hymenoptera: Formicidae). Mol. Phylogenet. Evol. 65:421–36 [Google Scholar]
  9. Blum MS, Hermann HR. 1978. Venoms and venom apparatuses of the Formicidae: Dolichoderinae and Aneuretinae. Handb. Exp. Pharmakol. 48:871–94 [Google Scholar]
  10. Bohart RM, Menke AS. 1976. Sphecid Wasps of the World. A Generic Revision. Berkeley: Univ. Calif. Press [Google Scholar]
  11. Bolton B. 1990. The higher classification of the ant subfamily Leptanillinae (Hymenoptera: Formicidae). Syst. Entomol. 15:267–82 [Google Scholar]
  12. Bolton B. 2003. Synopsis and classification of Formicidae. Mem. Am. Entomol. Inst. 71:1–370 [Google Scholar]
  13. Bourke AFG. 2011. The validity and value of inclusive fitness theory. Proc. R. Soc. B 278:3313–20 [Google Scholar]
  14. Brady SG. 2011. Effects of fossil calibration uncertainty on divergence dating in ants and bees. Am. Entomol. 57:56–57 [Google Scholar]
  15. Brady SG, Fisher BL, Schultz TR, Ward PS. 2014. The rise of army ants and their relatives: diversification of the specialized predatory doryline ants. BMC Evol. Biol. 14:93 [Google Scholar]
  16. Brady SG, Larkin L, Danforth BN. 2009. Bees, ants, and stinging wasps (Aculeata). The Timetree of Life SB Hedges, S Kumar 264–69 New York: Oxford Univ. Press [Google Scholar]
  17. Brady SG, Schultz TR, Fisher BL, Ward PS. 2006. Evaluating alternative hypotheses for the early evolution and diversification of ants. Proc. Natl. Acad. Sci. USA 103:18172–77 [Google Scholar]
  18. Branstetter MG. 2012. Origin and diversification of the cryptic ant genus Stenamma Westwood (Hymenoptera: Formicidae), inferred from multilocus molecular data, biogeography and natural history. Syst. Entomol. 37:478–96 [Google Scholar]
  19. Brothers DJ. 1975. Phylogeny and classification of the aculeate Hymenoptera, with special reference to Mutillidae. Univ. Kans. Sci. Bull. 50:483–648 [Google Scholar]
  20. Brothers DJ. 1999. Phylogeny and evolution of wasps, ants and bees (Hymenoptera, Chrysidoidea, Vespoidea and Apoidea). Zool. Scr. 28:233–49 [Google Scholar]
  21. Brown WL. 1954. Remarks on the internal phylogeny and subfamily classification of the family Formicidae. Insectes Soc. 1:21–31 [Google Scholar]
  22. Brown WL. 2000. Diversity of ants. Ants. Standard Methods for Measuring and Monitoring Biodiversity D Agosti, JD Majer, LE Alonso, TR Schultz 45–79 Washington, DC: Smithson. Inst. [Google Scholar]
  23. Brown WL, Gotwald WH, Lévieux J. 1971. A new genus of ponerine ants from West Africa (Hymenoptera: Formicidae) with ecological notes. Psyche 77:259–75 [Google Scholar]
  24. Brues CT. 1925. Scyphodon, an anomalous genus of Hymenoptera of doubtful affinities. Treubia 6:93–96 [Google Scholar]
  25. Corona M, Libbrecht R, Wurm Y, Riba-Grognuz O, Studer RA, Keller L. 2013. Vitellogenin underwent subfunctionalization to acquire caste and behavioral specific expression in the harvester ant Pogonomyrmex barbatus. PLOS Genet. 9:e1003730 [Google Scholar]
  26. Cronin AL, Molet M, Doums C, Monnin T, Peeters C. 2013. Recurrent evolution of dependent colony foundation across eusocial insects. Annu. Rev. Entomol. 58:37–55 [Google Scholar]
  27. Danforth BN. 2013. Social insects: Are ants just wingless bees?. Curr. Biol. 23:R1011–12 [Google Scholar]
  28. Davidson DW, Cook SC, Snelling RR, Chua TH. 2003. Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300:969–72 [Google Scholar]
  29. Davidson DW, McKey D. 1993. Ant-plant symbioses: stalking the Chuyachaqui. Trends Ecol. Evol. 8:326–32 [Google Scholar]
  30. Debevec AH, Cardinal S, Danforth BN. 2012. Identifying the sister group to the bees: a molecular phylogeny of Aculeata with an emphasis on the superfamily Apoidea. Zool. Scr. 41:527–35 [Google Scholar]
  31. Delabie JHC. 2001. Trophobiosis between Formicidae and Hemiptera (Sternorrhyncha and Auchenorrhyncha): an overview. Neotrop. Entomol. 30:501–16 [Google Scholar]
  32. Dlussky GM. 1983. A new family of Upper Cretaceous Hymenoptera: an “intermediate link” between the ants and the scolioids [In Russian]. Paleontol. Zh. 1983:365–78 [Google Scholar]
  33. Dlussky GM. 1988. Ants of Sakhalin amber (Paleocene?) [In Russian]. Paleontol. Zh. 1988:150–61 [Google Scholar]
  34. Dlussky GM. 1999. The first find of the Formicoidea (Hymenoptera) in the lower Cretaceous of the Northern Hemisphere [in Russian]. Paleontol. Zh. 1999:362–66 [Google Scholar]
  35. Dlussky GM, Rasnitsyn AP. 2009. Ants (Insecta: Vespida: Formicidae) in the Upper Eocene amber of central and eastern Europe. Paleontol. J. 43:1024–42 [Google Scholar]
  36. Fittkau EJ, Klinge H. 1973. On biomass and trophic structure of the central Amazonian rain forest ecosystem. Biotropica 5:2–14 [Google Scholar]
  37. Folgarait PJ. 1998. Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers. Conserv. 7:1221–44 [Google Scholar]
  38. Gauld I, Bolton B. 1988. The Hymenoptera Oxford: Oxford Univ. Press [Google Scholar]
  39. Grimaldi D, Agosti D. 2000. A formicine in New Jersey Cretaceous amber (Hymenoptera: Formicidae) and early evolution of the ants. Proc. Natl. Acad. Sci. USA 97:13678–83 [Google Scholar]
  40. Grimaldi D, Agosti D, Carpenter JM. 1997. New and rediscovered primitive ants (Hymenoptera: Formicidae) in Cretaceous amber from New Jersey, and their phylogenetic relationships. Am. Mus. Novit. 3208:1–43 [Google Scholar]
  41. Grimaldi D, Engel MS. 2005. Evolution of the Insects New York: Cambridge Univ. Press [Google Scholar]
  42. Heraty J, Ronquist F, Carpenter JM, Hawks D, Schulmeister S. et al. 2011. Evolution of the hymenopteran megaradiation. Mol. Phylogenet. Evol. 60:73–88 [Google Scholar]
  43. Holland BR, Penny D, Hendy MD. 2003. Outgroup misplacement and phylogenetic inaccuracy under a molecular clock—a simulation study. Syst. Biol. 52:229–38 [Google Scholar]
  44. Hölldobler B, Wilson EO. 1977. The number of queens: an important trait in ant evolution. Naturwissenschaften 64:8–15 [Google Scholar]
  45. Hölldobler B, Wilson EO. 1990. The Ants Cambridge, MA: Harvard Univ. Press [Google Scholar]
  46. Huber JT. 2009. Biodiversity of Hymenoptera. Insect Biodiversity: Science and Society R Footit, P Adler 303–23 Oxford, UK: Wiley-Blackwell [Google Scholar]
  47. Hughes WOH, Oldroyd BP, Beekman M, Ratnieks FLW. 2008. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320:1213–16 [Google Scholar]
  48. Inward D, Beccaloni G, Eggleton P. 2007. Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol. Lett. 3:331–35 [Google Scholar]
  49. Jansen G, Savolainen R, Vepsäläinen K. 2010. Phylogeny, divergence-time estimation, biogeography and social parasite-host relationships of the Holarctic ant genus Myrmica (Hymenoptera: Formicidae). Mol. Phylogenet. Evol. 56:294–304 [Google Scholar]
  50. Jeffroy O, Brinkmann H, Delsuc F, Philippe H. 2006. Phylogenomics: the beginning of incongruence?. Trends Genet. 22:225–31 [Google Scholar]
  51. Johnson BR, Borowiec ML, Chiu JC, Lee EK, Atallah J, Ward PS. 2013. Phylogenomics resolves evolutionary relationships among ants, bees, and wasps. Curr. Biol. 23:2058–62 [Google Scholar]
  52. Kay AD, Bruning AJ, van Alst A, Abrahamson TT, Hughes WHO, Kaspari M. 2014. A carbohydrate-rich diet increases social immunity in ants. Proc. R. Soc. B 281:20132374 [Google Scholar]
  53. Keller RA. 2011. A phylogenetic analysis of ant morphology (Hymenoptera: Formicidae) with special reference to the poneromorph subfamilies. Bull. Am. Mus. Nat. Hist. 355:1–90 [Google Scholar]
  54. Keller RA, Peeters C, Beldade P. 2014. Evolution of thorax architecture in ant castes highlights trade-off between flight and ground behaviors. Elife 3:e01539 [Google Scholar]
  55. Klopfstein S, Vilhelmsen L, Heraty JM, Sharkey M, Ronquist F. 2013. The hymenopteran tree of life: evidence from protein-coding genes and objectively aligned ribosomal data. PLOS ONE 8:e69344 [Google Scholar]
  56. Kück P, Hita Garcia F, Misof B, Meusemann K. 2011. Improved phylogenetic analyses corroborate a plausible position of Martialis heureka in the ant tree of life. PLOS ONE 6:e21031 [Google Scholar]
  57. Kugler C. 1979. Evolution of the sting apparatus in the myrmicine ants. Evolution 33:117–30 [Google Scholar]
  58. Lach L, Parr CL, Abbott K. 2009. Ant Ecology Oxford, UK: Oxford Univ. Press [Google Scholar]
  59. LaPolla JS, Dlussky GM, Perrichot V. 2013. Ants and the fossil record. Annu. Rev. Entomol. 58:609–30 [Google Scholar]
  60. Lartillot N, Brinkmann H, Philippe H. 2007. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol. Biol. 7:Suppl 1S4 [Google Scholar]
  61. Lemmon EM, Lemmon AR. 2013. High-throughput genomic data in systematics and phylogenetics. Annu. Rev. Ecol. Evol. Syst. 44:99–121 [Google Scholar]
  62. Lucky A, Trautwein MD, Guénard B, Weiser MD, Dunn RR. 2013. Tracing the rise of the ants - out of the ground. PLOS ONE 8:e84012 [Google Scholar]
  63. Lutz H. 1986. Eine neue Unterfamilie der Formicidae (Insecta: Hymenoptera) aus dem mittel-eozänen Olschiefer der “Grube Messel” bei Darmstadt (Deutschland, S-Hessen). Senckenb. Lethaea 67:177–218 [Google Scholar]
  64. Magallón S. 2004. Dating lineages: molecular and paleontological approaches to the temporal framework of clades. Int. J. Plant Sci. 165:Suppl 4S7–21 [Google Scholar]
  65. Matthews RW. 1991. The evolution of social behavior in sphecid wasps. The Social Biology of Wasps KG Ross, RW Matthews 570–602 Ithaca, NY: Cornell Univ. Press [Google Scholar]
  66. McInerney FA, Wing SL. 2011. The Paleocene-Eocene thermal maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39:489–516 [Google Scholar]
  67. McKellar RC, Glasier JRN, Engel MS. 2013. New ants (Hymenoptera: Formicidae: Dolichoderinae) from Canadian Late Cretaceous amber. Bull. Geosci. 88:583–94 [Google Scholar]
  68. Moreau CS. 2008. Unraveling the evolutionary history of the hyperdiverse ant genus Pheidole (Hymenoptera: Formicidae). Mol. Phylogenet. Evol. 48:224–39 [Google Scholar]
  69. Moreau CS. 2009. Inferring ant evolution in the age of molecular data (Hymenoptera: Formicidae). Myrmecol. News 12:201–10 [Google Scholar]
  70. Moreau CS, Bell CD. 2013. Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution 67:2240–57 [Google Scholar]
  71. Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE. 2006. Phylogeny of the ants: diversification in the age of angiosperms. Science 312:101–4 [Google Scholar]
  72. Morgan C, Foster PG, Webb A, Pisani D, McInerney JO, O'Connell M. 2013. Heterogeneous models place the root of the placental mammal phylogeny. Mol. Biol. Evol. 30:2145–56 [Google Scholar]
  73. Mueller UG, Schultz TR, Currie CR, Adams RMM, Malloch D. 2001. The origin of the attine ant-fungus mutualism. Q. Rev. Biol. 76:171–97 [Google Scholar]
  74. Nunn CL. 2011. The Comparative Approach in Evolutionary Anthropology and Biology Chicago: Univ. Chic. Press [Google Scholar]
  75. Ogata K, Terayama M, Masuko K. 1995. The ant genus Leptanilla: discovery of the worker-associated male of L. japonica, and a description of a new species from Taiwan (Hymenoptera: Formicidae: Leptanillinae). Syst. Entomol. 20:27–34 [Google Scholar]
  76. Oster GF, Wilson EO. 1978. Caste and Ecology in the Social Insects Princeton: Princeton Univ. Press [Google Scholar]
  77. Oxley PR, Ji L, Fetter-Pruneda I, McKenzie SK, Li C. et al. 2014. The genome of the clonal raider ant (Cerapachys biroi). Curr. Biol. 24:451–58 [Google Scholar]
  78. Perrichot V. 2014. A new species of the Cretaceous ant Zigrasimecia based on the worker caste reveals placement of the genus in the Sphecomyrminae (Hymenoptera: Formicidae). Myrmecol. News 19:165–69 [Google Scholar]
  79. Perrichot V, Lacau S, Néraudeau D, Nel A. 2008. Fossil evidence for the early ant evolution. Naturwissenschaften 95:85–90 [Google Scholar]
  80. Petersen B. 1968. Some novelties in presumed males of Leptanillinae (Hym. , Formicidae) Entomol. Medd. 36:577–98 [Google Scholar]
  81. Philippe H, Brinkmann H, Lavrov DV, Littlewood DT, Manuel M. et al. 2011. Resolving difficult phylogenetic questions: why more sequences are not enough. PLOS Biol. 9:e1000602 [Google Scholar]
  82. Philippe H, Lartillot N, Brinkmann H. 2005. Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol. Biol. Evol. 22:1246–53 [Google Scholar]
  83. Pie MR, Tschá MK. 2009. The macroevolutionary dynamics of ant diversification. Evolution 63:3023–30 [Google Scholar]
  84. Pilgrim EM, von Dohlen CD, Pitts JP. 2008. Molecular phylogenetics of Vespoidea indicate paraphyly of the superfamily and novel relationships of its component families and subfamilies. Zool. Scr. 37:539–60 [Google Scholar]
  85. Price SL, Powell S, Kronauer DJC, Tran LAP, Pierce NE, Wayne RK. 2014. Renewed diversification is associated with new ecological opportunity in the Neotropical turtle ants. J. Evol. Biol. 27:242–58 [Google Scholar]
  86. Rabeling C, Brown JM, Verhaagh M. 2008. Newly discovered sister lineage sheds light on early ant evolution. Proc. Natl. Acad. Sci. USA 105:14913–17 [Google Scholar]
  87. Rasnitsyn AP. 1975. Hymenoptera Apocrita of Mesozoic [In Russian]. Tr. Paleontol. Inst. Akad. Nauk SSSR 147:1–134 [Google Scholar]
  88. Rasnitsyn AP, Kulicka R. 1990. Hymenopteran insects in Baltic amber with respect to the overall history of the order. Pr. Muz. Ziemi 41:53–64 [Google Scholar]
  89. Romiguier J, Ranwez V, Delsuc F, Galtier N, Douzery EJ. 2013. Less is more in mammalian phylogenomics: AT-rich genes minimize tree conflicts and unravel the root of placental mammals. Mol. Biol. Evol. 30:2124–44 [Google Scholar]
  90. Ronquist F, Deans AR. 2010. Bayesian phylogenetics and its influence on insect systematics. Annu. Rev. Entomol. 55:189–206 [Google Scholar]
  91. Ronquist F, Klopfstein S, Vilhemsen L, Schulmeister S, Murray DL, Rasnitsyn AP. 2012. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst. Biol. 61:973–99 [Google Scholar]
  92. Rota-Stabelli O, Campbell L, Brinkmann H, Edgecombe GD, Longhorn SJ. et al. 2011. A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata. Proc. R. Soc. B-Biol. Sci. 278:298–306 [Google Scholar]
  93. Rota-Stabelli O, Lartillot N, Philippe H, Pisani D. 2013. Serine codon usage bias in deep phylogenomics: pancrustacean relationships as a case study. Syst. Biol. 62:121–33 [Google Scholar]
  94. Russell JA, Moreau CS, Goldman-Huertas B, Fujiwara M, Lohman DJ, Pierce NE. 2009. Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc. Natl. Acad. Sci. USA 106:21236–41 [Google Scholar]
  95. Rust J, Singh H, Rana RS, McCann T, Singh L. et al. 2010. Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India. Proc. Natl. Acad. Sci. USA 107:18360–65 [Google Scholar]
  96. Saux C, Fisher BL, Spicer GS. 2004. Dracula ant phylogeny as inferred by nuclear 28S rDNA sequences and implications for ant systematics (Hymenoptera: Formicidae: Amblyoponinae). Mol. Phylogenet. Evol. 33:457–68 [Google Scholar]
  97. Schmidt AR, Perrichot V, Svojtka M, Anderson KB, Belete KH. et al. 2010. Cretaceous African life captured in amber. Proc. Natl. Acad. Sci. USA 107:7329–34 [Google Scholar]
  98. Schmidt C. 2013. Molecular phylogenetics of ponerine ants (Hymenoptera: Formicidae: Ponerinae). Zootaxa 3647:201–50 [Google Scholar]
  99. Schmidt CA, Shattuck SO. 2014. The higher classification of the ant subfamily Ponerinae (Hymenoptera: Formicidae), with a review of ponerine ecology and behavior. Zootaxa 38171–242 [Google Scholar]
  100. Schultz TR, Brady SG. 2008. Major evolutionary transitions in ant agriculture. Proc. Natl. Acad. Sci. USA 105:5435–40 [Google Scholar]
  101. Shimodaira H, Hasegawa M. 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 16:1114–16 [Google Scholar]
  102. Stadler T. 2011. Inferring speciation and extinction processes from extant species data. Proc. Natl. Acad. Sci. USA 108:16145–46 [Google Scholar]
  103. Stefanovic S, Rice D, Palmer J. 2004. Long branch attraction, taxon sampling, and the earliest angiosperms: Amborella or monocots?. BMC Evol. Biol. 4:35 [Google Scholar]
  104. Strimmler K, von Haeseler A. 1997. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc. Natl. Acad. Sci. USA 94:6815–19 [Google Scholar]
  105. Taylor RW. 1978. Nothomyrmecia macrops: a living-fossil ant rediscovered. Science 201:979–85 [Google Scholar]
  106. Teeling EC, Hedges SB. 2013. Making the impossible possible: rooting the tree of placental mammals. Mol. Biol. Evol. 30:1999–2000 [Google Scholar]
  107. Ward PS. 1990. The ant subfamily Pseudomyrmecinae (Hymenoptera: Formicidae): generic revision and relationship to other formicids. Syst. Entomol. 15:449–89 [Google Scholar]
  108. Ward PS. 1994. Adetomyrma, an enigmatic new ant genus from Madagascar (Hymenoptera: Formicidae), and its implications for ant phylogeny. Syst. Entomol. 19:159–75 [Google Scholar]
  109. Ward PS. 2007. Phylogeny, classification, and species-level taxonomy of ants (Hymenoptera: Formicidae). Zootaxa 1668:549–63 [Google Scholar]
  110. Ward PS. 2009. Taxonomy, phylogenetics, and evolution. Ant Ecology L Lach, CL Parr, K Abbott 3–17 Oxford, UK: Oxford Univ. Press [Google Scholar]
  111. Ward PS. 2011. Integrating molecular phylogenetic results into ant taxonomy (Hymenoptera: Formicidae). Myrmecol. News 15:21–29 [Google Scholar]
  112. Ward PS, Brady SG. 2003. Phylogeny and biogeography of the ant subfamily Myrmeciinae (Hymenoptera: Formicidae). Invertebr. Syst. 17:361–86 [Google Scholar]
  113. Ward PS, Brady SG, Fisher BL, Schultz TR. 2010. Phylogeny and biogeography of dolichoderine ants: effects of data partitioning and relict taxa on historical inference. Syst. Biol. 59:342–62 [Google Scholar]
  114. Ward PS, Brady SG, Fisher BL, Schultz TR. 2014. The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Syst. Entomol. In press. doi: 10.1111/syen.12090 [Google Scholar]
  115. Ward PS, Downie DA. 2005. The ant subfamily Pseudomyrmecinae (Hymenoptera: Formicidae): phylogeny and evolution of big-eyed arboreal ants. Syst. Entomol. 30:310–35 [Google Scholar]
  116. Wernegreen JJ, Kauppinen SN, Brady SG, Ward PS. 2009. One nutritional symbiosis begat another: phylogenetic evidence that the ant tribe Camponotini acquired Blochmannia by tending sap-feeding insects. BMC Evol. Biol. 9:292 [Google Scholar]
  117. Wheeler WM. 1928. The Social Insects: Their Origin and Evolution New York: Harcourt, Brace [Google Scholar]
  118. Wilkinson RD, Steiper ME, Soligo C, Martin RD, Yang Z, Tavare S. 2011. Dating primate divergences through an integrated analysis of palaeontological and molecular data. Syst. Biol. 60:16–31 [Google Scholar]
  119. Wilson EO. 1971. The Insect Societies Cambridge, MA: Harvard Univ. Press [Google Scholar]
  120. Wilson EO. 1985. Invasion and extinction in the West Indian ant fauna: evidence from the Dominican amber. Science 229:265–67 [Google Scholar]
  121. Wilson EO. 1987. Causes of ecological success: the case of the ants. J. Anim. Ecol. 56:1–9 [Google Scholar]
  122. Wilson EO, Carpenter FM, Brown WL. 1967. The first Mesozoic ants, with the description of a new subfamily. Psyche 74:1–19 [Google Scholar]
  123. Wilson EO, Hölldobler B. 2005. The rise of the ants: a phylogenetic and ecological explanation. Proc. Natl. Acad. Sci. USA 102:7411–14 [Google Scholar]
  124. Wilson JS, von Dohlen CD, Forister ML, Pitts JP. 2013. Family-level divergences in the stinging wasps (Hymenoptera: Aculeata), with correlations to angiosperm diversification. Evol. Biol. 40:101–7 [Google Scholar]
  125. Yamane S, Bui TV, Eguchi K. 2008. Opamyrma hungvuong, a new genus and species of ant related to Apomyrma (Hymenoptera: Formicidae: Amblyoponinae). Zootaxa 1767:55–63 [Google Scholar]
  126. Yek SH, Mueller UG. 2011. The metapleural gland of ants. Biol. Rev. 86:774–91 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-120213-091824
Loading
/content/journals/10.1146/annurev-ecolsys-120213-091824
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error