Geckos possess a superlative climbing adaptation in the form of hierarchical arrays of adhesive nanostructures on the underside of their toes. These structures permit rapid, robust, and reliable adhesion to nearly any substrate during full-speed locomotion. We review the fundamental principles and properties of this system, describe its ecological and evolutionary aspects, and offer our assessment of the field alongside suggestions for future research in this direction.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alibardi L. 2002. Histidine uptake in the epidermis of lizards and snakes in relation to the formation of the shedding complex. J. Exp. Zool. 292:331–44 [Google Scholar]
  2. Alibardi L, Edward DP, Patil L, Bouhenni R, Dhinojwala A, Niewiarowski PH. 2011. Histochemical and ultrastructural analyses of adhesive setae of lizards indicate that they contain lipids in addition to keratins. J. Morphol. 272:758–68 [Google Scholar]
  3. Alibardi L, Toni M. 2005. Distribution and characterization of proteins associated with cornification in the epidermis of gecko lizard. Tissue Cell 37:423–33 [Google Scholar]
  4. Aristotle 1910. Historia Animalium Book IX, transl. DW Thompson Oxford, UK: Clarendon [Google Scholar]
  5. Arnold EN, Poinar G. 2008. A 100 million year old gecko with sophisticated adhesive toe pads, preserved in amber from Myanmar. Zootaxa 1847:62–68 [Google Scholar]
  6. Arzt E, Gorb S, Spolenak R. 2003. From micro to nano contacts in biological attachment devices. Proc. Natl. Acad. Sci. USA 100:10603–6 [Google Scholar]
  7. Autumn K. 2006. Properties, principles, and parameters of the gecko adhesive system. Biological Adhesives AM Smith, JA Callow 225–55 Berlin: Springer-Verlag [Google Scholar]
  8. Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M. 2006a. Frictional adhesion: a new angle on gecko attachment. J. Exp. Biol. 209:3569–79 [Google Scholar]
  9. Autumn K, Hansen W. 2006. Ultrahydrophobicity indicates a non-adhesive default state in gecko setae. J. Comp. Physiol. A 192:1205–12 [Google Scholar]
  10. Autumn K, Hsieh ST, Dudek DM, Chen J, Chitaphan C, Full RJ. 2006b. Dynamics of geckos running vertically. J. Exp. Biol. 209:260–72 [Google Scholar]
  11. Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP. et al. 2000. Adhesive force of a single gecko foot-hair. Nature 405:681–85 [Google Scholar]
  12. Autumn K, Majidi C, Groff RE, Dittmore A, Fearing R. 2006c. Effective elastic modulus of isolated gecko setal arrays. J. Exp. Biol. 209:3558–68 [Google Scholar]
  13. Autumn K, Peattie AM. 2002. Mechanisms of adhesion in geckos. Integr. Comp. Biol. 42:1081–90 [Google Scholar]
  14. Autumn K, Ryan MJ, Wake DB. 2002a. Integrating historical and mechanistic biology enhances the study of adaptation. Q. Rev. Biol. 77:383–408 [Google Scholar]
  15. Autumn K, Sitti M, Liang YCA, Peattie AM, Hansen WR. et al. 2002b. Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. USA 99:12252–56 [Google Scholar]
  16. Bauer AM. 1998. Morphology of the adhesive tail tips of carphodactyline geckos (Reptilia: Diplodactylidae). J. Morphol. 235:41–58 [Google Scholar]
  17. Bauer AM, Bohme W, Weitschat W. 2005. An Early Eocene gecko from Baltic amber and its implications for the evolution of gecko adhesion. J. Zool. 265:327–32 [Google Scholar]
  18. Bauer AM, Russell AP. 1990. Alternative digital scansor design in the New Caledonian gekkonid genera Bavayia and Eurydactylodes. Mem. Qld. Mus. 29:299–310 [Google Scholar]
  19. Bauer AM, Russell AP. 1991. Pedal specializations in dune-dwelling geckos. J. Arid Environ. 20:43–62 [Google Scholar]
  20. Braun M. 1879. Über die Haftorgane an der Unterseite der Zehen bei Anolius. Arb. Zool.-Zoot. Inst. Würzbg. 5:31–36 [Google Scholar]
  21. Cartier O. 1872. Studien über den feineren Bau der Epidermis bei den Geckotiden. Verh. Würzbg. Phys.-Med. Ges. 3:83–96 [Google Scholar]
  22. Cartier O. 1874. Studien über den feineren Bau der Haut bei Reptilien. Verh. Würzbg. Phys.-Med. Ges. 5:239–58 [Google Scholar]
  23. Clark JE, Goldman DI, Lin P-C, Lynch G, Chen TS. et al. 2008. Design of a bio-inspired dynamical vertical climbing robot. Robotics: Science and Systems III W Burgard, O Brock, C Stachniss 9–16 Cambridge, MA: MIT Press [Google Scholar]
  24. Creton C, Gorb S. 2007. Sticky feet: from animals to materials. MRS Bull. 32:466–72 [Google Scholar]
  25. Cutkosky MR. 2006. Gecko-like robot scampers up the wall. New Sci. 2552:29 [Google Scholar]
  26. Dellit W-D. 1934. Zur anatomie und physiologie der Geckozehe. Jena. Z. Naturwiss. 68:613–56 [Google Scholar]
  27. Dewitz H. 1882. Wie ist es den Stubenfliegen und vielen anderen Insecten möglich, an senkrechten Glaswänden emporzulaufen?. Sitz. Ges. Naturforsch. Freunde5–7 [Google Scholar]
  28. Ekblom R, Galindo J. 2011. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107:1–15 [Google Scholar]
  29. Federle W. 2006. Why are so many adhesive pads hairy?. J. Exp. Biol. 209:2611–21 [Google Scholar]
  30. Feng J, Han D, Bauer AM, Zhou K. 2007. Interrelationships among Gekkonid geckos inferred from mitochondrial and nuclear gene sequences. Zool. Sci. 24:656–65 [Google Scholar]
  31. Gamble T, Greenbaum E, Jackman TR, Russell AP, Bauer AM. 2012. Repeated origin and loss of adhesive toepads in geckos. PLOS ONE 7:e39429 [Google Scholar]
  32. Gao H, Ji B, Jäger IL, Arzt E, Fratzl P. 2003. Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Natl. Acad. Sci. USA 100:5597–600 [Google Scholar]
  33. Gennaro JGJ. 1969. The gecko grip. Nat. Hist. 78:36–43 [Google Scholar]
  34. Gorb SN. 2008. Biological attachment devices: exploring nature's diversity for biomimetics. Philos. Trans. R. Soc. A 366:1557–74 [Google Scholar]
  35. Gorb SN. 2009. Convergent evolution of hairy attachment devices. Integr. Comp. Biol. 49:E65 [Google Scholar]
  36. Gravish N, Wilkinson M, Sponberg S, Parness A, Esparza N. et al. 2010. Rate-dependent frictional adhesion in natural and synthetic gecko setae. J. R. Soc. Interface 7:259–69 [Google Scholar]
  37. Haase A. 1900. Untersuchungen über den Bau und die Entwicklung der Haftlappen bei den Geckotiden. Arch. Naturgesch. 66:321–45 [Google Scholar]
  38. Hagey TJ, Puthoff JB, Holbrook M, Harmon LJ, Autumn K. 2013. Variation in setal micromechanics and performance of two gecko species. Zoomorphology 133:111–26 [Google Scholar]
  39. Han D, Zhou K, Bauer AM. 2004. Phylogenetic relationships among gekkotan lizards inferred from C-mos nuclear DNA sequences and a new classification of the Gekkota. Biol. J. Linn. Soc. 83:353–68 [Google Scholar]
  40. Hansen WR, Autumn K. 2005. Evidence for self-cleaning in gecko setae. Proc. Natl. Acad. Sci. USA 102:385–89 [Google Scholar]
  41. Harmon LJ, Harmon LL, Jones CG. 2007. Competition and community structure in diurnal arboreal geckos (genus Phelsuma) in the Indian Ocean. Oikos 116:1863–78 [Google Scholar]
  42. Hecht MK. 1952. Natural selection in the lizard genus Aristelliger. Evolution 6:112–24 [Google Scholar]
  43. Hiller U. 1968. Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien. Z. Morphol. Tiere 62:307–62 [Google Scholar]
  44. Hiller U. 1969. Correlation between corona-discharge of polyethylene films and the adhering power of Tarentola M. mauritanica (Rept.). Forma Funct. 1:350–52 [Google Scholar]
  45. Hora SL. 1923. The adhesive apparatus on the toes of certain geckos and tree frogs. J. Proc. Asiatic Soc. Bengal 9:137–45 [Google Scholar]
  46. Hsu PY, Ge L, Li X, Stark AY, Wesdemiotis C. et al. 2011. Direct evidence of phospholipids in gecko footprints and spatula—substrate contact interface detected using surface-sensitive spectroscopy. J. R. Soc. Interface 9:657–54 [Google Scholar]
  47. Hu S, Lopez S, Niewiarowski PH, Xia Z. 2012. Dynamic self-cleaning in gecko setae via digital hyperextension. J. R. Soc. Interface 9:2781–90 [Google Scholar]
  48. Hu S, Xia Z. 2012. Rational design and nanofabrication of gecko-inspired fibrillar adhesives. Small 8:2464–68 [Google Scholar]
  49. Huber G, Gorb SN, Spolenak R, Arzt E. 2005a. Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol. Lett. 1:2–4 [Google Scholar]
  50. Huber G, Mantz H, Spolenak R, Mecke K, Jacobs K. et al. 2005b. Evidence for capillary contributions to gecko adhesion from single spatula nanomechanical measurements. Proc. Natl. Acad. Sci. USA 102:16293–96 [Google Scholar]
  51. Huber G, Orso S, Spolenak R, Wegst UGK, Enders S. et al. 2008. Mechanical properties of a single gecko seta. Int. J. Mater. Res. 99:1113–18 [Google Scholar]
  52. Hui C-Y, Shen L, Jagota A, Autumn K. 2006. Mechanics of anti-fouling or self-cleaning in gecko setae. Proc. 29th Annu. Meet. Adhes. Soc.29–31 Bethesda, MD: Adhes. Soc. [Google Scholar]
  53. Irschick DJ, Albertson RC, Brennan P, Podos J, Johnson NA. et al. 2013. Evo-devo beyond morphology: from genes to resource use. Trends Ecol. Evol. 28:267–73 [Google Scholar]
  54. Irschick DJ, Austin CC, Petren K, Fisher RN, Losos JB, Ellers O. 1996. A comparative analysis of clinging ability among pad-bearing lizards. Biol. J. Linn. Soc. 59:21–35 [Google Scholar]
  55. Irschick DJ, Herrel A, Vanhooydonck B. 2006. Whole-organism studies of adhesion in pad-bearing lizards: creative evolutionary solutions to functional problems. J. Comp. Physiol. A 192:1169–77 [Google Scholar]
  56. Israelachvili J. 1992. Intermolecular and Surface Forces San Diego, CA: Academic [Google Scholar]
  57. Jagota A, Bennison SJ. 2002. Mechanics of adhesion through a fibrillar microstructure. Integr. Comp. Biol. 42:1140–45 [Google Scholar]
  58. Johnson KL, Kendall K, Roberts AD. 1971. Surface energy and the contact of elastic solids. Proc. R. Soc. A 324:301–13 [Google Scholar]
  59. Johnson MK, Russell AP. 2009. Configuration of the setal fields of Rhoptropus (Gekkota: Gekkonidae): functional, evolutionary, ecological and phylogenetic implications of observed pattern. J. Anat. 214:937–55 [Google Scholar]
  60. Kendall K. 1975. Thin-film peeling—the elastic term. J. Phys. D 8:1449–52 [Google Scholar]
  61. Kim TW, Bhushan B. 2008. The adhesion model considering capillarity for gecko attachment system. J. R. Soc. Interface 5:319–27 [Google Scholar]
  62. Kwak MK, Pang C, Jeong H-E, Kim H-N, Yoon H. et al. 2011. Towards the next level of bioinspired dry adhesives: new designs and applications. Adv. Funct. Mater. 21:3606–16 [Google Scholar]
  63. Lamb T, Bauer AM. 2006. Footprints in the sand: independent reduction of subdigital lamellae in the Namib-Kalahari burrowing geckos. Proc. R. Soc. B 273:855–64 [Google Scholar]
  64. Lee H, Bhushan B. 2012. Fabrication and characterization of hierarchical nanostructured smart adhesion surfaces. J. Colloid Interface Sci. 372:231–38 [Google Scholar]
  65. Losos JB. 2010. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am. Nat. 175:623–39 [Google Scholar]
  66. Maderson PFA. 1964. Keratinized epidermal derivatives as an aid to climbing in gekkonid lizards. Nature 203:780–81 [Google Scholar]
  67. Mahendra BC. 1941. Contributions to the bionomics, anatomy, reproduction and development of the Indian house-gecko, Hemidactylus flaviviridis Rüppel. Part II. The problem of locomotion. Proc. Indian Acad. Sci. Sect. B 13:288–306 [Google Scholar]
  68. Niewiarowski PH, Lopez S, Ge L, Hagan E, Dhinojwala A. 2008. Sticky gecko feet: the role of temperature and humidity. PLOS ONE 3:e2192 [Google Scholar]
  69. Peattie AM. 2007. The function and evolution of gekkotan adhesive feet PhD thesis, Univ. Calif. Berkeley [Google Scholar]
  70. Peattie AM, Full RJ. 2007. Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives. Proc. Natl. Acad. Sci. USA 104:18595–600 [Google Scholar]
  71. Peattie AM, Majidi C, Corder A, Full RJ. 2007. Ancestrally high elastic modulus of gecko setal β-keratin. J. R. Soc. Interface 4:1071–76 [Google Scholar]
  72. Pepper M, Doughty P, Hutchinson MN, Keogh JS. 2011a. Ancient drainages divide cryptic species in Australia's arid zone: morphological and multi-gene evidence for four new species of Beaked Geckos (Rhynchoedura). Mol. Phylogenet. Evol. 61:810–22 [Google Scholar]
  73. Pepper M, Ho SYW, Fujita MK, Keogh JS. 2011b. The genetic legacy of aridification: Climate cycling fostered lizard diversification in Australian montane refugia and left low-lying deserts genetically depauperate. Mol. Phylogenet. Evol. 61:750–59 [Google Scholar]
  74. Pesika NS, Gravish N, Wilkinson M, Zhao B, Zeng H. et al. 2009a. The crowding model as a tool to understand and fabricate gecko-inspired dry adhesives. J. Adhes. 85:512–25 [Google Scholar]
  75. Pesika NS, Tian Y, Zhao B, Rosenberg K, Zeng H. et al. 2007. Peel-zone model of tape peeling based on the gecko adhesive system. J. Adhes. 83:383–401 [Google Scholar]
  76. Pesika NS, Zeng H, Kristiansen K, Zhao B, Tian Y. et al. 2009b. Gecko adhesion pad: a smart surface?. J. Phys. Condens. Matter 21:464132 [Google Scholar]
  77. Peterson JA, Williams EE. 1981. A case study in retrograde evolution: the Onca lineage in anoline lizards. II. Subdigital fine structure. Bull. Mus. Comp. Zool. 149:215–68 [Google Scholar]
  78. Pianka ER, Sweet SL. 2005. Integrative biology of sticky feet in geckos. BioEssays 27:647–52 [Google Scholar]
  79. Prowse M, Puthoff JB, Wilkinson M, Autumn K. 2011. Effects of humidity on the mechanical properties of gecko setae. Acta Biomater. 7:733–38 [Google Scholar]
  80. Puthoff JB, Holbrook M, Wilkinson MJ, Jin K, Pesika NS, Autumn K. 2013. Dynamic friction in natural and synthetic gecko setal arrays. Soft Matter 9:4855–63 [Google Scholar]
  81. Puthoff JB, Prowse MS, Wilkinson M, Autumn K. 2010. Changes in materials properties explain the effects of humidity on gecko adhesion. J. Exp. Biol. 213:3699–704 [Google Scholar]
  82. Radtkey RR. 1996. Adaptive radiation of day-geckos (Phelsuma) in the Seychelles archipelago: a phylogenetic analysis. Evolution 50:604–23 [Google Scholar]
  83. Rizzo NW, Gardner KH, Walls DJ, Keiper-Hrynko NM, Ganzke TS, Hallahan DL. 2006. Characterization of the structure and composition of gecko adhesive setae. J. R. Soc. Interface 3:441–51 [Google Scholar]
  84. Ruibal R, Ernst V. 1965. The structure of the digital setae of lizards. J. Morphol. 117:271–93 [Google Scholar]
  85. Russell AP. 1975. A contribution to the functional analysis of the foot of the Tokay, Gekko gecko (Reptilia: Gekkonidae). J. Zool. 176:437–76 [Google Scholar]
  86. Russell AP. 1979. Parallelism and integrated design in the foot structure of gekkonine and diplodactyline geckos. Copeia 1979:1–21 [Google Scholar]
  87. Russell AP. 1981. Descriptive and functional anatomy of the digital vascular system of the Tokay, Gekko gecko. J. Morphol. 169:293–323 [Google Scholar]
  88. Russell AP. 1986. The morphological basis of weight-bearing in the scansors of the tokay gecko (Reptilia: Sauria). Can. J. Zool. 64:948–55 [Google Scholar]
  89. Russell AP. 2002. Integrative functional morphology of the gekkotan adhesive system (Reptilia: Gekkota). Integr. Comp. Biol. 42:1154–63 [Google Scholar]
  90. Russell AP, Bauer AM. 1988a. Alternative designs of and potential constraints on the morphology of digit I in geckos. Am. Zool. 28:A38 [Google Scholar]
  91. Russell AP, Bauer AM. 1988b. Paraphalangeal elements of gekkonid lizards—a comparative survey. J. Morphol. 197:221–40 [Google Scholar]
  92. Russell AP, Bauer AM. 1990. Hypertrophied phalangeal chondroepiphyses in the gekkonid lizard genus Phelsuma—their structure and relation to the adhesive mechanism. J. Zool. 221:205–17 [Google Scholar]
  93. Russell AP, Higham TE. 2009. A new angle on clinging in geckos: Incline, not substrate, triggers the deployment of the adhesive system. Proc. R. Soc. B 276:3705–9 [Google Scholar]
  94. Russell AP, Johnson MK. 2007. Real-world challenges to, and capabilities of, the gekkotan adhesive system: contrasting the rough and the smooth. Can. J. Zool. 85:1228–38 [Google Scholar]
  95. Sameoto D, Li Y, Menon C. 2008. Multi-scale compliant foot designs and fabrication for use with a spider-inspired climbing robot. J. Bionic Eng. 5:189–96 [Google Scholar]
  96. Schleich HH, Kästle W. 1986. Ultrastrukturen an Gecko-Zehen (Reptilia: Sauria: Gekkonidae). Amphib.-Reptil. 7:141–66 [Google Scholar]
  97. Schmidt HR. 1904. Zur Anatomie und Physiologie der Geckopfote. Jena. Z. Naturwiss. 39:551–80 [Google Scholar]
  98. Simmermacher G. 1884. Haftapparate bei Wirbeltieren. Zool. Gart. 25:289–301 [Google Scholar]
  99. Sitti M, Fearing R. 2003. Synthetic gecko foot-hair micro/nano-structures as dry adhesives. J. Adhes. Sci. Technol. 17:1055–73 [Google Scholar]
  100. Spolenak R, Gorb S, Gao H, Arzt E. 2005. Effects of contact shape on the scaling of biological attachments. Proc. R. Soc. A 461:305–19 [Google Scholar]
  101. Stark AY, Badge I, Wucinich NA, Sullivan TW, Niewiarowski PH, Dhinojwala A. 2013. Surface wettability plays a significant role in gecko adhesion underwater. Proc. Natl. Acad. Sci. USA 110:6340–45 [Google Scholar]
  102. Stark AY, Sullivan TW, Niewiarowski PH. 2012. The effect of surface water and wetting on gecko adhesion. J. Exp. Biol. 215:3080–86 [Google Scholar]
  103. Stork NE. 1983. A comparison of the adhesive setae on the feet of lizards and arthropods. J. Nat. Hist. 17:829–35 [Google Scholar]
  104. Sun W, Neuzil P, Kustandi TS, Oh S, Samper VD. 2005. The nature of the gecko lizard adhesive force. Biophys. J. 89:L14–17 [Google Scholar]
  105. Tian Y, Pesika N, Zeng H, Rosenberg K, Zhao B. et al. 2006. Adhesion and friction in gecko toe attachment and detachment. Proc. Natl. Acad. Sci. USA 103:19320–25 [Google Scholar]
  106. Toni M, Dalla Valle L, Alibardi L. 2007. The epidermis of scales in gecko lizards contains multiple forms of β-keratins including basic glycine-proline-serine-rich proteins. J. Proteome Res. 6:1792–805 [Google Scholar]
  107. Varenberg M, Pugno NM, Gorb SN. 2010. Spatulate structures in biological fibrillar adhesion. Soft Matter 6:3269–72 [Google Scholar]
  108. Vinson J, Vinson J-M. 1969. The saurian fauna of the Mascarene islands. Mauritius Inst. Bull. 6:203–320 [Google Scholar]
  109. Vitt LJ, Pianka ER. 2005. Deep history impacts present-day ecology and biodiversity. Proc. Natl. Acad. Sci. USA 102:7877–81 [Google Scholar]
  110. Vitt LJ, Zani PA. 1997. Ecology of the nocturnal lizard Thecadactylus rapicauda (Sauria: Gekkonidae) in the Amazon region. Herpetologica 53:165–79 [Google Scholar]
  111. Wagler J. 1830. Natürliches System der Amphibien München, Ger: J. G. Cotta'scchen Buchhandl. [Google Scholar]
  112. Wenzel RN. 1949. Surface roughness and contact angle. J. Phys. Chem. 53:1466–67 [Google Scholar]
  113. Williams EE, Peterson JA. 1982. Convergent and alternative designs in the digital adhesive pads of scincid lizards. Science 215:1509–11 [Google Scholar]
  114. Yang J, Puthoff JB, Wolff JO, Gorb SN, Autumn K. 2011. HIM imaging of uncoated adhesive foot structures of gecko and spider Zeiss Application Note, September. http://www.researchgate.net/publication/234833364_HIM_Imaging_of_Uncoated_Adhesive_Foot_Structures_of_Gecko_and_Spider?ev=prf_pub [Google Scholar]
  115. Zhou M, Pesika N, Zeng H, Wan J, Zhang X. et al. 2012. Design of gecko-inspired fibrillar surfaces with strong attachment and easy-removal properties: a numerical analysis of peel-zone. J. R. Soc. Interface 9:2424–36 [Google Scholar]

Data & Media loading...

    Zoom into the tokay gecko's adhesive system from the macro- to nanoscales. For information on the helium ion scanning electron microscopy technique used in this video, see Yang et al. (2011).

    Video and animation illustrating the mechanical requirements for attachment and detachment of a single isolated gecko seta (Autumn et al. 2000). The video shows a single seta glued to a minutien pin. The vertical bar at the left side is a 25-μm aluminum wire force gauge. Initial attempts to adhere a single isolated seta to a surface failed because we simply touched the tip of the seta into the surface and pulled away vertically. Instead, a slight preload force, followed by a micrometer-scale drag along the direction of curvature of the seta (i.e., toward the rear of the animal) switches the spatulae from their default unloaded state to the adhered state. The seta can now sustain a perpendicular pull because the adhesive van der Waals forces at the spatula tips resist detachment. Detachment occurs when the angle between the setal shaft and the surface exceeds 30°. This experiment illustrates the mechanical program for attachment and detachment required for controllable adhesion in gecko setae.

    Toe peeling (digital hyperextension) during climbing by a tokay gecko. The motion of gecko toes is superficially similar to that of peeling tape. However, because adhesion of gecko toes is governed by the micro-mechanics of their setae, a tape peeling model can be rejected (Autumn et al. 2006a). In contrast to the peeling of tape, gecko toes function by “frictional adhesion”: Pull-off forces increase linearly with shear load and detach when the angle of the resultant force exceeds 30° relative to the surface.

    Sample data and videomicroscopy demonstrating anisotropic frictional adhesion in isolated tokay gecko setal arrays (Autumn et al. 2006a). In each video, the upper section shows in side view an array of ∼10,000 setae taken from one scansor of a toe. A multiaxis sensor measures the forces acting on the setal array. Nanopositioners move a glass substrate through load, drag, and pull steps. The lower left sections of the videos show the time course of shear () and normal () forces. Positive normal forces represent compression, whereas negative normal forces represent adhesion. The sign of shear force is arbitrary and represents sliding to the left or right. The lower right sections show force space, a plot of shear force on the horizontal axis versus normal force on the vertical axis. shows how gecko setae are slippery, not sticky, when pushed away from the animal, against the direction of curvature of the setae (this is the opposite direction geckos use when they climb). In the lower left, a compression force () develops during the load step. Friction (shear force) is approximately 0.25 of the compression force, as expected for conventional friction of hard dry materials in contact. There is no measurable adhesion when setae are pushed against their curvature: This is the anti-adhesive direction. shows how gecko setae adhere when preloaded and dragged along the direction of curvature of the setae (this is in the same direction geckos use when they climb). In the lower left, the normal force () is compressive initially during the load step, but immediately following the drag step, strong adhesion occurs (negative normal force) and the setae are drawn into tension. Notably, adhesion is sustained even as the setae slide across the substrate. The lower right plot illustrates frictional adhesion: Adhesion is coupled to friction, and the resultant force angle is approximately 30°. Adhesion is controlled by the shear force. During the pull step, shear force decreases, and adhesion returns to zero without the tacky behavior common to conventional adhesive tapes.

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error