1932

Abstract

What factors influence whether a lineage can successfully transition into a new biome, and why have some biome shifts been more frequent than others? To orient this line of research we develop a conceptual framework in which the likelihood of a biome shift is a function of () exposure to contrasting environments over time, () the evolutionary accessibility of relevant adaptations, and () changing biotic interactions. We evaluate the literature on biome shifts in plants in relation to a set of hypotheses on the size, connectedness, and absolute age of biomes, as well as on the adaptability of particular lineages and ecological interactions over time. We also critique the phylogenetic inference of past biomes and a “global” model-based approach to biome evolution. More robust generalizations about biome shifts will require detailed studies of well-sampled and well-resolved clades, accounting for changes in the relevant abiotic and biotic factors through time.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-120213-091905
2014-11-23
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/45/1/annurev-ecolsys-120213-091905.html?itemId=/content/journals/10.1146/annurev-ecolsys-120213-091905&mimeType=html&fmt=ahah

Literature Cited

  1. Ackerly DD. 2003. Community assembly, niche conservatism, and adaptive evolution in changing environments. Int. J. Plant Sci. 164:S165–84 [Google Scholar]
  2. Ackerly DD. 2004. Adaptation, niche conservatism, and convergence: comparative studies of leaf evolution in the California chaparral. Am. Nat. 163:654–71 [Google Scholar]
  3. Arakaki M, Christin PA, Lendel A, Nyffeler R, Eggli U. et al. 2011. Recent and contemporaneous radiations of the world's succulent plant lineages. Proc. Natl. Acad. Sci. USA 108:8379–84 [Google Scholar]
  4. Arrigo N, Therrien J, Anderson CL, Windham MD, Haufler CH, Barker MS. 2013. A total evidence approach to understanding phylogenetic relationships and ecological diversity in Selaginella subg. Tetragonostachys. Am. J. Bot. 100:81672–82 [Google Scholar]
  5. Baldwin BG, Sanderson MJ. 1998. Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proc. Natl. Acad. Sci. USA 95:9402–6 [Google Scholar]
  6. Beaulieu JM, O'Meara BC, Donoghue MJ. 2013. Identifying hidden rate changes in the evolution of a binary morphological character: the evolution of plant habit in campanulid angiosperms. Syst. Biol. 62:5725–37 [Google Scholar]
  7. Becerra JX. 2005. Timing the origin and expansion of the Mexican tropical dry forest. Proc. Natl. Acad. Sci. USA 102:3110919–23 [Google Scholar]
  8. Belyea LR, Lancaster J. 1999. Assembly rules within a contingent ecology. Oikos 86:3402–16 [Google Scholar]
  9. Bouchenak-Khelladi Y, Maurin O, Hurter J, van der Bank M. 2010. The evolutionary history and biogeography of Mimosoideae (Leguminosae): an emphasis on African acacias. Mol. Phylogenet. Evol. 57:2495–508 [Google Scholar]
  10. Bouchenak-Khelladi Y, Verboom GA, Hodkinson TA, Salamin N, Francois O. et al. 2009. The origins and diversification of C4 grasses and savanna-adapted ungulates. Glob. Change Biol. 15:102397–417 [Google Scholar]
  11. Burke JM, Sanchez A, Kron K, Luckow M. 2010. Placing the woody tropical genera of Polygonaceae: a hypothesis of character evolution and phylogeny. Am. J. Bot. 97:81377–90 [Google Scholar]
  12. Burnham RJ, Johnson KR. 2004. South American palaeobotany and the origins of neotropical rainforests. Philos. Trans. R. Soc. Lond. B-Biol. Sci. 359:14501595–610 [Google Scholar]
  13. Byrne M, Steane DA, Joseph L, Yeates DK, Jordan GJ. et al. 2011. Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. J. Biogeogr. 38:1635–56 [Google Scholar]
  14. Byrne M, Yeates DK, Joseph L, Kearney M, Bowler J. et al. 2008. Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Mol. Ecol. 17:398–417 [Google Scholar]
  15. Christin PA, Osborne CP, Chatelet DS, Columbus JT, Besnard G. et al. 2013. Anatomical enablers and the evolution of C4 photosynthesis in grasses. Proc. Natl. Acad. Sci. USA 110:41381–86 [Google Scholar]
  16. Cook CDK. 1999. The number and kinds of embryo-bearing plants which have become aquatic: a survey. Perspect. Plant Ecol. Evol. Syst. 2:179–102 [Google Scholar]
  17. Couvreur TLP, Forest F, Baker WJ. 2011. Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms. BMC Biol. 9:44 [Google Scholar]
  18. Crayn DM, Rossetto M, Maynard DJ. 2006. Molecular phylogeny and dating reveals an Oligo-Miocene radiation of dry-adapted shrubs (former Tremendraceae) from rainforest tree progenitors (Elaeocarpaceae) in Australia. Am. J. Bot. 93:91328–42 [Google Scholar]
  19. Crisp MD, Arroyo MTK, Cook LG, Gandolfo MA, Jordan GJ. et al. 2009. Phylogenetic biome conservatism on a global scale. Nature 458:754–56 [Google Scholar]
  20. Crisp MD, Cook LG. 2012. Phylogenetic niche conservatism: What are the underlying evolutionary and ecological causes?. New Phytol. 196:681–94 [Google Scholar]
  21. Crisp MD, Cook LG. 2013. How was the Australian flora assembled over the last 65 million years? A molecular phylogenetic perspective. Annu. Rev. Ecol. Evol. Syst. 44:303–24 [Google Scholar]
  22. Crisp MD, Cook LG, Steane D. 2004. Radiation of the Australian flora: What can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities?. Philos. Trans. R. Soc. B-Biol. Sci. 359:14501551–71 [Google Scholar]
  23. Crisp MD, Isagi Y, Kato Y, Cook LG, Bowman DMJS. 2010. Livistona palms in Australia: ancient relics or opportunistic immigrants?. Mol. Phylogenet. Evol. 54:512–23 [Google Scholar]
  24. Cunningham CW. 1999. Some limitations of ancestral character state reconstruction when testing evolutionary hypotheses. Syst. Biol. 48:665–74 [Google Scholar]
  25. Davies KF, Cavender-Bares J, Deacon N. 2010. Native communities determine the identity of exotic invaders even at scales at which communities are unsaturated. Divers. Distrib. 17:135–42 [Google Scholar]
  26. Davis CC, Bell CD, Fritsch PW, Mathews S. 2002. Phylogeny of Acridocarpus-Brachylophon (Malpighiaceae): implications for tertiary tropical floras and Afroasian biogeography. Evolution 56:122395–405 [Google Scholar]
  27. Davis CC, Webb CO, Wurdack KJ, Jaramillo CA, Donoghue MJ. 2005. Explosive radiation of Malpighiales supports a mid-Cretaceous origin of modern tropical rain forests. Am. Nat. 165:E36–65 [Google Scholar]
  28. De-Nova JA, Medina R, Montero JC, Weeks A, Rosell JA. et al. 2012. Insights into the historical construction of species-rich Mesoamerican seasonally dry tropical forests: the diversification of Bursera (Burseraceae, Sapindales). New Phytol. 193:1276–87 [Google Scholar]
  29. Donoghue MJ. 2008. A phylogenetic perspective on the distribution of plant diversity. Proc. Natl. Acad. Sci. USA 105:Suppl. 111549–55 [Google Scholar]
  30. Douglas NA, Manos PS. 2007. Molecular phylogeny of Nyctaginaceae: taxonomy, biogeograpy, and characters associated with a radiation of xerophytic genera in North America. Am. J. Bot. 94:5856–72 [Google Scholar]
  31. Edwards EJ, Donoghue MJ. 2006. Pereskia and the origin of the cactus life-form. Am. Nat. 167:6777–93 [Google Scholar]
  32. Edwards EJ, Donoghue MJ. 2013. Is it easy to move and easy to evolve? Evolutionary accessibility and adaptation. J. Exper. Bot. 64:4047–52 [Google Scholar]
  33. Edwards EJ, Osborne CP, Strömberg CAE, Smith SA. C4 Grasses Consortium 2010. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328:587–91 [Google Scholar]
  34. Edwards EJ, Smith SA. 2010. Phylogenetic analyses reveal the shady history of C4 grasses. Proc. Natl. Acad. Sci. USA 107:62532–38 [Google Scholar]
  35. Elton C. 1927. Animal Ecology London: Sidgwick and Jackson [Google Scholar]
  36. Evans MEK, Smith SA, Flynn RS, Donoghue MJ. 2009. Climate, niche evolution, and diversification of the “bird cage” evening primroses (Oenothera, Sections Anogra and Kleinia). Am. Nat. 173:2225–40 [Google Scholar]
  37. Fine PVA, Metz MR, Lokvam J, Mesones I, Zuñiga JMA. et al. 2013. Insect herbivores, chemical innovation, and the evolution of habitat specialization in Amazonian trees. Ecology 94:81764–75 [Google Scholar]
  38. Fine PVA, Ree RH. 2006. Evidence for a time-integrated species-area effect on the latitudinal gradient in tree diversity. Am. Nat. 168:6796–804 [Google Scholar]
  39. Futuyma DJ. 2010. Evolutionary constraint and ecological consequences. Evolution 64:71865–84 [Google Scholar]
  40. Gallagher RV, Beaumont LJ, Hughes L, Leishman MR. 2010. Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. J. Ecol. 98:790–99 [Google Scholar]
  41. Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD. 2010. A framework for community interactions under climate change. Trends Ecol. Evol. 25:6325–31 [Google Scholar]
  42. Good R. 1974. The Geography of the Flowering Plants London: Longman [Google Scholar]
  43. Grinnell J. 1917. The niche-relationships of the California thrasher. Auk 34:427–33 [Google Scholar]
  44. Gross BL, Rieseberg LH. 2005. The ecological genetics of homoploid hybrid speciation. J. Hered. 96:3241–52 [Google Scholar]
  45. Guerrero PC, Rosas M, Arroyo MTK, Wiens JJ. 2013. Evolutionary lag times and recent origin of the biota of an ancient desert (Atacama–Sechura). Proc. Natl. Acad. Sci. USA 110:2811469–74 [Google Scholar]
  46. Guisan A, Petitpierre B, Broennimann O, Daehler C, Kueffer C. 2014. Unifying niche shift studies: insights from biological invasions. Trends Ecol. Evol. 29:5260–69 [Google Scholar]
  47. Heibl C, Renner SS. 2012. Distribution models and a dated phylogeny for Chilean Oxalis species reveal occupation of new habitats by different lineages, not rapid adaptive radiation. Syst. Biol. 61:5823–34 [Google Scholar]
  48. Herrera CM. 1992. Historical effects and sorting processes as explanations for contemporary ecological patterns: character syndromes in Mediterranean woody plants. Am. Nat. 140:3421–46 [Google Scholar]
  49. Hijmans J, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25:1965–78 [Google Scholar]
  50. Hoffmann MH, von Hagen KB, Hörandl E, Röser M, Tkach NV. 2010. Sources of the Arctic flora: origins of Arctic species in Ranunculus and related genera. Int. J. Plant Sci. 171:190–106 [Google Scholar]
  51. Hoffmann WA, Geiger EL, Gotsch SG, Rossatto DR, Silva LC. et al. 2012. Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecol. Lett. 15:7759–68 [Google Scholar]
  52. Holstein N, Renner SS. 2011. A dated phylogeny and collection records reveal repeated biome shifts in the African genus Coccinia (Cucurbitaceae). BMC Evol. 11:28 [Google Scholar]
  53. Holt BG, Lessard J-P, Borreggaard MK, Fritz SA, Araújo MB. et al. 2013. An update of Wallace's Zoogeographic Regions of the World. Science 339:74–78 [Google Scholar]
  54. Holt RD. 2009. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc. Natl. Acad. Sci. USA 106:Suppl. 219659–65 [Google Scholar]
  55. Hörandl E, Emadzade K. 2011. The evolution and biogeography of alpine species in Ranunculus (Ranunculaceae): a global comparison. Taxon 60:2415–26 [Google Scholar]
  56. Hughes CE, Pennington RT, Antonelli A. 2013. Neotropical plant evolution: assembling the big picture. Bot. J. Linn. Soc. 171:11–18 [Google Scholar]
  57. Ireland HE, Kite GC, Veitch NC, Chase MW, Schrire B. et al. 2010. Biogeographical, ecological and morphological structure in a phylogenetic analysis of Ateleia (Swartzieae, Fabaceae) derived from combined molecular, morphological and chemical data. Bot. J. Linn. Soc. 162:39–53 [Google Scholar]
  58. Jansson RG, Rodríguez-Castañeda, Harding LE. 2013. What can multiple phylogenies say about the latitudinal diversity gradient? A new look at the tropical conservatism, out of the tropics, and diversification rate hypotheses. Evolution 67:61741–55 [Google Scholar]
  59. Jara-Arancio P, Arroyo MTK, Guerrero PC, Hinojosa LF, Arancio G, Méndez MA. 2014. Phylogenetic perspectives on biome shifts in Leucocoryne (Alliaceae) in relation to climatic niche evolution in western South America. J. Biogeogr. 41:2328–38 [Google Scholar]
  60. Jaramillo C, Cárdenas A. 2013. Global warming and neotropical rainforests: a historical perspective. Annu. Rev. Earth Planet. Sci. 41:741–66 [Google Scholar]
  61. Jetz W, Fine PVA. 2012. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLOS Biol. 10:e1001292 [Google Scholar]
  62. Jordan GP, Dillon RA, Weston PH. 2005. Solar radiation as a factor in the evolution of scleromorphic leaf anatomy in Proteaceae. Am. J. Bot. 92:5789–96 [Google Scholar]
  63. Judd WS, Sanders RW, Donoghue MJ. 1994. Angiosperm family pairs—preliminary phylogenetic analyses. Harvard Pap. Bot. 5:1–51 [Google Scholar]
  64. Keeley JE, Pausas JG, Rundel PW, Bond WJ, Bradstock RA. 2011. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci 16:8406–11 [Google Scholar]
  65. Kerkhoff AJ, Moriarty PE, Weiser MD. 2014. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proc. Natl. Acad. Sci. USA 111:228125–30 [Google Scholar]
  66. Koecke AV, Muellner-Riehl AN, Pennington TD, Schorr G, Schnitzler J. 2013. Niche evolution through time and across continents: the story of neotropical Cedrela (Meliaceae). Am. J. Bot. 100:91–11 [Google Scholar]
  67. Koenen EJM, de Vos JM, Atchison GW, Simon MF, Schrire BD. et al. 2013. Exploring the tempo of species diversification in legumes. South Afr. J. Bot. 89:19–30 [Google Scholar]
  68. Kreft H, Jetz W. 2013. Comment on “An update of Wallace's Zoogeographic Regions of the World.”. Science 341:6144343 [Google Scholar]
  69. Latham RE, Ricklefs RE. 1993. Continental comparisons of temperate-zone tree species diversity. Species Diversity in Ecological Communities: Historical and Geographical Perspectives RE Ricklefs, DE Schulter 294–314 Chicago: Univ. Chicago Press [Google Scholar]
  70. Lavin M, Schrire B, Lewis G, Pennington RT, Delgado-Salinas A. et al. 2004. Metacommunity process rather than continental tectonic history better explains geographically structured phylogenies in legumes. Proc. R. Soc. B-Biol. Sci. 359:1509–22 [Google Scholar]
  71. Lehmann CE, Anderson TM, Sankaran M, Higgins SI, Archibald S. et al. 2014. Savanna vegetation-fire-climate relationships differ among continents. Science 343:6170548–52 [Google Scholar]
  72. Lewis G, Schrire B, MacKinder B, Lock M. 2005. Legumes of the World Richmond, Surrey, UK: R. Bot. Gard., Kew [Google Scholar]
  73. Lohmann LG, Bell CD, Calío MF, Winkworth RC. 2013. Pattern and timing of biogeographical history in the Neotropical tribe Bignonieae (Bignoniaceae). Bot. J. Linn. Soc. 171:154–70 [Google Scholar]
  74. Losos JB. 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11:995–1007 [Google Scholar]
  75. Marazzi B, Ané C, Simon MF, Delgado-Salinas A, Luckow M, Sanderson MJ. 2012. Locating evolutionary precursors on a phylogenetic tree. Evolution 66:123918–30 [Google Scholar]
  76. Maurin O, Davies TJ, Burrows JE, Daru BH, Yessoufou K. et al. 2014. Savanna fire and the origins of the ‘underground forests’ of Africa. New Phytol. 204:1201–14 [Google Scholar]
  77. Michelangeli FA, Guimaraes PJF, Penneys DS, Almeda F, Kriebel R. 2013. Phylogenetic relationships and distribution of New World Melastomeae (Melastomataceae). Bot. J. Linn. Soc. 171:138–60 [Google Scholar]
  78. Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ. et al. 2010. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15:12684–92 [Google Scholar]
  79. Olmstead RG. 2012. Phylogeny and biogeography in Solanaceae, Verbenaceae and Bignoniaceae: a comparison of continental and intercontinental diversification patterns. Bot. J. Linn. Soc. 171:180–102 [Google Scholar]
  80. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN. et al. 2001. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:11933–38 [Google Scholar]
  81. Osborne CP, Freckleton RP. 2009. Ecological selection pressures for C4 photosynthesis in the grasses. Proc. R. Soc. Lond. B-Biol. Sci. 276:16631753–60 [Google Scholar]
  82. Pennington RT, Hughes CE. 2014. The remarkable congruence of New and Old World savanna origins.. New Phytol. 204(1):4–6 [Google Scholar]
  83. Pennington RT, Lavin M, Oliveira-Filho A. 2009. Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu. Rev. Ecol. Evol. Syst. 40:437–57 [Google Scholar]
  84. Pennington RT, Lavin M, Särkinen T, Lewis GP, Klitgaard BB, Hughes CE. 2010. Contrasting plant diversification histories within the Andean biodiversity hotspot. Proc. Natl. Acad. Sci. USA 107:3113783–87 [Google Scholar]
  85. Pennington RT, Pendry CA, Goodall-Copestake W, O'Sullivan S. 2004. Phylogenetic analysis of Ruprechtia. A Monograph of Ruprechtia (Polygonaceae), ed. CA Pendry Syst. Bot. Monogr 67:12–17 [Google Scholar]
  86. Pennington RT, Richardson JE, Lavin M. 2006. Insights into the historical construction of species-rich biomes from dated plant phylogenies, neutral ecological theory, and phylogenetic community structure. New Phytol. 172:4605–16 [Google Scholar]
  87. Pittermann J, Stuart SA, Dawson TE, Moreau A. 2012. Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers. Proc. Natl. Acad. Sci. USA 109:249647–52 [Google Scholar]
  88. Pratt JD, Mooney KA. 2013. Clinal adaptation and adaptive plasticity in Artemesia californica: implications for the response of a foundation species to predicted climate change. Glob. Change Biol. 19:2454–66 [Google Scholar]
  89. Prentis PJ, Wilson JR, Dormontt EE, Richardson DM, Lowe AJ. 2008. Adaptive evolution in invasive species. Trends Plant Sci. 13:6288–94 [Google Scholar]
  90. Preston JC, Sandve SR. 2013. Adaptation to seasonality and the winter freeze. Front. Plant Sci. 4:167 [Google Scholar]
  91. Qian H, Ricklefs RE. 2000. Large-scale processes and the Asian bias in species diversity of temperate plants. Nature 407:180–82 [Google Scholar]
  92. Reed TE, Schindler DE, Waples RS. 2011. Interacting effects of phenotypic plasticity and evolution on population persistence in a changing climate. Conserv. Biol. 25:156–63 [Google Scholar]
  93. Richardson JE, Pennington RT, Pennington TD, Hollingsworth PM. 2001. Rapid diversification of a species-rich genus of neotropical rain forest trees. Science 293:2242–45 [Google Scholar]
  94. Ricklefs RE. 2004. A comprehensive framework for global patterns in biodiversity. Ecol. Lett. 7:11–15 [Google Scholar]
  95. Ricklefs RE, Schwarzbach AE, Renner SS. 2006. Rate of lineage origin explains the diversity anomaly in the world's mangrove vegetation. Am. Nat. 168:6805–10 [Google Scholar]
  96. Saltonstall K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Natl. Acad. Sci. USA 99:2445–49 [Google Scholar]
  97. Salvo G, Ho SYW, Rosenbaum G, Ree R, Conti E. 2010. Tracing the temporal and spatial origins of island endemics in the Mediterranean region: a case study from the citrus family (Ruta L., Rutaceae). Syst. Biol. 59:6705–22 [Google Scholar]
  98. Särkinen T, Iganci JR, Linares-Palomino R, Simon MF, Prado DE. 2011. Forgotten forests—issues and prospects in biome mapping using seasonally dry tropical forests as a case study. BMC Ecol. 11:27 [Google Scholar]
  99. Sauquet H, Weston PH, Anderson CL, Barker NP, Cantrill DJ. et al. 2009. Contrasted patterns of hyperdiversification in Mediterranean hotspots. Proc. Natl. Acad. Sci. USA 106:1221–25 [Google Scholar]
  100. Scherson RA, Vidal R, Sanderson MJ. 2008. Phylogeny, biogeography, and rates of diversification of New World Astragalus (Leguminosae) with an emphasis on South American radiations. Am. J. Bot. 95:81030–39 [Google Scholar]
  101. Schimper AFW. 1903. Plant-Geography Upon a Physiological Basis transl. WR Fisher, ed. P Groom, IB Balfour. London: Henry Frowde (From German) [Google Scholar]
  102. Schluter D. 1996. Adaptive radiation along genetic lines of least resistance. Evolution 50:51766–74 [Google Scholar]
  103. Schluter D. 2009. Evidence for ecological speciation and its alternatives. Science 323:737–41 [Google Scholar]
  104. Schmerler SB, Clement WL, Beaulieu JM, Chatelet DS, Sack L. et al. 2012. Evolution of leaf form correlates with tropical-temperate transitions in Viburnum (Adoxaceae). Proc. R. Soc. B-Biol. Sci. 279:3905–13 [Google Scholar]
  105. Schnitzler J, Graham CH, Dormann CF, Schiffers K, Linder HP. 2012. Climatic niche evolution and species diversification in the Cape flora, South Africa. J. Biogeogr. 39:122201–11 [Google Scholar]
  106. Schoener TW. 1989. The ecological niche. Ecological Concepts: The Contribution of Ecology to an Understanding of the Natural World JM Cherrett 479–113 Oxford, UK: Blackwell Sci [Google Scholar]
  107. Schrire BD, Lavin M, Barker NP, Forest F. 2009. Phylogeny of the tribe Indigofereae (Leguminosae—Papilionoideae): geographically structured more in succulent-rich and temperate settings than in grass-rich environments. Am. J. Bot. 96:4816–52 [Google Scholar]
  108. Simon MF, Grether R, de Queiroz LP, Skema C, Pennington RT, Hughes CE. 2009. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc. Natl. Acad. Sci. USA 106:4820359–64 [Google Scholar]
  109. Smith SA, Beaulieu J. 2009. Life history influences rates of climatic niche evolution in flowering plants. Proc. R. Soc. B 276:4345–52 [Google Scholar]
  110. Smith SA, Donoghue MJ. 2010. Combining historical biogeography with niche modeling in the Caprifolium clade of Lonicera (Caprifoliaceae, Dipsacales). Syst. Biol. 59:3322–41 [Google Scholar]
  111. Spriggs EA, Christin PA, Edwards EJ. 2014. C4 photosynthesis promoted species diversification during the Miocene grassland expansion. PLOS ONE 9:5e97722 [Google Scholar]
  112. Staver AC, Archibald S, Levin SA. 2011. The global extent and determinants of savanna and forest as alternative biome states. Science 334:230–32 [Google Scholar]
  113. Strauss SS, Webb CO, Salamin N. 2006. Exotic taxa less related to native species are more invasive. Proc. Natl. Acad. Sci. USA 103:155841–45 [Google Scholar]
  114. Takhtajan A. 1986. Floristic Regions of the World transl. CJ Crovello Berkeley: Univ. Calif. Press (From Russian) [Google Scholar]
  115. Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araujo MB. 2011. Consequences of climate change on the tree of life in Europe. Nature 470:7335531–34 [Google Scholar]
  116. Tkach NV, Hoffmann MH, Röser M, Korobkov AA, von Hagen KB. 2007. Parallel evolutionary patterns in multiple lineages of Arctic Artemisia L. (Asteraceae). Evolution 62:1184–98 [Google Scholar]
  117. Tkach NV, Hoffmann MH, Röser M, von Hagen KB. 2008. Temporal patterns of evolution in the Arctic explored in Artemisia L. (Asteraceae) lineages of different age. Plant Ecol. Divers. 1:2161–69 [Google Scholar]
  118. Töpel M, Antonelli A, Yesson C, Eriksen B. 2012. Past climate change and plant evolution in western North America: a case study in Rosaceae. PLOS ONE 7:12e50358 [Google Scholar]
  119. Upchurch GR, Wolf JA. 1987. Mid-Cretaceous to early tertiary vegetation and climate: evidence from fossil leaves and woods. The Origin of Angiosperms and Their Biological Consequences EM Friis, WG Chaloner, PR Crane 75–105 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  120. Valente LM, Reeves G, Schnitzler J, Mason IP, Fay MF. et al. 2010. Diversification of the African genus Protea (Proteaceae) in the Cape biodiversity hotspot and beyond: equal rates in different biomes. Evolution 64:3745–60 [Google Scholar]
  121. Vellend M, Harmon LJ, Lockwood JL, Mayfield MM, Hughes AR. et al. 2007. Effects of exotic species on evolutionary diversification. Trends Ecol. Evol. 22:9481–88 [Google Scholar]
  122. Verboom GA, Archibald JK, Bakker FT, Bellstedt DU, Conrad F. et al. 2009. Origin and diversification of the Greater Cape flora: ancient species repository, hot-bed of recent radiation, or both?. Mol. Phylogenet. Evol. 51:144–53 [Google Scholar]
  123. Verdú M, Dávila P, García-Fayos P, Flores-Hernández N, Valiente-Banuet A. 2003. ‘Convergent’ traits of Mediterranean woody plants belong to pre-Mediterranean lineages. Biol. J. Linn. Soc. 78:415–27 [Google Scholar]
  124. Wallace AR. 1876. The Geographical Distribution of Animals New York: Harper & Brothers [Google Scholar]
  125. West-Eberhard M-J. 2003. Developmental Plasticity and Evolution Oxford, UK: Oxford Univ. Press [Google Scholar]
  126. Whittaker RH. 1975. Communities and environments. Communities and Ecosystems RH Whittaker 111–91 New York: MacMillan [Google Scholar]
  127. Whittaker RH, Levin SA, Root RB. 1973. Niche, habitat, and ecotype. Am. Nat. 107:955321–38 [Google Scholar]
  128. Wiens JJ. 2008. Commentary on Losos 2008: niche conservatism déjà vu. Ecol. Lett. 11:101004–5 [Google Scholar]
  129. Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB. et al. 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13:101310–24 [Google Scholar]
  130. Wiens JJ, Donoghue MJ. 2004. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19:12639–44 [Google Scholar]
  131. Wiens JJ, Graham CH. 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36:519–39 [Google Scholar]
  132. Williams JW, Jackson ST. 2007. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5:475–82 [Google Scholar]
  133. Woodward EF, Lomas MR, Kelly CK. 2004. Global climate and the distribution of plant biomes. Philos. Trans. R. Soc. B-Biol. Sci. 359:1465–76 [Google Scholar]
  134. Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA. et al. 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506:89–92 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-120213-091905
Loading
/content/journals/10.1146/annurev-ecolsys-120213-091905
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error