1932

Abstract

Invasive species, often recognized as ecosystem engineers, can dramatically alter geomorphic processes and landforms. Our review shows that the biogeomorphic impacts of invasive species are common, but variable in magnitude or severity, ranging from simple acceleration or deceleration of preexisting geomorphic processes to landscape metamorphosis. Primary effects of invasive flora are bioconstruction and bioprotection, whereas primary effects of invasive fauna are bioturbation, bioerosion, and bioconstruction. Land-water interfaces seem particularly vulnerable to biogeomorphic impacts of invasive species. Although not different from biogeomorphic impacts in general, invasive species are far more likely to lead to major geomorphic changes or landscape metamorphosis, which can have long-lasting impacts. In addition, invasive species can alter selection pressures in both macroevolution and microevolution by changing geomorphic processes. However, the differing timescales of biological invasions, landscape evolution, and biological evolution complicate assessment of the evolutionary impacts of invasive organisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-120213-091928
2014-11-23
2024-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/45/1/annurev-ecolsys-120213-091928.html?itemId=/content/journals/10.1146/annurev-ecolsys-120213-091928&mimeType=html&fmt=ahah

Literature Cited

  1. Allen JA. 1998. Mangroves as alien species: the case of Hawaii. Glob. Ecol. Biogeogr. Lett. 7:61–71 [Google Scholar]
  2. An SQ, Gu BH, Zhou CF, Wang ZS, Deng ZF. et al. 2007. Spartina invasion in China: implications for invasive species management and future research. Weed Res. 47:183–91 [Google Scholar]
  3. Anderson CB, Griffith CR, Rosemond AD, Rozzi R, Dollenz O. 2006. The effects of invasive North American beavers on riparian plant communities in Cape Horn, Chile: Do exotic beavers engineer differently in sub-Antarctic ecosystems?. Biol. Conserv. 128:467–74 [Google Scholar]
  4. Aplet GH, Anderson SJ, Stone CP. 1991. Association between feral pig disturbance and the composition of some alien plant assemblages in Hawaii Volcanoes National Park. Vegetatio 95:55–62 [Google Scholar]
  5. Atekwana EA, Slater LD. 2009. Biogeophysics: a new frontier in Earth science research. Rev. Geophys. 47:RG4004 [Google Scholar]
  6. Barrios-Garcia MN, Ballari S. 2012. Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biol. Invasions 14:2283–300 [Google Scholar]
  7. Bertolino S, Genovesi P. 2007. Semiaquatic mammals introduced into Italy: case studies in biological invasion. In Biological Invaders in Inland Waters: Profiles, Distribution, and Threats, ed. F Gherardi. 175–91 London, UK: Springer [Google Scholar]
  8. Bruce KA, Cameron GN, Harcombe PA. 1995. Initiation of a new woodland type on the Texas coastal prairie by the Chinese tallow tree (Sapium sebiferum (L.) Roxb.). Bull. Torrey Bot. Club 122:215–25 [Google Scholar]
  9. Buchman N, Cuddington K, Lambrinos J. 2007. A historical perspective on ecosystem engineering. Ecosystem Engineers: Plants to Protists K Cuddington, JE Byers, WG Wilson, A Hastings 25–46 San Diego, CA: Academic/Elsevier [Google Scholar]
  10. Bunn SE, Davies PM, Kellaway DM, Prosser IP. 1998. Influence of invasive macrophytes on channel morphology and hydrology in an open tropical lowland stream, and potential control by riparian shading. Freshw. Biol. 39:171–78 [Google Scholar]
  11. Butler DR. 1995. Zoogeomorphology: Animals as Geomorphic Agents Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  12. Butler DR. 2006. Human-induced changes in animal populations and distributions, and the subsequent effects on fluvial systems. Geomorphology 79:448–59 [Google Scholar]
  13. Byers JE. 2009. Invasive animals in marshes: biological agents of change. Human Impacts on Salt Marshes: A Global Perspective BR Silliman, MD Bertness, ED Grosholz 41–56 Berkeley, CA: Univ. Calif. Press [Google Scholar]
  14. Christe P, Oppliger A, Bancalà F, Castella G, Chapuisat M. 2003. Evidence for collective medication in ants. Ecol. Lett. 6:19–22 [Google Scholar]
  15. Corenblit D, Baas AC, Bornette G, Darrozes J, Delmotte S. et al. 2011. Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: a review of foundation concepts and current understandings. Earth-Sci. Rev. 106:307–31 [Google Scholar]
  16. Corenblit D, Steiger J. 2009. Vegetation as a major conductor of geomorphic changes on the Earth surface: toward evolutionary geomorphology. Earth Surf. Process. Landf. 34:891–96 [Google Scholar]
  17. Cotterill FPD, De Wit MJ. 2011. Geoecodynamics and the Kalahari Epeirogeny: linking its genomic record, tree of life, and palimpsest into a unified narrative of landscape evolution. S. Afr. J. Geol. 114:489–514 [Google Scholar]
  18. Cowles HC. 1899. The ecological relations of the vegetation on the sand dunes of Lake Michigan. Bot. Gaz. 27:95–391 [Google Scholar]
  19. Crooks JA. 1998. Habitat alteration and community-level effects of an exotic mussel, Musculista senhousia. Mar. Ecol. Prog. Ser. 162:137–52 [Google Scholar]
  20. Crooks JA. 2002. Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97:153–66 [Google Scholar]
  21. Crooks JA. 2009. The role of exotic marine ecosystem engineers. Biological Invasions in Marine Ecosystems: Ecological, Management, and Geographic Perspectives G Rilov, JA Crooks 287–304 Berlin/Heidelberg: Springer-Verlag [Google Scholar]
  22. Crooks JA, Khim HS. 1999. Architectural versus biological effects of a habitat-altering, exotic mussel. Musculista senhousia. J. Exp. Mar. Biol. Ecol. 240:53–75 [Google Scholar]
  23. Cuddington K, Byers JE, Wilson WG, Hastings A. 2007. Ecosystem Engineers: Plants to Protists San Diego, CA: Academic/Elsevier405 [Google Scholar]
  24. Darwin C. 1881. The Formation of Vegetable Mould, Through the Action of Worms, with Observations on Their Habits London: Murray [Google Scholar]
  25. Dassonville N, Guillaumaud N, Piola F, Meerts P, Poly F. 2011. Niche construction by the invasive Asian knotweeds (species complex Fallopia): impact on activity, abundance and community structure of denitrifiers and nitrifiers. Biol. Invasions 13:1115–33 [Google Scholar]
  26. Davies NS, Gibling MR. 2010. Cambrian to Devonian evolution of alluvial systems: the sedimentological impact of the earliest land plants. Earth-Sci. Rev. 98:171–200 [Google Scholar]
  27. Davies NS, Gibling MR. 2013. The sedimentary record of Carboniferous rivers: continuing influence of land plant evolution on alluvial processes and Palaeozoic ecosystems. Earth-Sci. Rev. 120:40–79 [Google Scholar]
  28. Di Tomaso JM. 1998. Impact, biology, and ecology of saltcedar (Tamarix spp.) in the southwestern United States. Weed Technol. 12:326–36 [Google Scholar]
  29. Didham RK, Tylianakis JM, Gemmell NJ, Rand TA, Ewers RM. 2007. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22:489–96 [Google Scholar]
  30. Dolan R, Godfrey P. 1973. Effects of Hurricane Ginger on the barrier islands of North Carolina. Geol. Soc. Am. Bull. 84:1329–34 [Google Scholar]
  31. Ehrenfeld JG. 2010. Ecosystem consequences of biological invasions. Annu. Rev. Ecol. Evol. Syst. 41:59–80 [Google Scholar]
  32. Erwin DH. 2008. Macroevolution of ecosystem engineering, niche construction and diversity. Trends Ecol. Evol. 23:304–10 [Google Scholar]
  33. Erwin DH, Tweedt S. 2012. Ecological drivers of the Ediacaran-Cambrian diversification of Metazoa. Evol. Ecol. 26:417–33 [Google Scholar]
  34. Everitt BL. 1998. Chronology of the spread of tamarisk in the central Rio Grande. Wetlands 18:658–68 [Google Scholar]
  35. Field-Dodgson M. 1987. The effect of salmon redd excavation on stream substrate and benthic community of two salmon spawning streams in Canterbury, New Zealand. Hydrobiologia 154:3–11 [Google Scholar]
  36. Gabet EJ, Reichman O, Seabloom EW. 2003. The effects of bioturbation on soil processes and sediment transport. Annu. Rev. Earth Planet. Sci. 31:249–73 [Google Scholar]
  37. Gherardi F. 2006. Crayfish invading Europe: the case study of. Procambarus clarkii. Mar. Freshw. Behav. Physiol. 39:175–91 [Google Scholar]
  38. Godfrey P. 1977. Climate, plant response and development of dunes on barrier beaches along the US east coast. Int. J. Biometeorol. 21:203–16 [Google Scholar]
  39. Godfrey PJ, Godfrey MM. 1973. Comparison of ecological and geomorphic interactions between altered and unaltered barrier island systems in North Carolina. Coast. Geomorphol. 239:258 [Google Scholar]
  40. Gopal B. 1987. Water Hyacinth. Aquatic Plant Studies 1 New York: Elsevier Sci [Google Scholar]
  41. Gordon DR. 1998. Effects of invasive, non-indigenous plant species on ecosystem processes: lessons from Florida. Ecol. Appl. 8:975–89 [Google Scholar]
  42. Graf WL. 1978. Fluvial adjustments to the spread of tamarisk in the Colorado Plateau region. Geol. Soc. Am. Bull. 89:1491–501 [Google Scholar]
  43. Gribben PE, Byers JE, Wright JT, Glasby TM. 2012. Positive versus negative effects of an invasive ecosystem engineer on different components of a marine ecosystem. Oikos 122:814–24 [Google Scholar]
  44. Gurnell A. 2014. Plants as river system engineers. Earth Surf. Process. Landf. 39:4–25 [Google Scholar]
  45. Gutiérrez JL, Jones CG, Strayer DL, Iribarne OO. 2003. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101:79–90 [Google Scholar]
  46. Hastings A, Byers J, Crooks J, Cuddington K, Jones C. et al. 2007. Ecosystem engineering in space and time. Ecol. Lett. 10:153–64 [Google Scholar]
  47. Holdich DM, Pöckl M. 2007. Invasive crustaceans in European inland waters.. Biological Invaders in Inland Waters: Profiles, Distribution, and Threats F Gherardi 29–75 London, UK: Springer [Google Scholar]
  48. Hughes TP, Linares C, Dakos V, van de Leemput IA, van Nes EH. 2013. Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends Ecol. Evol. 28:149–55 [Google Scholar]
  49. Johnson DL. 1990. Biomantle evolution and the redistribution of Earth materials and artifacts. Soil Sci. 149:84–102 [Google Scholar]
  50. Johnson DL, Watson-Stegner D, Johnson DN, Schaetzl RJ. 1987. Proisotropic and proanisotropic processes of pedoturbation. Soil Sci. 143:278–92 [Google Scholar]
  51. Jones CG. 2012. Ecosystem engineers and geomorphological signatures in landscapes. Geomorphology 157:75–87 [Google Scholar]
  52. Jones CG, Lawton JH, Shachak M. 1994. Organisms as ecosystem engineers. Oikos 69:373–86 [Google Scholar]
  53. Jones CG, Lawton JH, Shachak M. 1997. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946–57 [Google Scholar]
  54. Keeley JE. 2006. Fire management impacts on invasive plants in the western United States. Conserv. Biol. 20:375–84 [Google Scholar]
  55. Lambrinos JG. 2007. Managing invasive ecosystem engineers: the case of Spartina in Pacific estuaries. Theor. Ecol. Ser. 4:299–322 [Google Scholar]
  56. Langeland KA. 1996. Hydrilla verticillata (L.F.) Royle (Hydrocharitaceae), “The Perfect Aquatic Weed.”. Castanea 61:293–304 [Google Scholar]
  57. Lathrop RG, Windham L, Montesano P. 2003. Does Phragmites expansion alter the structure and function of marsh landscapes? Patterns and processes revisited. Estuaries 26:423–35 [Google Scholar]
  58. Liao C, Luo Y, Jiang L, Zhou X, Wu X. et al. 2007. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems 10:1351–61 [Google Scholar]
  59. Lizarralde M, Escobar J, Deferrari G. 2004. Invader species in Argentina: a review about the beaver (Castor canadensis) population situation on Tierra del Fuego ecosystem. Interciencia Caracas 29:352–56 [Google Scholar]
  60. Mack MC, D'Antonio CM. 1998. Impacts of biological invasions on disturbance regimes. Trends Ecol. Evol. 13:195–98 [Google Scholar]
  61. Matsuzaki S, Mabuchi K, Takamura N, Nishida M, Washitani I. 2009. Behavioural and morphological differences between feral and domesticated strains of common carp. Cyprinus carpio. J. Fish Biol. 75:1206–20 [Google Scholar]
  62. Maun M. 2008. Burial of plants as a selective force in sand dunes. Coastal Dunes, Ecology and Conservation. Ecological Studies 171 ML Martinez, NP Psuty 119–35 Berlin: Springer [Google Scholar]
  63. Moore JW. 2006. Animal ecosystem engineers in streams. BioScience 56:237–46 [Google Scholar]
  64. Naylor LA, Viles HA, Carter NEA. 2002. Biogeomorphology revisited: looking towards the future. Geomorphology 47:3–14 [Google Scholar]
  65. Odling-Smee FJ, Laland KN, Feldman MW. 1996. Niche construction. Am. Nat. 147:641–48 [Google Scholar]
  66. Odling-Smee FJ, Laland KN, Feldman MW. 2003. Niche Construction: the Neglected Process in Evolution Princeton, NJ: Princeton Univ. Press [Google Scholar]
  67. Odling-Smee J, Erwin DH, Palkovacs EP, Feldman MW, Laland KN. 2013. Niche construction theory: a practical guide for ecologists. Q. Rev. Biol. 88:3–28 [Google Scholar]
  68. Olenin S, Leppäkoski E. 1999. Non-native animals in the Baltic Sea: alteration of benthic habitats in coastal inlets and lagoons. Hydrobiologia 393:233–43 [Google Scholar]
  69. Osterkamp W, Hupp C, Stoffel M. 2012. The interactions between vegetation and erosion: new directions for research at the interface of ecology and geomorphology. Earth Surf. Process. Landf. 37:23–36 [Google Scholar]
  70. Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M. et al. 1999. Impact: toward a framework for understanding the ecological effects of invaders. Biol. Invasions 1:3–19 [Google Scholar]
  71. Phillips JD. 1995. Biogeomorphology and landscape evolution: the problem of scale. Geomorphology 13:337–47 [Google Scholar]
  72. Piazzi L, Cinelli F. 2003. Evaluation of benthic macroalgal invasion in a harbour area of the western Mediterranean Sea. Eur. J. Phycol. 38:223–31 [Google Scholar]
  73. Porter SD, Fowler HG, Mackay WP. 1992. Fire ant mound densities in the United States and Brazil (Hymenoptera: Formicidae). J. Econ. Entomol. 85:1154–61 [Google Scholar]
  74. Posey MH. 1988. Community changes associated with the spread of an introduced seagrass. Zostera japonica. Ecology 69:974–83 [Google Scholar]
  75. Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M. et al. 2012. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species' traits and environment. Glob. Change Biol. 18:1725–37 [Google Scholar]
  76. Reinhardt L, Jerolmack D, Cardinale BJ, Vanacker V, Wright J. 2010. Dynamic interactions of life and its landscape: feedbacks at the interface of geomorphology and ecology. Earth Surf. Process. Landf. 35:78–101 [Google Scholar]
  77. Retallack GJ. 2007. Cenozoic paleoclimate on land in North America. J. Geol. 115:271–94 [Google Scholar]
  78. Ricciardi A, Hoopes MF, Marchetti MP, Lockwood JL. 2013. Progress toward understanding the ecological impacts of nonnative species. Ecol. Monogr. 83:263–82 [Google Scholar]
  79. Rooth JE, Stevenson JC, Cornwell JC. 2003. Increased sediment accretion rates following invasion by Phragmites australis: the role of litter. Estuaries 26:475–83 [Google Scholar]
  80. Ruesink JL, Lenihan HS, Trimble AC, Heiman KW, Micheli F. et al. 2005. Introduction of non-native oysters: ecosystem effects and restoration implications. Annu. Rev. Ecol. Evol. Syst. 36:643–89 [Google Scholar]
  81. Schaetzl RJ, Johnson DL, Burns SF, Small TW. 1989. Tree uprooting: review of terminology, process, and environmental implications. Can. J. For. Res. 19:1–11 [Google Scholar]
  82. Shaler NS. 1892. The origin and nature of soils Twelfth Annual Report of the Director, 1890–91 213–345 Washington, DC: Dep. Interior, US Geol. Surv./US GPO [Google Scholar]
  83. Simberloff D. 2011. How common are invasion-induced ecosystem impacts?. Biol. Invasions 13:1255–68 [Google Scholar]
  84. Simberloff D, Martin J-L, Genovesi P, Maris V, Wardle DA. et al. 2012. Impacts of biological invasions: what's what and the way forward. Trends Ecol. Evol. 28:58–66 [Google Scholar]
  85. Simberloff D, Von Holle B. 1999. Positive interactions of nonindigenous species: invasional meltdown?. Biol. Invasions 1:21–32 [Google Scholar]
  86. Sousa R, Gutiérrez JL, Aldridge DC. 2009. Non-indigenous invasive bivalves as ecosystem engineers. Biol. Invasions 11:2367–85 [Google Scholar]
  87. Sprugel DG. 1980. A “pedagogical genealogy” of American plant ecologists. Bull. Ecol. Soc. Am. 61:197–200 [Google Scholar]
  88. Stallins JA. 2006. Geomorphology and ecology: unifying themes for complex systems in biogeomorphology. Geomorphology 77:207–16 [Google Scholar]
  89. Swanson FJ, Kratz TK, Caine N, Woodmansee RG. 1988. Landform effects on ecosystem patterns and processes. BioScience 38:92–98 [Google Scholar]
  90. Talley T, Crooks J, Levin L. 2001. Habitat utilization and alteration by the invasive burrowing isopod, Sphaeroma quoyanum, in California salt marshes. Mar. Biol. 138:561–73 [Google Scholar]
  91. Tamang B, Rockwood DL, Langholtz M, Maehr E, Becker B, Segrest S. 2008. Fast-growing trees for cogongrass (Imperata cylindrica) suppression and enhanced colonization of understory plant species on a phosphate-mine clay settling area. Ecol. Eng. 32:329–36 [Google Scholar]
  92. Thornes JB. 1985. The ecology of erosion. Geography 70:222–35 [Google Scholar]
  93. van den Brink F, van der Velde G, Bij de Vaate A. 1993. Ecological aspects, explosive range extension and impact of a mass invader, Corophium curvispinum Sars, 1895 (Crustacea: Amphipoda), in the Lower Rhine (The Netherlands). Oecologia 93:224–32 [Google Scholar]
  94. Vander Zanden MJ, Casselman JM, Rasmussen JB. 1999. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401:464–67 [Google Scholar]
  95. Viles HA. 1988. Biogeomorphology Oxford, UK: Basil Blackwell [Google Scholar]
  96. Viles HA. 2011. Biogeomorphology. The SAGE Handbook of Geomorphology KJ Gregory, AS Goudie 246–59 London, UK: SAGE [Google Scholar]
  97. Viles HA. 2012. Microbial geomorphology: a neglected link between life and landscape. Geomorphology 157:6–16 [Google Scholar]
  98. Wallentinus I, Nyberg CD. 2007. Introduced marine organisms as habitat modifiers. Mar. Pollut. Bull. 55:323–32 [Google Scholar]
  99. Wang Q, An SQ, Ma ZJ, Zhao B, Chen JK, Li B. 2006. Invasive Spartina alterniflora: biology, ecology and management. Acta Phytotaxon. Sin. 44:559–88 [Google Scholar]
  100. Warren RJ II, Wright JP, Bradford MA. 2011. The putative niche requirements and landscape dynamics of Microstegium vimineum: an invasive Asian grass. Biol. Invasions 13:471–83 [Google Scholar]
  101. Welander J. 2000. Spatial and temporal dynamics of wild boar (Sus scrofa) rooting in a mosaic landscape. J. Zool. 252:263–71 [Google Scholar]
  102. Wilkinson MT, Richards PJ, Humphreys GS. 2009. Breaking ground: pedological, geological, and ecological implications of soil bioturbation. Earth-Sci. Rev. 97:257–72 [Google Scholar]
  103. Winberry JJ, Jones DM. 1973. Rise and decline of the “miracle vine”: kudzu in the southern landscape. Southeast. Geogr. 13:61–70 [Google Scholar]
  104. Zarnetske PL, Hacker SD, Seabloom EW, Ruggiero P, Killian JR. et al. 2012. Biophysical feedback mediates effects of invasive grasses on coastal dune shape. Ecology 93:1439–50 [Google Scholar]
  105. Zedler JB, Kercher S. 2004. Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Crit. Rev. Plant Sci. 23:431–52 [Google Scholar]
  106. Żmudziński L. 1996. The effect of the introduction of the American species Marenzelleria viridis (Polychaeta; Spionidae) on the benthic ecosystem of Vistula Lagoon. Mar. Ecol. 17:221–26 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-120213-091928
Loading
/content/journals/10.1146/annurev-ecolsys-120213-091928
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error